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Microscopic optical buffering in a 
harmonic potential
M. Sumetsky

In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a 
one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential 
wells, do not experience distortion over time. This original idea did not find applications up to now 
since an exact one-dimensional harmonic resonator does not exist in nature and has not been created 
artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder 
with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in 
the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse 
completely, hold it as long as the material losses permit, and release it without distortion. This result 
suggests the solution of the long standing problem of creating a microscopic optical buffer, the key 
element of the future optical signal processing devices.

One of the greatest challenges of the modern photonics is the creation of miniature low-loss and high speed optical 
signal processors which promise to revolutionize the future computing and communications1,2. The key and most 
provocative element of these devices enabling the control and manipulation of optical pulses is the microscopic 
optical buffer. Having the smallest possible dimensions, the buffer should trap optical pulses, hold them for the 
required (usually nanosecond-order) period of time, and release them without distortion. The delay of an optical 
pulse in a small-size photonic structure assumes that the pulse experiences many oscillations (e.g., reflections and 
rotations) before being released, i.e., its propagation speed averaged over these oscillations is slow. Searching for 
realistic miniature optical delay lines and buffers based on this “slow light” concept resulted in several remarkable 
designs employing coupled ring resonators and photonic crystal waveguides1–6. The most important of these slow 
light structures are periodic and their transmission band has a region of approximately zero dispersion, which 
ensures the nearly dispersionless and slow propagation of optical pulses. These structures though suffer from 
the bandwidth-delay time limitation, which restricts the values of the delay time and pulse bandwidth achieved 
simultaneously1,2,7. A way to overcome this limitation suggested in6 consists in creation of a miniature optical buffer 
by adiabatic compression of the transmission band of a coupled resonator optical waveguide. Ideally this device 
enables slowing down and stopping of a light pulse with the predetermined spectral width. Yet, the experimental 
realization of all these models encountered significant practical barriers due to insufficient precision of modern 
photonics technologies and attenuation of light8. Consequently, it was suggested that “slow light dispersion, band-
width, and loss are fundamental issues that will limit the use of slow light devices as buffers”9.

However, in 1926, soon after the creation of quantum mechanics, Erwin Schrödinger published a paper where 
he investigated the oscillations of a Gaussian wave packet (used as a model of a quantum particle) in a harmonic 
potential10. He showed that the particle oscillations are periodic, i.e., the wave packet in a harmonic potential does 
not experience any distortion after many oscillations. Schrödinger wrote: “Our wave group always remains compact, 
and does not spread out into larger regions as time goes on, as we were accustomed to make it do, for example, 
in optics. It is admitted that this does not mean much in one dimension…” While the quantum motion of wave 
packets in a one-dimensional harmonic potential is indeed difficult to find in nature, the wave packet dynamics 
in potential wells with more general anharmonic shapes and higher dimensions has been investigated both theo-
retically and experimentally in atomic and solid state physics. It has been found that, unlike in one-dimensional 
harmonic potential, this motion is generally not periodic, though often exhibits the revival behaviour11.

Remarkably, Schrödinger’s result can be obtained without solving the Schrödinger equation for the potential 
with the quadratic dependence on the coordinate. In fact, it is sufficient to assume that the potential well has an 
equidistance spectrum ω= +E n En 0  corresponding to the stationary wave functions ψ ( )zn . Then, from the 
linearity of quantum mechanics, the evolution of a wave packet Ψ( , )z t  with arbitrary initial shape Ψ( , )z 0  is found 
as ψΨ( , ) = ∑ ( ) ω

=
∞ −z t a z en n n

in t
0  which has the period π ω= /T 2 . Thus, the periodicity of wave packet oscillations 
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follows from the equidistance of the spectrum of the resonator within the spectral width of the wave packet, which 
can be ensured by potentials with more general spatial dependencies.

We note that, in photonics, similar resonators (i.e., those having the equidistance spectrum within the pulse 
spectral width) can serve as ideal miniature optical buffers since they can hold optical pulses without distortion. 
In contrast to quantum mechanics, where the experimental realization of such resonators is problematic and still 
does not mean much in one dimension10, essentially one-dimensional resonant structures can be realized based on 
the photonic crystal waveguides, sequences of ring resonators, and fibre Bragg gratings. To this end, the periodicity 
of these structures should be appropriately chirped12–14 to arrive at the locally precise equidistant spectrum. Yet, 
similar to the above mentioned approaches based on the subwavelength-scale modulation of refractive index, the 
practical realization of these structures is impeded by insufficient fabrication precision and substantial attenuation 
of light3,8,9.

On the other hand, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics 
(SNAP), precisely imitates the one-dimensional Schrödinger equation optically and, at the same time, does not 
require the subwavelength-scale modulation of the refractive index to arrive at the effective potential with required 
spectrum governing the slow light propagation15–17. The photonic structures in SNAP are created at the surface of an 
exceptionally smooth and uniform optical fibre by its nanoscale deformation with the unprecedented subangstrom 
precision. Instead of periodicity, which warrants the slow light propagation in photonic crystals, this platform 
explores whispering gallery modes, which experience multiple transverse circulations and slowly propagate along 
the fibre axis. In particular, a SNAP bottle resonator15–17 with the parabolic effective radius variation can accurately 
reproduce the Schrödinger’s harmonic potential well. The parabolic bottle resonator delay line experimentally 
demonstrated in17 was introduced with a subangstrom precision. The resonator was fabricated at the 3 mm seg-
ment of an optical fibre with 19 μ m radius, i.e., had the footprint of 0.12 mm2. The effective radius variation of this 
resonator had the 2.8 nm height, which allowed us to delay 100 ps optical pulses by 2.5 ns. To avoid the reflection 
of an optical pulse exiting the resonator, coupling between the bottle resonator and the input-output microfibre 
was tuned to satisfy the impedance matching condition. As the result, the record small insertion loss of a slow light  
delay line in excess of 0.5 dB/ns was demonstrated.

Here, we propose a miniature bottle resonator optical buffer based on the generalised tuneable harmonic oscil-
lator introduced below. This device presents a feasible solution of the long standing problem of creating a smallest 
possible microscopic buffer for processing of optical pulses. To illustrate the idea of the paper, we first compare 
oscillations of an optical pulse launched into the stationary harmonic resonator, which exhibits no distortion, and 
anharmonic (rectangular) bottle resonator, which exhibit dramatic distortion. Next, we construct a non-stationary 
potential corresponding to a tuneable bottle resonator and show that it can work as a perfect optical buffer, i.e., it 
can trap an optical pulse, hold it for a predetermined period of time, and release it without distortion. Then, we 
take into account fabrication errors and show that the required fabrication precision is achievable. In the final 
Discussion section, the feasibility of the proposed harmonic optical buffers is analysed based on the recent progress 
in fabrication and investigation of nonlinear and piezoelectric multimaterial optical fibres.

Results
Optical pulse oscillations in a potential well. Let us first establish the correspondence between the 
Schrödinger equation, which describes the motion of a one-dimensional quantum particle18, and the Schrödinger 
equation, which describes propagation of light in the SNAP platform. Due to the very small and smooth effective 
radius variation of a SNAP structure, a whispering gallery mode (WGM) can be determined by separation of 
variables in cylindrical coordinates ρ ϕ( , , )z  as ϕ Ξ ρ( ) ( )Ψ ( , )im z texp mp mp . Below we consider the resonant prop-
agation of a WGM pulse corresponding to the fixed azimuthal and radial quantum numbers m and p, which is 
fully described by the amplitude Ψ( , )z t  as a function of axial coordinate z and time t (here and below the quantum 
number indexes are omitted for brevity). The equation that determines this propagation has the form of the 
one-dimensional Schrödinger equation15, which for the non-stationary case under consideration takes the form 
(see Methods):

µ
∂Ψ
∂

= −
∂ Ψ
∂

+ ( , )Ψ
( )

i
t z

V z t 1

2

2

Here µ ω= /n c2 0 0
2 2 and potential ( , ) = − ∆ ( , )/V z t k r z t r2 eff

2
0 are defined through the radiation frequency ω0 

of the transmission channel, refractive index n0 and bulk propagation constant ω= /k n c0 0  of the bottle resonator 
material, speed of light in vacuum c, and fibre radius r0. The nanoscale effective variation ∆reff  of the fibre radius 
is expressed through the variation of the effective physical radius ∆r  and refractive index ∆n as 
∆ ( , ) = (∆ ( , )/ + ∆ ( , )/ )r z t r z t r n z t n reff 0 0 0

15. Experimental results16,17 demonstrate the fabrication of SNAP 
structures with sub-angstrom precision in effective radius variation, while the fabrication precision of 0.1 angstrom 
is also feasible.

To illustrate the effect of dispersion and self-interference, we first consider the propagation of an optical pulse 
launched into the rectangular bottle resonator having the height ∆ =r 20 nm and length 2 mm (Fig. 1a). Here and 
below, we consider the propagation of 100 ps pulses and set the fibre radius = µr m200 , refractive index = .n 1 5, 
and radiation wavelength λ µ= .1 5 m. The spatial width of the 100 ps Gaussian pulse is 4.2 cm in vacuum and 
approximately 2.8 cm in a silica fibre. Following the experimental observations17, we set the initial axial speed of 
the pulse to the realistic 1% of its actual speed in silica, i.e., to . c0 0066 . Consequently, the axial width of the pulse 
is reduced to 0.28 mm. The surface plot describing the evolution of this pulse along the fibre axis z as a function of 
time is shown in Fig. 1b. It is seen that the pulse experiences significant corruption in the process of bouncing 
caused by both the dispersion and self-interference11,19. As the result, the original shape of the pulse is completely 
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lost in a few nanoseconds. In contrast, as was first noted by Schrödinger10, oscillations of an optical pulse in a bottle 
resonator with quadratic radius variation profile ∆ ( ) = − /( )r z z R2eff

2  and axial radius R are periodic and do not 
cause dispersion over time as illustrated in Fig. 1c,d.

Harmonic optical buffer. Generalizing the Schrödinger’s result10, we introduce now a harmonic optical 
buffer. We show that a tuneable harmonic potential well, which is reproduced by a miniature SNAP bottle resonator 
illustrated in Fig. 2, can trap an optical pulse completely, hold it as long as the material losses permit, and release 
without distortion. Light is coupled in and out of this resonator through a transverse waveguide, e.g., a microfibre 
taper (Fig. 2a). The buffering process includes: opening the bottle resonator by nanoscale variation of its effective 
radius (refractive index) to let the optical pulse in (Fig. 2b); closing the resonator when the pulse is completely 
inside the resonator and holding it for the duration of the required time delay (Fig. 2c); and releasing the pulse by 
reversing the deformation illustrated in Fig. 2b (Fig. 2d). The pulse dwell time in the optical buffer is not restricted 

Figure 1. Propagation of a 100 ps optical pulse in rectangular and parabolic bottle resonators. (a) Effective 
radius variation of the rectangular resonator having 2 nm height and 2 mm length. (b) Propagation of a 100 ps 
optical pulse in this resonator. The surface plot shows the field distribution of the pulse as a function of the 
coordinate along the fibre and time. It is seen that the pulse is completely corrupted after several nanoseconds 
of propagation and a few reflections due to the dispersion and self-interference. (c) Effective radius variation of 
the parabolic resonator having the 345 m radius of curvature. (d) Propagation of a 100 ps pulse in this resonator 
showing the periodic oscillations of the pulse with no distortion over the oscillation cycles.
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by the delay time-bandwidth limitation since it is determined only by the number of oscillation cycles and mate-
rial losses which allow the pulse to oscillate in the buffer without significant attenuation. Feasible experimental 
ways to open and close the bottle resonator by the application of laser and electrical pulses will be described later.

The bandwidth ω∆  of the optical pulse that can be held in the bottle resonator is expressed through the mag-
nitude of its effective radius variation ∆reff  as

ω
ω
∆ ∆

.
( )

~
r
r 2

eff

0 0

For the case of purely refractive index tuning, this equation coincides with ω ω∆ / ∆ /~ n n0 0
7,20. The amplitude of 

the effective radius variation required for opening and closing the resonator (Fig. 2b) is determined from equation 
(2) as well. For a 100 ps Gaussian pulse, which at telecommunication wavelength 1.5 μ m (ω = 200THz0 ) has the 
spectral width ω∆ = .4 4GHz, equation (2) yields ∆ = .r 0 44nmeff . Thus, a nanometre-shallow bottle resonator 
can fully confine 100 ps optical pulses, while opening and closing the resonator requires just a nanometre-high 
variation of the effective fibre radius.
As opposed to adiabatically slow tuning, which, ideally, is reversible and therefore allows acquiring and 
releasing a pulse without distortion6, we do not assume here that the switching process is slow. Instead, we show 
that it is possible to introduce a fast deformation (refractive index variation) of the bottle resonator without 

Figure 2. Illustration of a SNAP bottle resonator optical buffer. (a) A SNAP bottle resonator created from 
an optical fibre with nanoscale parabolic radius variation. The resonator is coupled to the transverse input-
output waveguide (micrometer-diameter waist of an optical fibre taper). (b) The switching nano-deformation 
of the effective radius, which is introduced by a pulse of the applied laser or electrical field, transfers the closed 
parabolic resonator into the open semi-parabolic resonator shown in this figure. (c) After the deformation 
shown in Figure (b) is released, the bottle resonator restores its original parabolic shape with the optical pulse 
oscillating inside it. (d) Finally, the same as in Figure (b) nano-deformation is introduced again and the pulse is 
released back into the input-output waveguide. The red curves illustrate the propagation of an optical pulse in 
each of the configuration considered.
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disturbing (i) the optical pulse shape, (ii) the harmonicity of the potential, and, as a consequence, (iii) the 
reversibility of the buffering process. To arrive at such microscopic optical buffer, the time-dependent potential 

( , )V z t  is constructed as follows. First, we request that, when fully opened, this potential coincides with a 
harmonic semi-parabolic potential

 
ω ω( ) = , = ( ) ( )

− /V z z k Rr 3op 1
2 2

1 0
1 2

proportional to the effective radius variation of the bottle resonator ∆ ( ) = − /( )r z z R2eff
2  with axial radius R 

(Fig. 3a,b, blue curves). Next, we look for the parabolic closed potential centred at point =z z0 in the form 

ω( ) = ( − ) + ( )V z z z V 4cl 2
2

0
2

0

and choose ω ω ω= ( − / )−V z10 1
2

1
2

2
2 1

0
2  so that these potentials are tangent at their common point 

ω ω= ( − / )−z z 1c 0 1
2

2
2 1 (Fig. 3a,b, dashed red curves). Finally, the time-dependent buffering potential ( , )V z t  is 

constructed as ( ) ( ) + ( − ( )) ( ),f t V z f t V z1op cl  where the switching function ( )f t  is equal to zero and one for the 
closed and open potential, respectively. The switching process will not disturb the optical pulse significantly if the 
characteristic switching time is less than the time it takes the pulse to reside in the left hand side region of ( )V zcl  
near the common point zc where potentials ( )V zop  and ( )V zcl  are approximately equal.

As an example, we numerically investigate a miniature optical buffer having the open and closed configurations 
defined by the harmonic semi-parabolic and parabolic effective radius variations shown in Fig. 3a. Buffering of a 
100 ps Gaussian pulse is shown in the surface plot of Fig. 3b. The bottle resonator captures the pulse between the 
1st and 2nd ns after launch, holds it over the duration of 4 oscillation cycles and releases with practically no distor-
tion between the 12th and 13th ns. The total delay time is 14 ns, while the time of one cycle is 3.6 ns. Comparison of 
Fig. 3a,b shows that, in agreement with equation (2), the pulse is fully confined by a parabolic resonator which is 
as shallow as 1 nm in effective radius variation.

Optical buffering in a generalized harmonic potential. The parabolic potential is not the only one that 
possesses the equidistant spectrum and supports the periodic oscillations similar to those shown in Fig. 1d. Here 
we show that a wide class of non-parabolic potentials support the periodic oscillations of an optical pulse with 
excellent accuracy. This result is critical for practical realization of the proposed optical buffer since it makes its 
design much more flexible.

We assume here that the potential well is wide enough to ensure a relatively large oscillation time and high 
enough to ensure the sufficient bandwidth of the pulse. Thus, we are interested in potentials which can be treated 
semi-classically18. It is shown in the Supplementary Note that the family of potentials ( )V z  which are harmonic in 
this approximation are determined by the algebraic equation for their inverse functions ( )z V :

( ) − ( ) = ( − ) ( )( ) ( )z V z V C V V 52 1
0

where C and V 0 are arbitrary constants. In this equation, one branch of the potential, e.g., ( )( )z V1 , can be an arbi-
trary monotonic function, while the other branch, ( )( )z V2 , is expressed through ( )( )z V1  from equation (5).

Let us construct the buffer potential ( , )V z t  (or, equivalently, the effective radius variation 
∆ ( , ) = −( / ) ( , )r z t r k V z t2eff 0

2 ) as follows. First, we request that, when fully opened, this potential coincides 
with a harmonic semi-parabolic potential defined by equation (3) (Fig. 4a, blue curve). In the process of switching, 
we request that the left hand side region, >z z0, of potential ( , )V z t , remains unchanged so that the optical pulse 
propagating in this region at this time is not perturbed by switching at all. This is different from the model considered 
in the previous section where the transition between the closed and open potentials deformed the closed potential 
and therefore slightly perturbed the optical pulse. Next, we request that, after full closing, the new left hand side 
of the potential, at <z z0, together with the remaining right hand side >z z0 form a closed harmonic potential 

( )V zcl  (Fig. 4a, green dashed curve) where the optical pulse can oscillate without distortion. The analytical expres-
sion for ( )V zcl , is determined from equation (5) as:
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where z0, ω1, and ω2 are free parameters. As requested, potential ( )V zcl  has the equidistant spectrum in the 
semi-classical approximation. It is asymmetric and, though continuous everywhere, has a break of the first deriv-
ative at =z z0 .  Finally,  the t ime-dependent buffering potential  ( , )V z t  is  constructed as 

( ) ( ) + ( − ( )) ( )f t V z f t V z1op cl  as in the previous section. The switching process will not disturb the pulse if the 
characteristic switching time is less than the time it takes the pulse to reside in the region >z z0.

The buffering process is described as follows. The optical pulse is launched into the open semi-parabolic poten-
tial. When the pulse is approaching the right hand side turning point, the semi-parabolic potential is gradually 
closing and transforming into the asymmetric harmonic potential determined by equation (6) (Fig. 4a). Crucially, 
this deformation does not affect the right hand side of the potential, which is the common parabolic part of both 
the closed and open harmonic potentials. For this reason, the deformation does not perturb the pulse, which at 
the time of deformation is situated completely within the right hand side parabolic part of the potential well. For 
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Figure 3. Performance of a SNAP bottle resonator optical buffer. (a) The effective radius variation (left 
vertical axis) and equivalent refractive index variation (right vertical axis) of the open semi-parabolic resonator 
(blue curve) and closed parabolic resonator (green curve). The nano-deformation (black curve), equal to the 
difference of these curves, is gradually introduced and released during a sub-nanosecond time period. (b) The 
surface plot shows the distribution of the field of the optical pulse, which is captured, held, and released by the 
buffer, as a function of the coordinate along the bottle resonator and time. The output pulse shown at the top 
of the figure (and also shown in Fig. 4b) exhibits the negligible distortion compared to the input pulse at the 
bottom. (c) In this figure, the closed parabolic resonator shown in (a) is perturbed by a Gaussian deformation 
with the height of 0.5 Å (dashed green curve). (d) The surface plot in this figure shows that the optical buffer 
with such perturbed radius variation exhibits significant distortion of the pulse over time (the output pulse for 
this case is also shown in Fig. 4e). (e) This figure shows a much greater 2 Å Gaussian perturbation with the same 
width introduced at the entrance of the open semi-parabolic resonator (dashed blue curve). (f) The evolution of 
the pulse in the optical buffer with such perturbation exhibits the tolerable distortion of the pulse (shown at the 
top of (f) and also in Fig. 4g).
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the next period of time, the pulse is oscillating between turning points in the closed potential without distortion. 
Finally, the inverse time-dependent process transforms the closed parabolic potential into the open semi-parabolic 
potential to let the pulse out. Again, this process does affect the shape of the optical pulse.

As an example, we numerically investigate a miniature optical buffer having the opened and closed config-
urations defined by the harmonic semi-parabolic and asymmetric effective radius variations shown in Fig. 4a. 
Buffering of a 100 ps Gaussian pulse is shown in the surface plot of Fig. 4b. The bottle resonator captures the pulse, 
holds it over the duration of 6 oscillations and releases with practically no distortion. For the 2 nm high effective 
radius variation considered, the single oscillation time is 1.7 ns and the whole delay is around 16 ns. The slight 
discrepancy between the input and output pulses shown in Fig. 4c can be explained by the fact that the closed 
potential was determined in the semi-classical approximation, i.e., it is not the exact harmonic potential. However, 
the remarkably small distortion shown in Fig. 4c is obviously sufficient for practical applications. In addition, it is 
expected that the potential profile can be iterated to minimize the distortion further.

Required fabrication precision. Since the absolutely precise harmonic potential cannot be realized experi-
mentally, it is important to determine the fabrication precision required for satisfactory performance of the buffer. 
We verify the effect of deviation from the harmonicity by adding a perturbation (a) inside the closed harmonic 
potential, which disturbs the process of periodic oscillations and (b) at the entrance of the open harmonic poten-
tial, which affects the process of entering and exiting of the resonator. Calculations show that perturbations of the 
closed harmonic potential, especially those localized near the turning points of the pulse, have a much stronger 
effect on the distortion of the optical pulse than those of the open semi-parabolic potential. In fact, the pulse speed 

Figure 4. Performance of a SNAP bottle resonator optical buffer constructed of an asymmetric semi-
classical harmonic potential. (a) The effective radius variation of the open semi-parabolic resonator (blue 
curve) and closed parabolic resonator (green dashed curve). The nano-deformation (black curve), equal to 
the difference of these curve, is gradually introduced and released during a sub-nanosecond time period and 
is equal to zero at z >  z0. (b) The surface plot shows the distribution of the field of the optical pulse, which is 
captured, held, and released by the buffer, as a function of the coordinate along the bottle resonator and time. 
The output pulse shown at the top of the figure exhibits the negligible distortion compared to the input pulse at 
the bottom. (c) Comparison of the input and output pulse profiles for the pulse propagation shown in (b).
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near the turning points tends to zero, so that the acquired effect of a perturbation here is maximized. Furthermore, 
the effect of perturbation of the closed potential is multiplied by the number of oscillation cycles. We assume that 
the perturbations are spatially smooth and choose them in the form of a Gaussian function with FWHM equal 
to 0.6 mm which corresponds to the characteristic width of the laser beam used for fabrication and tuning of the 
bottle resonator. Figure 5 compares the input 100 ps pulse (Fig. 5a) and the output pulse for the open and closed 
bottle unperturbed (Fig. 5b); closed bottle perturbed at its right hand side near the turning point (Fig. 5c–e); and 
open bottle perturbed at its left hand side (Fig. 5f,g). It is seen that, while the 0.1 Å perturbation of the closed bottle 
introduces minor distortion of the pulse (Fig. 5c), the distortion becomes significant for the 0.3 Å perturbation 
(Fig. 5d) and becomes severe for the 0.5 Å perturbation (Fig. 5e). The perturbation profile and 2D plot clarifying 
the pulse evolution for the last case are shown in Fig. 3c,d. In contrast, the perturbation near the exit of the open 
bottle resonator up to 2 Å, i.e., ~10% of the effective radius variation (Figs 3e,f and 5f,g) does not cause significant 
pulse distortion.

Discussion
Following the original idea of Schrödinger and based on the recent progress in microphotonics, we have introduced 
and investigated a feasible microscopic optical buffer. It is shown that a few nanometre tuning of the bottle resonator 
effective radius is sufficient to trap, hold, and release telecommunication optical pulses without distortion over 
the time period of ten of nanoseconds or longer, while the delay time is limited by the material losses only. The 
dimensions of this device are determined by the footprint of the SNAP bottle resonator (0.12 mm2 for the model 
considered, which corresponds to 0.009 mm2 per a nanosecond delay), while each oscillation of the pulse in this 
resonator delays light by 3.6 ns (compare with a single-cycle untunable semi-parabolic delay line experimentally 
demonstrated in17, which had the total delay of 2.6 ns and the same footprint). Remarkably, the parabolic profile 
of the bottle resonator is not the only profile that allows to hold a light pulse with minimal distortion introduced. 
We show that there exists a wide family of potential wells in which the optical pulse experiences practically no 
distortion. Exploiting these generalized potentials allows to optimize the performance of miniature optical buffers 
more efficiently.

We suggest that the exceptionally high precision of 0.1 Å required for the fabrication of the bottle resonator 
buffer described above is feasible using the advanced SNAP technology. In fact, the precision of 0.7 Å in effective 

Figure 5. Comparison of the input 100 ps pulse (a) and output pulses corresponding to different 
perturbations of the optical buffer (b–g). The profiles of 0.6 mm FWHM Gaussian perturbations of the closed 
parabolic resonator (green dashed curve with height ha) and open semi-parabolic resonator (blue dashed curve 
with height hb) which are positioned as shown in the inset. (b) The output pulse for the unperturbed buffer.  
(c–e) The output pulses for the closed resonator perturbations with =ha 0.1, 0.3, and 0.5 Å, respectively. (f,e) The 
output pulses for the open resonator perturbations =hb 1 and 2 Å, respectively.
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radius variation was experimentally achieved in21 by iterations using 0.07 Å increments limited by the resolution 
of the optical spectrum analyser used. Thus, it is expected that the 0.1 Å precision can be achieved by the straight-
forward improvement of the SNAP fabrication setup (see Methods).

The tunability of the proposed miniature optical buffer can be achieved utilizing the fibre with a highly non-
linear, electrostrictive, or piezoelectric core22,23. The local application of a laser field or electric potential to the 
nonlinear or piezoelectric material positioned inside the fibre allows to deform the fibre, tune its effective radius, 
and, thus, open and close the bottle resonator. For example, tuning has been recently demonstrated for a silica 
WGM resonator with a silicon core22. The wavelength shift as large as 0.4 nm was introduced by a picosecond 
laser field and attributed to the Kerr nonlinearity of silicon. This shift corresponds to 5 nm of the effective radius 
variation for a fibre with the 20 μ m radius, which is sufficient to enable the buffering process describe above. Since 
the required spatial distribution of the switching deformation is smooth (Fig. 3a), the corresponding intensity var-
iation is feasible. The characteristic axial length of the deformable part of the buffer (black lines in Figs 3a and 4a)  
does not exceed a few millimetres. Consequently, the tunability can be also achieved with a specially designed 
microscopic piezoelectric transducer glued into a SNAP fibre capillary. The behaviour of a transverse ultrasonic 
pulse generated by this transducer is generally not adiabatic and is difficult to control dynamically. The relatively 
slow adiabatic switching can be analysed by measurement of the effective fibre radius variation for the fixed voltage 
applied to the piezoelectric.

Alternatively, the required nanoscale temporal and spatial variations can be introduced in a fibre segment 
wholly fabricated of a low loss and highly nonlinear, electrostrictive, and piezoelectric materials (e.g., of silicon24 
or lithium niobate25) for which the SNAP technology can potentially be developed. In this case, the power of 
the switching laser pulse can be enhanced dramatically if the pulse is resonantly coupled into the fibre WGM26. 
Fabrication of highly nonlinear and electrostrictive fibre segments with the required outstanding uniformity is a 
fruitful and challenging problem to be addressed in the future.

Methods
Derivation of the nonstationary Schrödinger equation. Equation (1) can be derived from Maxwell 
equations in a way similar to that used in the derivation of the stationary Schrödinger equation which describes 
propagation of WGM in a SNAP fibre with nanoscale effective radius variation15. However, it is more straightfor-
ward to derive this equation directly from the stationary Schrödinger equation by the Fourier transform27. 
Assuming that the potential in equation (1) is independent of time, we look for the solution of this equation in the 
form ωΨ( , ) = Φ( ) ( ∆ )z t z i texp , where ω∆  is the frequency variation. After the substitution of this expression 
into equation (1) we arrive at the known stationary Schrödinger equation for Φ( )z 15. The inverse Fourier transform 
yields equation (1). From15, the stationary Schrödinger equation is valid in the vicinity ω∆  of the resonance fre-
quency much smaller than the free spectral range ω∆ /( ) c n r0 0 . Consequently, the characteristic temporal width 
∆t of optical pulses described by equation (1) should satisfy the inequality ω∆ /∆ /~t n r c1 0 0 . For the char-
acteristic fibre parameters, .~n 1 50  and ~r 200 μ m16,17, we have ∆ t 1 ps. Therefore, the description of nano-
second pulses having ∆ ~t 1 ns by equation (1) is justified.

Fabrication precision of SNAP structures. It is instructive to discuss the physical meaning of the dra-
matically high subangstrom precision, which has been achieved in SNAP technology16,21, and its prospective 
improvement to 0.1 Å, which is required for the realization of the proposed harmonic optical buffer. The value 
0.1 Å is an order of magnitude less than the size of an atom. The definition of such a small measurement precision 
assumes averaging of the actual surface height variation over the surface dimensions much greater the radiation 
wavelength. The nanoscale variation of the surface height of SNAP resonators is generally axially asymmetric. For 
resonators with axial dimensions of several microns and height variation of a few micrometres, the asymmetry 
may reduce the Q-factor and eventually destroy the resonator28,29. However, for the SNAP resonators of our interest 
having the axial length of the order of 100 μ m or greater and height of several nanometres, this effect is small29. 
Experimentally, we determine the effective radius variation of the fibre using a microfibre taper connected to the 
power source and optical spectrum analyser as illustrated in Fig. 2a. The microfibre is translated along the SNAP 
fibre and the WGM spectrum is measured at sequential points of contacts. In the simplest case of an optical fibre 
with the slow-varying radius, the radius variation ∆ ( )r zeff  is determined from the shift a WGM resonance ω∆ ( )z  
by equation ω ω∆ ( )/ = ∆ ( )/r z r zeff 0 0

30,31. At characteristic optical frequency of ω ~ 2000  THz (corresponding to 
the telecommunication wavelength 1.6 μ m) the width of the resonance for a silica fibre can be as small as ω∆ ~ 10
MHz (corresponding to Q-factor ~107). With the same measurement resolution of ω∆ ~ 10 MHz and fibre radius 
~r 200 μ  m, the measurement precision of the fibre radius variation can be as small as ω ω∆ ∆ ⋅ /~r r0 0 ~ 0.01 Å.
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