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Abstract

The relationship between sleep apnoea-hypopnoea syndrome (SAHS) sever-
ity and the regularity of nocturnal oxygen saturation (SaOj) recordings was
analysed. Three different methods were proposed to quantify regularity: ap-
proximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn).
A total of 240 subjects suspected of suffering from SAHS took part in the
study. They were randomly divided into a training set (96 subjects) and a test
set (144 subjects) for the adjustment and assessment of the proposed meth-
ods, respectively. According to the measurements provided by AEn, SEn and
KEn, higher irregularity of oximetry signals is associated with SAHS-positive

patients. Receiver operating characteristic (ROC) and Pearson correlation

*Corresponding author. Phone: 0034 983 184713
FEmail addresses: jvmarcos@gmail.com (J. Victor Marcos), robhor@tel.uva.es
(Roberto Hornero), i.t.nabney@aston.ac.uk (Ian T. Nabney), dalvgon@gmail.com
(Daniel Alvarez), gguttobGgmail.com (Gonzalo C. Gutiérrez-Tobal),
fsas@telefonica.net (Félix del Campo)

Preprint submitted to Medical Engineering & Physics November 18, 2015



analyses showed that KEn was the most reliable predictor of SAHS. It pro-
vided an area under the ROC curve of 0.91 in two-class classification of
subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements
from oximetry data exhibited a linear dependence on the apnoea-hypopnoea
index, as shown by a correlation coefficient of 0.87. Therefore, these measure-
ments could be used for the development of simplified diagnostic techniques
in order to reduce the demand for polysomnographies. Furthermore, KEn
represents a convincing alternative to AEn and SEn for the diagnostic anal-

ysis of noisy biomedical signals.

Keywords: Oxygen saturation, Entropy rate, Approximate entropy,

Sample entropy, Kernel entropy, Density estimation
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1. Introduction

Regularity is defined as the consistency of subpattern recurrence in a time
series [1]. Regularity has shown to be a useful property of biomedical signals
to discriminate those either generated by pathological systems or by the same
system under different conditions [2|. Regular signals are characterised by a
predictable behaviour, with recognizable patterns that repeat. Regularity is
associated with the amount of information in a series, which, in a probabilistic
sense, is a measure of the unexpectedness in the data [3]. Shannon [4]
proposed the concept of entropy to evaluate the information (or uncertainty)
in a message, which is modelled as a finite collection of random variables. In
the context of infinite sequences or series, the entropy rate has been employed
for the quantification of the amount of information [2]. Several metrics have
been proposed to estimate the entropy rate of a series, with approximate
entropy (AEn) [5] and sample entropy (SEn) [6] being the most common ones.
A generalised entropy measure is given by the family of Renyi entropies (R,),
where ¢ denotes the entropy order [7]. Lake [8] analysed the incorporation
of the Renyi entropy into the entropy rate framework, showing that AEn and
SEn approximate the differential Renyi entropy rate for ¢ = 1 and q = 2,
respectively.

AEn and SEn are based on the computation of probabilities by counting
matches between signal subsequences of length m and m + 1. A match is
found when the distance between two subsequences is lower or equal than a
tolerance parameter r [6]. A different procedure to obtain the Renyi entropy
rate of a series consists of substituting probability terms in AEn and SEn

algorithms by the corresponding probability density functions [8, 3]. Several
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advantages are found in this approach. It suppresses the need of predefined
rules for the choice of the tolerance parameter r, which can be freely varied
in order to obtain confident estimates of the density functions. In addition,
entropy estimates made with different values of r measure the same inherent
quantity and can be compared directly [8, 9].

This approach requires the approximation of the (unknown) probability
density function of the data, for which a finite set of samples extracted from
the underlying series is initially available. Non-parameteric kernel density
estimation based on the Parzen window method has been suggested for this
purpose [8, 3]. Specifically, Gaussian kernels are of special interest since they
result in a smooth and continuous profile of the approximated density [10].
Additionally, in the case of the quadratic entropy (Rz), i.e., the Renyi entropy
of order ¢ = 2, Gaussian kernels lead to the exact evaluation of the integral
found in its definition [3]. In a preceding study, a kernel-based estimation
of Ry was adopted to assess the quadratic entropy rate of a time series [11].
The resulting measure, termed as kernel entropy (KEn), was proposed as an
indicator of the irregularity of the series [11, 12].

Entropy analysis has yield successful results in several applications in-
volving time series processing such as earthquake forecasting [13|, exchange
rating [14] or fault detection [15]. Furthermore, entropy measures of biomed-
ical signals have been widely used to assess physiological differences between
subjects [16, 17]. The present study focuses on this scenario. We explored
the utility of entropy rate measurements of nocturnal oxygen saturation sig-
nals (SaOj) in the context of sleep apnoea-hypopnoea syndrome (SAHS)

diagnosis. Nowadays, a definitive diagnosis about SAHS is obtained from
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in-hospital evaluation of the patient’s sleep through nocturnal polysomnog-
raphy (PSG). This test enables the assessment of SAHS severity by means of
the apnoea-hypopnoea index (AHI), which quantifies the number of apnoea
and hypopnoea events per hour of sleep. To obtain the AHI of a patient, the
sleep specialist must evaluate a large amount of clinical and physiological
data that, in addition to SaOs series, include other signals such as the elec-
trocardiogram (ECG), the electroencephalogram (EEG) or the respiratory
airflow (AF) [18]. Therefore, PSG is a highly complex and time-consuming
procedure.

Reliable indicators of SAHS severity automatically extracted from these
data would enable an objective and simplified interpretation. Nocturnal
oximetry recordings are of special interest as they reflect respiratory dy-
namics during sleep. Apnoeas and hypopnoeas are usually accompanied by
hypoxaemia due to airflow reduction, which is reflected by a marked drop in
the saturation value [19]. The diagnostic utility of oximetry signals has been
previously evaluated through different methods. A straightforward approach
is the use of oximetry parameters based on the computation of desatura-
tion events or the time spent below a certain level of saturation [20, 21].
In addition, complex signal processing and pattern recognition techniques
like neural networks or genetic algorithms have been employed for the ex-
traction of useful descriptors from SaOy data [22, 23, 24]. According to the
reported results, a higher diagnostic accuracy can be obtained through the
combination of different features including statistical, spectral and non-linear
ones. Correct diagnostic rates close to 90% have been reported for screening

algorithms based on this approach [25, 26, 22|.
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Among other features, SaO, irregularity measured by the entropy rate
has been employed as a descriptor of the influence of SAHS severity on its
dynamic behaviour [27, 25|. The non-deterministic occurrence of apnoeic
episodes tends to increase the uncertainty in the SaOs signal and, equiva-
lently, its amount of information. As a result, signals from subjects suffering
from SAHS are expected to have a higher entropy rate than those from con-
trol subjects. Previously, AEn has been employed to measure SaO irregular-
ity [28, 27]. These preceding studies showed the relationshp between higher
irregularity of oximetry signals and SAHS severity, estimating that a correct
diagnosis based on regularity analysis can be obtained for approximately 85%
of the patients. However, AEn has proven to be a biased entropy estima-
tor [6] and, thus, further analysis is required to extract robust conclusions
on the relationship between SAHS severity and SaO; irregularity.

To this end, the present study proposes a comparative analysis between
different entropy metrics. In addition to AEn, we suggest entropy analysis of
Sa0s series based on SEn and KEn, which provide two different approaches
to estimate the quadratic entropy rate of a signal. The present study aims to
determine to which extent the irregularity of SaOy data is related to SAHS
severity, as well as the most accurate method to quantify this relationship.

We hypothesise that a more confident assessment of the entropy of SaO,
recordings can be obtained by means of kernel-based approximations to prob-
ability density functions as implemented by KEn. This method represents
a novel approach for entropy estimation with respect to conventional pro-
cedures like AEn and SEn. The framework implemented by KEn suitably

adapts to oximetry analysis since SaOy samples can be interpreted as ob-
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servations of a continuous variable. Thus, probability density functions may
provide a more reliable description of their statistical behaviour. This hy-
pothesis is evaluated through an exhaustive regularity analysis of SaO, data

using AEn, SEn and KEn.

2. Materials and methods

2.1. Subjects and signals

A total of 240 subjects suspected of suffering from SAHS took part in
the study. They underwent PSG in the Sleep Unit of Hospital Universi-
tario Pio del Rio Hortega, Valladolid, Spain. The Review Board on Human
Studies approved the protocol and each subject gave their consent to par-
ticipate in the study. To draw useful conclusions on the effect of SAHS on
Sa0y dynamics, subjects affected by any other relevant respiratory disorder
were excluded. The selected patients were continuously monitored using a
polysomnograph (Alice 5, Respironics, Philips Healthcare, The Netherlands).
A medical expert analysed the PSG recordings according to the rules pro-
posed by Rechtschaffen and Kales [29]. Once apnoeas and hypopnoeas were
identified, the AHI was obtained as the total number of events (i.e., the sum
of apnoeas and hypopnoeas) divided by the total sleep time. The resulting
value is expressed as the number of events per hour of sleep [30]. A thresh-
old given by AHI = 10 h™' was used to determine a positive diagnosis of
SAHS [31].

A Nonin PureSAT pulse oximeter (Nonin Medical Inc., USA) was used
to record oximetry signals at a sampling frequency of 1 Hz. These signals

were subsequently saved to separate files to be processed offline. A prepro-
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cessing stage was initially applied to remove artefacts like marked drops or
zero samples due to a bad contact of the probe during sleep. The criteria
suggested by Magalang et al. [32] were taken into account to perform signal
preprocessing. According to these criteria, all changes greater than 4%/s
between consecutive sampling intervals and any sample lower than 20% were
removed.

Figure 1 shows two oximetry recordings from our dataset once artefacts
were removed. The signals correspond to a normal subject (AHI = 0.5 h!)
and a subject with severe SAHS (AHI = 32.1 h™!), respectively. In addition,
a detailed view (12 minutes) of both recordings is provided. The differences
between these signals reflect the influence of repeated apnoeas and hypop-
noeas on 3a0y dynamics. The signal from the normal subject is characterised
by a near-constant saturation value along the night, with small fluctuations
around the baseline level. This behaviour is confirmed when observed in de-
tail, as it exhibits some variability without marked desaturation events. In
contrast, the profile of the signal from the subject with severe SAHS reflects
a significant instability as a consequence of repeated desaturations accom-
panying apnoeas and hypopnoeas. As observed in the zoomed segment of
the signal, these desaturation events are more frequent when compared with
the oximetry recording from the normal subject. Additionally, they are more
pronounced and longer. Therefore, a distinct value of the entropy rate can

be expected for these signals since they reflect different dynamics.
INSERT FIGURE 1 AROUND HERE

The hold-out method was used to prevent bias in the estimation of the

performance of the three entropy metrics [10]. Therefore, the initial popu-

9



150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

lation was randomly divided into a training set with 96 subjects (40%) and
a test set with 144 subjects (60%). The former was used to adjust user-
dependent parameters in AEn, SEn and KEn algorithms. Signals in the test
set were used to assess the diagnostic capability of these methods. Table 1
summarises the demographic and clinical data for subjects in training and
test sets. Note that a higher proportion of SAHS-positive subjects was ob-
tained due to the initial suspicion of SAHS in the population under study.
In addition, the higher percentage of older males is motivated by the in-
creased prevalence of SAHS in this group, as reported in previous studies. In
the landmark study of the Wisconsin Sleep Cohort, including 602 men and
women, 24% of men and 9% of women had AHI ; 5 h!, while 9% of men
and 4% of women had AHI ; 15 h'! [33]. In addition, it has been estimated

that AHI increases with age for both men and women [34].
INSERT TABLE 1 AROUND HERE

2.2. Methods

We compared the utility of three different entropy metrics, namely AEn,
SEn and KEn, to quantify the relationship between SAHS severity and the
irregularity of SaO, data. The proposed methods represent distinct imple-
mentations of the Renyi entropy rate of a series. The mathematical definition
of the latter is derived from the expression of the Renyi entropy, which is ob-
tained as follows. Let x = [1, xg, ..., 2x] be a continuous stochastic process
composed of a sequence of N random variables z;. The Renyi entropy of the

process is given by [7]:

10
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Ryn = T qlog {E [fq_l (1,..., ZL’N)] }
1 1)
:1 log/fq(.Il,...,.Z’N)d.Z’l...dl’N
—4q
where ¢ determines the entropy order and f (x) = f (x1,...,zx) is the joint

probability density function of the set of variables x; that compose the pro-
cess. The Renyi entropy evaluates the amount of information (uncertainty)
in x.

Adding new variables to the process x will contribute to increase its
information content, showing the dependence of the entropy on the process
length specified by N [2]. Thus, a measure of the variation of the entropy due
to the inclusion of a new variable z;, i.e., the entropy rate, can be obtained.
The differential Renyi entropy rate is defined by the following asymptotic
limit [8]:

Dq,N - ]él_{noo (Rq,N+1 - Rq,N)

_ Nhinoo{_log [ / f (X(N+1))dX(N+1):| +log [ / f (X(N))dX(N)H

where the superscripts (V) and (N + 1) denote the length of the process x.

(2)

In the following sections, a description of AEn, SEn and KEn is provided,
showing the connection between each of these metrics and D, n as expressed
in (2).

2.2.1. Approximate entropy (AEn)

AFn is a family of metrics developed by Pincus [5] for the analysis of noisy

data such as biomedical signals. Briefly, AEn estimates the entropy rate

11



190

191

192

193

194

195

196

197

198

199

201

202

203

204

205

206

207

208

209

210

of a series from the computation of the probability of repetition for subse-
quences of length m. To this end, two subsequences are considered similar
if the distance between them is lower than a threshold r. Mathematically,
the algorithm to compute AEn is defined for a finite time series of length

N given by x = [x1,...,zx]|. From this series, extract overlapping m-length

windows, from xz(-m) to x%n_)mﬂ, defined as xgm) = |2, Tty o Ticmet] -

(m) (m)

The distance d [xz(.m), x(.m)} between two such vectors x; " and x; " is cal-

j
culated as the maximum absolute difference between their respective scalar
components. A tolerance value r is used to obtain the number of vectors
(j=1,...,N—m+1) such that d [xgm),xyn)} < 7, which is denoted as

N™ (i) . Then, the likelihood that a vector is within a distance 7 from vector

x™ (i =1,...,N —m+1) is estimated as:

e = o) 3

The term C7" (i) reflects the regularity of patterns of length m similar to

xgm) for a tolerance r. Equivalently, it estimates the probability of observ-
(m)

ing the m-length vector x; ", implementing a discrete approximation to the
probability density function f (x(m)).
The average of the logarithmic likelihood over the complete set of samples

is computed as:

1 N—m+1
o™ (r) = Fg— ; logCy" (1) (4)

From the previous analysis, ¢ (r) represents an estimation of the expected
value of log [ f (x(m))}, which in turn corresponds to the negative value of

the Renyi entropy of order ¢ = 1 [8]:

12
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o ()~ £ {log [f ()]} = [1og 7 ()] 7 () ) — Ry
(5)
Therefore, AEn approximates Dy y, the differential Renyi entropy rate of

order ¢ = 1 [8], as expressed by its mathematical definition [5]:

AEn (m,r) = lim [¢™ (r) —¢™ " (r)] (6)

N—oo
The following statisitc is adopted for the computation of AEn on finite time

series:

ABn (m,r,N) = ¢™ (r) = ¢" 7" (r) (7)

2.2.2. Sample entropy (SEn)

SEn adopts a similar approach to AEn for the estimation of the entropy
rate, which is based on the estimation of the probability of repetition for a
subsequence. As a substantial difference, self-matching is prevented in the

SEn algorithm. It has been shown that self-matching, i.e., the comparison
(m)

of a vector x; ~ with itself, introduces some bias in the computation of AEn.

Richman and Moorman proposed SEn in order to avoid this problem [6].
For a time series x = [z1,..., 2y, only the first N — m vectors of length m

are considered for comparison in the SEn algorithm. Let U™ (i) denote the
(m)

probability that a m-length vector x;” is within a distance 7 from vector

X,gm)l

13
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where N™ (i) denotes the number of vectors x§.m) (G#A4,j=1,....,N—m)
such that d [xz(-m), x§-m)} < rand r is a tolerance value. Similarly to the term
C™ (i) in the AEn algorithm, U (i) plays the role of the density function
f (x(m)), since it approximates the probability of observing xz(-m). The average

of the set of U™ (i) values is given by the quantity U™ (r):

N—m

U () = e S U ) Q

i=1

which provides an estimation of the expected value of the function f (X(m))i

U™ (r) ~ B [f (x™)] = / £ (™) dxtm) (10)
It can be observed that the integral in the previous equation corresponds to
the argument of the logarithm found in the definition of the Renyi entropy
of order ¢ = 2 or quadratic entropy. As a result, SEn can be interpreted
as an estimation of the quadratic entropy rate as expressed by the following

equation [6]:

SEn(m,r) = Nh_r}mOO {log [U™ (r)] — log [U™" (1)] } (11)

SEn is estimated by the statistics:

SEn (m,r,N) = log [U™ (r)] — log [U™" (r)] (12)

2.2.3. Kernel entropy (KEn)

14
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Unlike AEn and SEn algorithms, which involve the computation of probabil-
ities, KEn is based on modelling the statistical properties of the generator of
the data. Hence, the algorithm to obtain KEn estimates the density function
of the signal subsequences. To this end, KEn approximates the quadratic
entropy rate from the use of non-parameteric probability densitiy estima-

(m)

tion techniques. The KEn assumes that the set of m-length vectors x;
from the original series has been generated according to the density func-
tion f (x™) [8]. Hence, the Parzen window method with Gaussian kernels
is proposed to estimate this function [11, 35, 3|, resulting in the following

expression:

N—m+1
1

f (x(m)) =¥ 1 ZE: G (x(m) — xgm), E) (13)
where G (x(m), E) denotes the zero-mean Gaussian kernel with covariance
matrix X evaluated at point x). In our study, spherical Gaussians with
a covariance matrix given by 3 = oI will be considered. The scalar o is
referred to as the kernel bandwidth and I denotes the identity matrix.

Using f (x(m)), the expected value of the density function f (X(m)) is

estimated by J™ (o), which is given by:

Jm (o) = / £ (xmY dxtm™ (14)
Note that the use of a Gaussian kernel estimator for f (x(m)) enables the

computation of the exact value of the integral:

15
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2 ((m)Y gscm) 1 NIRRT e )
/f (X )dx :(N—m+1)2 ; ; G[xj - X, ,20’1}
(15)
where N —m+ 1 is the total number of m-length vectors in the original time
series. The negative logarithm of J™ (o) approximates the quadratic entropy
Ry n. Hence, KEn is an estimation of the quadratic entropy rate, which is
obtained from the incorporation of this expression in the Renyi entropy rate

framework [8]:

KEn(m,o) = ]&1_{1100 {log [J™ (0)] — log [J™ " (0)] } (16)

In practice, the following estimation is used for finite series:

KEn (m,o,N) = log [J" (0)] — log [J™" (0)] (17)

It is worth noting that different techniques can be used to select the kernel
bandwidth parameter ¢ of the Parzen density estimator from the original
data. In this study, the Bayesian approach proposed by Zhang et al. [36]
was applied for this purpose. According to this procedure, the elements of
the covariance matrix 3 = ol are treated as parameters and the aim is to
estimate their posterior distribution f (¢ | D), where D denotes the training
set.

From Bayes theorem [10], the posterior density f (o | D) is proportional
to the product of the prior density f (o) and the likelihood f (D | o):

flol D)o f(D]o)f(o) (18)
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Note that the likelihood of observing the sample set D for a given value of
o can be approximated from the expression of f (x(m)). Therefore, the prior
probability f (o) is the remaining factor to obtain f (o | D). Zhang et al.
suggested the following functional form for the prior in order to make the

sampling algorithm work properly [36]:

(19)

where A controls the shape of the function. This prior density function aims
to avoid large values of ¢, for which the associated probability is small.

The most probable value of ¢ given the data in D is selected as the
optimum. This value is obtained by sampling from the posterior probabil-
ity f (o | D) using Markov Chain Monte Carlo (MCMC) techniques. The
Metropolis-Hastings algorithm was used for this purpose [37, 38].

2.3. Statistical analysis

To assess the performance of the proposed entropy methods in the quan-
tification of SaOs irregularity derived from SAHS, two different approaches
were used. First, a two-class classification model was defined by dividing the
initial population into SAHS-negative and SAHS-positive subjects. Receiver
operating characteristic (ROC) analysis was used to assess the capability of
AEn, SEn and KEn measurements for identifying SaO, signals from these
two groups [39]. The area under the ROC curve (AUC), which represents
the probability of correct classification for a randomly chosen pair of samples
from the two possible categories [39], was used as a measure of classification

performance.
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The second model for SAHS diagnosis consists in estimating the AHI from
the available oximetry signal. According to the value of this index, subjects
are assigned to one of four severity groups [18]: no SAHS (AHI < 5h™!), mild
SAHS (5 h! < AHI < 15 h'!), moderate SAHS (15 h' < AHI < 30 h'!)
and severe SAHS (AHI > 30 h™'). The utility of the three entropy measures
to rank SAHS severity was assessed by means of the Pearson’s correlation
coefficient (p). It evaluates the linear relationship between AEn, SEn and
KEn and the AHI. The value of p can be interpreted as the utility of a given
method to predict the AHI.

3. Results

3.1. Selection of the input parameters

Entropy analysis based on the proposed methods require the prior se-
lection of several parameters. These correspond to N, m, and r for AEn
and SEn algorithms. In the case of KEn, only N and m are needed since
a data-driven technique was used to optimise the value of ¢. The parame-
ter N denotes the length of the time series to be processed. In our study,
the length of oximetry recordings was approximately 7 hours (i.e., more than
25000 samples), involving a large amount of data. However, as apnoeic events
can take place at different moments during sleep and, in particular, during
REM phases [18], the whole recording must be analysed for an objective as-
sessment of SaOy dynamics. To reduce the computational load, we adopted
the strategy suggested in preceding studies [40]. Hence, the original SaO,
signal was divided into epochs of length N = 512 samples to estimate AEn,
SEn and KEn. As the duration of apnoeas is typically between 10 seconds

18
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and 2 minutes, the chosen epoch length (approximately, 8.5 minutes) is large
enough to include one or more complete events. The measurements obtained
from all the epochs were then averaged to determine the final estimation for
each method.

On the other hand, parameters m and r involve statistical considerations.
Setting m large and r too small would result in inaccurate estimates of the
probabilities in AEn and SEn algorithms. In contrast, a large value of r
and a small m is generally too coarse to distinguish processes. Thus, m and
r were set to the widely established values suggested by Pincus [5, 41] to
obtain a statistically valid estimate of the proposed entropy measures: m =
1 or 2, and r = 0.1, 0.15, 0.2 or 0.25 times the standard deviation (SD) of
the original series.

It is worth noting that, while KEn enables the automatic selection of
the parameter o, the applied MCMC-based technique requires several design
parameters to be specified. Figure 2 represents the shape of the prior f (o)
for A = 0.1, 1, 5 and 10. This function tends to be more concentrated near
zero as the hyperparameter A becomes smaller. Zhang et al. [36] did not
find significant differences in the estimated density functions resulting from
A between 0.1 and 5. Thus, we set A = 5 to avoid an excessive concentration
of the probability density in a small range of o values, favouring a smooth
profile of f (X(m)). Furthermore, the variance of the proposal distribution
for the Metropolis-Hastings algorithm must result in an acceptance rate be-
tween 20% and 30% of the total number of samples [36]. In our study, this
requirement was satisfied by setting that variance to 0.015. Finally, in order

to ensure the convergence of the sampling process, the number of samples to
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be omitted and the number of samples to be retained were set to 5000 while

the starting o value was set to 1% of the SD of the original series.
INSERT FIGURE 2 AROUND HERE

3.2. Training set

All the experiments in our study were conducted on Matlab 8.2.0. Ini-
tially, we evaluated different configurations of AEn, SEn and KEn on SaO,
signals in the training set to find the optimum value of the input parameters
m and r. For each method, the configuration with the highest performance
was selected. The results achieved on the training set are summarised in
Table 2. As can be observed, m = 1 and r = 0.15D resulted in a more ac-
curate characterisation of SAHS for AEn and SEn. For the KEn algorithm,
the two evaluated configurations provided similar results. An AUC of 0.86
and a correlation coefficient of 0.82 were reached when m was set to 1. This
configuration was slightly improved by setting m = 2 (AUC = 0.86 and p =
0.83). Therefore, m = 2 was finally selected as the optimum for KEn.

INSERT TABLE 2 AROUND HERE

3.8. Test set

AEn, SEn and KEn were computed on oximetry signals in the test set us-
ing the selected configurations. For each of the three methods, the Lilliefors
test [42] was applied to assess the normality of the samples. The results
showed a level of significance (p-value) higher than 0.1 for the distribution

of AEn, SEn and KEn in both SAHS-negative and SAHS-positive groups,
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reflecting a valid assumption for normality. Subsequently, ROC and corre-
lation analysis were conducted for each method. Table 3 summarises the
obtained results. KEn showed to be the most accurate predictor of SAHS
from the methods evaluated in our study. It achieved AUC = 0.91 and p
= 0.87, which were substantially higher than the results provided by AEn
(AUC = 0.67 and p = 0.34) and SEn (AUC = 0.74 and p = 0.45). The
experiments reveal that a finer characterisation of SaO, irregularity was ob-
tained by using a density estimation technique for entropy quantification as

implemented by KEn.
INSERT TABLE 3 AROUND HERE

For each method, Figure 3 depicts the ROC curves and boxplots in
SAHS-negative and SAHS-positive groups. The p-value in the figure corre-
sponds to the level of significance for the difference between the means of
each entropy metric in both groups, as obtained from the one-way ANOVA
test [43]. It confirms that SEn and KEn provided statistically significant dif-
ferences between both groups of subjects. In particular, a p-value close to 0
was obtained for KEn, reflecting notably more significant differences between
SAHS-negative and SAHS-positive samples than AEn and SEn. Moreover,
the results reflect the utility of the evaluated methods in two-class classifi-
cation of patients. As can be observed, the distributions of AEn, SEn and
KEn measurements reflect that higher irregularity, i.e., higher entropy rate,

is associated with oximetry signals from SAHS-positive subjects.

INSERT FIGURE 3 AROUND HERE
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On the other hand, correlation analysis indicates that SaOy regularity is
directly related to SAHS severity, with larger entropy values obtained from
signals corresponding to subjects with a higher AHI. Figure 4 depicts the
AHI versus AEn, SEn and KEn measurements as well as the boxplots of
these measurements in each severity group. The highest Pearson’s correlation
coefficient was obtained for KEn (p = 0.87), which showed a marked linear
trend with respect to AHI. The boxplots obtained for the four severity groups
show a higher dispersion of AEn and SEn measurements in each category
as well as smaller differences between their median values. As a result, a
significant overlap between different groups was observed for them. This
overlapping was substantially smaller for KEn measurements, which provided

a more accurate assessment of SAHS severity.
INSERT FIGURE 4 AROUND HERE

For a more rigorous evaluation of the differences achieved by each entropy
metric between the four groups, we applied the one-way ANOVA test. The
obtained results are summarised in Table 4. As can be observed, KEn pro-
vided statistically significant differences for any pair of severity groups under
evaluation, but for the comparison between mild and moderate subjects. In
the case of SEn, significant differences were found between normal subjects
and patients with moderate SAHS, as well as between normal subjects and
patients with a severe diagnosis of SAHS. Finally, AEn only achieved signif-
icant differences when subjects in normal and severe groups were compared.
Thus, the analysis confirms the higher capability of KEn to capture differ-

ences in Sa0Oy dynamics due to SAHS severity. In addition, the experiment
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also shows that signals corresponding to subjects with mild and moderate
SAHS tend to reflect a similar behaviour, as no significant differences was

observed for any of the evaluated entropy metrics.
INSERT TABLE 4 AROUND HERE

3.4. Comparison with conventional statistical features

To complete our study, we assessed the diagnostic utility of regularity
analysis of SaO, data with respect to other statistical features commonly
employed for the evaluation of biomedical signals. Conventionally, these
features include the mean (f,,), standard deviation (fs4), coefficient of vari-
ation (f.,), interquartile range (f,-) and dispersion indices (fsq1 and foa2)
derived from the Poincare plot. The results achieved by these features are

summarised in the Table 5.
INSERT TABLE 5 AROUND HERE

As can be observed, conventional features capture relevant diagnostic in-
formation about SAHS from nocturnal oximetry recordings. In particular,
they achieved significantly high AUC values, showing a good capability to
discriminate between SAHS-negative and SAHS-positive subjects. Our ex-
periments reflect that all the evaluated features but fgu,, achieved AUC higher
than 0.95, which improves the AUC results provided by the three entropy
metrics assessed in our research. However, correlation analysis reveals a lower
ability of the conventional statistical features to detect small variations in the
AHI. The obtained p values are significantly smaller than that achieved by
KEn. The latter reached p = 0.87, whereas the highest correlation coeffi-

cient among the conventional features was p = 0.77, which was provided by
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fsa1- Therefore, correlation results show a stronger correspondence between
SAHS severity and SaOs irregularity when compared to the signal properties

evaluated by the proposed conventional methods.

4. Discussion and conclusions

Regularity analysis of SaOy recordings was performed using three differ-
ent entropy algorithms: AEn, SEn and KEn. The obtained measurements
show that more irregular signals are associated with SAHS-positive subjects,
reflecting the influence of apnoea events on SaOy dynamics. Nevertheless,
there were substantial differences between the diagnostic performances of
AEn, SEn and KEn. This reveals a distinct reliability of the estimators im-
plemented by these algorithms. The latter showed to be the most consistent
entropy estimator, outperforming conventional entropy algorithms like AEn
and SEn. Specifically, we found that KEn measurements from oximetry data
could be used to estimate the AHI of a patient (p = 0.87).

The KEn method represents a novel strategy for entropy estimation. The
main difference between KEn and the conventional AEn and SEn algorithms
is the use of probability density functions for modelling the statistical distri-
bution of the data. According to our results, this approach has shown to be
a more suitable procedure when continuous variables like SaOq are analysed.
In addition, the use of probability density functions involves other advan-
tages for entropy estimation. First, a data-driven method as that proposed
by Zhang et al. [36] can be applied to determine the value of the kernel band-
width. As shown in our experiments, the variance ¢ of the Gaussian kernels

is optimised for the series under evaluation instead of taking an arbitrary
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value fixed by the user. The automatic optimisation of o suppresses one
of the user parameters in AEn and SEn algorithms, reducing by four the
number of KEn configurations to be evaluated. Second, it must be taken
into account that kernel density estimation results in the exact computation
of the integral in the definition of the Renyi entropy, as expressed in (15).
Hence, the KEn algorithm avoids one of the approximations adopted in AEn
and SEn, which corresponds to the expectation operator.

It is worth noting that the use of density functions overcomes the strong
dependency of conventional entropy metrics like AEn or SEn on the tolerance
parameter 7. Small values of r lead to higher and less confident entropy
estimates due to the reduced number of matches of length m and m + 1. In
the context of density estimation, the value of r is chosen in order to obtain an
accurate approximation of the target probability density function [8, 3, 9.
As a result, any value of r can be used for any time series, enabling the
comparison between entropy results computed for distinct 7 [9]. As a matter
of further study, the influence of the kernel chosen for density approximation
(e.g., Gaussian, uniform, triangular or cosine kernels) on the resulting entropy
estimates should be assessed.

From our experiments, we have found that SaOs irregularity is more
closely related to SAHS severity than conventional statistical properties in-
cluding mean, variance or dispersion indices extracted from Poincar plots. It
is reflected by the Pearson’s correlation coefficient, which was close to 0.90
in the case of KEn. This results shows the utility of the entropy rate of
oximetry data to discriminate subjects with subtle differences between their

AHI. Nevertheless, conventional statistical features should be taken into ac-
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count for the implemention of accurate methods based on oximetry data.
As reported in preceding studies, multivariate analysis including several un-
correlated features can yield higher diagnostic performance than univariate
measures of a given signal property [22, 24].

Several limitations can be found in our study. We have demonstrated that
KEn is a valuable approach to perform regularity analysis of SaOy data in the
context of SAHS diagnosis. However, the information captured by KEn is not
sufficient to provide a definitive diagnosis about SAHS as reflected by AUC
< 1 and p < 0.9. KEn analysis should be then considered as a tool for the
interpretation of SaOy data. In this vein, the role of nocturnal pulse oximetry
in SAHS diagnosis must be analysed. As in our study, the results reported
by other researchers reveal suboptimal diagnostic performance of oximetry-
based methods, with sensitivity and specificity lower than 100% [26, 22, 24].
Hence, the number of false negative and false positive cases would prevent the
use of these methods as an alternative for PSG. Instead, home unattended
pulse oximetry could be adopted as a screening tool to reduce the number of
required PSG tests, contributing to minimise the waiting time for a diagnosis
about SAHS. On the other hand, KEn is computationally more expensive
than AEn and SEn. We have estimated that the time required to compute
KEn is approximately a hundred times that of AEn and SEn. Specifically,
we estimated that the time required to compute AEn, SEn and KEn on a
signal epoch (512 samples) was 0.72, 0.91 and 96.78 seconds, respectively,
using Matlab 8.2.0 on an Intel i7 CPU at 3.4 GHz. Maiunly, this difference
is due to the MCMC-based procedure for automatic adjustment of ¢. This

procedure requires thousands of samples to converge, with several operations
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carried out for each of these samples. In order to reduce the computational
load, the value of ¢ could be previously set by the user for the estimation of
KEn. Nevertheless, this does not ensure the choice of the optimum o for the
underlying data.

In summary, our study confirms that SaO, signals from patients suffering
from SAHS tend to be more irregular. This result suggests the unpredictable
occurrence of apnoeas and hypopnoeas during sleep. Hence, regularity anal-
ysis could be used for the interpretation of nocturnal oximetry dynamics
in the context of SAHS diagnosis. In particular, KEn showed to be a re-
liable predictor of SAHS. It could be considered to build new methods for
automatic assessment of SAHS severity in order to reduce the demand for
conventional PSG. Furthermore, it has been proved that KEn is a valuable
metric for regularity analysis of biomedical data, representing an alternative

to conventional methods such as AEn and SEn.
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s« Figure captions

Figure 1: Two examples of the SaOy signals analysed in our study. (a) SaOy signal from
a subject with AHI = 0.5 h'!; (b) SaOs signal from a subject with AHI = 32.1 h'l; (c)
detailed view of the signal corresponding to the subject with AHI = 0.5 h™!; (d) detailed

view of the signal corresponding to the subject with AHI = 32.1 h-!.

Figure 2: Prior probability distribution f (o) of the bandwidth parameter o for A = 0.1,
1, 5, 10.

Figure 3: Analysis of the results on two-class classification of subjects. ROC curves
computed from the measurements of (a) AEn, (¢} SEn and (e) KEn. Boxplots in SAHS-
negative and SAHS-positive groups for (b) AEn, (d) SEn and (f) KEn.
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Figure 4: Utility of the evaluated entropy metrics to rank SAHS severity. AHI versus
Sa0, regularity quantified by (a) AEn, (c) SEn and (e) KEn. Boxplots in the four SAHS
severity groups for (b} AEn, (d) SEn and () KEn.

ss Table captions
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Training Set

All SAHS-positive | SAHS-negative
Subjects 96 64 32
Age (years) 52.35£13.76 | 54.88 £ 14.53 47.31 £10.59
Males (%) 77.08 84.38 62.50
BMI (kg/m?) 20834417 | 30.61=3.86 | 28.27+4.38
Recording Time (h) | 7.25+0.33 7.25+0.35 7.25+0.29
AHI (h"l) 24.75£25.19 | 35.01 £25.16 4.23 £2.22
Test Set
All SAHS-positive | SAHS-negative
Subjects 144 96 48
Age (years) 52.19£13.73 | 54.71 £13.35 47.17+13.20
Males (%) 77.78 83.33 66.67
BMI (kg/m?) 29.83£4.53 30.98 £4.65 27.54 £3.26
Recording Time (h) | 7.24+0.66 7.22+£0.78 7.30£0.33
AHI (h"l) 26.39£26.74 | 37.71£26.17 3.75+£2.51

Table 1:

presented as mean =+ standard deviation. BMI: body mass index; AHI: apnoea-hypopnoea

index.

Clinical and demographic features for subjects in training and test sets. Data are
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AUC P
AEn (m=1,r =0.15D) | 0.68 | 0.32
AEn (m=1,r =0.155D) | 0.57 | 0.19
AEn (m=1,r=0.28D) | 0.50 | 0.18
AEn (m=1,7 =0.25SD) | 048 | 0.15
AEn (m=2,r=0.18D) | 0.56 | 0.18
AEn (m=2,r=0.155D) | 0.55 | 0.13
AEn (m=2,r=028D) | 051 | 0.13
AEn (m = 2,7 =0.25SD) | 0.52 | 0.14
SEn (m =1,r = 0.1SD) | 0.74 | 0.40
SEn (m=1,r =0.15SD) | 0.68 | 0.31
SEn (m=1,r =0.2SD) | 0.63 | 0.33
SEn (m=1,r =0.25SD) | 0.63 | 0.34
SEn (m =2, r = 0.1 SD) 0.67 | 0.22
SEn (m =2, =0.15SD) | 0.61 | 0.13
SEn (m=2,r=0.2SD) | 0.58 | 0.17
SEn (m=2,r=0.25SD) | 0.60 | 0.19
KEn (m = 1) 0.86 | 0.82
KEn (m = 2) 0.86 | 0.83

Table 2: Selection of the input parameters using training data. Results achieved on the
training set by the evaluated configurations of AEn, SEn and KEn. AUC: area under the
ROC curve; p: Pearson’s correlation coefficient; m: vector length parameter; r: tolerance;

SD: standard deviation.
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AUC P
AEn (m=1,r=0.18D) | 0.67 | 0.34
SEn (m=1,r =0.18D) | 0.74 | 0.45
KEn (m = 2) 0.91 | 0.87

Table 3: Asessment of the entropy metrics on test samples. Results achieved on the test

set by the selected configurations of AEn, SEn and KEn. AUC: area under the ROC

curve; p: Pearson’s correlation coefficient; m: vector length parameter; r: tolerance; SD:

standard deviation.

Normal vs Mild | Mild vs Mod. | Mod. vs Sev. | Normal vs Mod. | Normal vs Sev. | Mild vs Sev.
AEn > 0.001 > 0.5 > 0.05 > 0.005 < 0.0001 > 0.05
SEn > 0.001 > 0.5 > 0.01 < 0.0001 < 0.0001 > 0.001
KEn < 0.0001 > 0.001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 4: One-way ANOVA test to evaluate the difference between the means of each

entropy metric in the four SAHS severity groups: normal, mild, moderate and severe.

AUC P
Javg | 0.85 | 0.59
fsa | 0.96 | 0.76
feo | 096 | 0.71
figr | 0.96 | 0.74
fsar | 0.97 | 0.77
fsaz | 0.96 | 0.76

Table 5: Diagnostic results obtained for conventional statistical features of oximetry sam-

ples on the test set. AUC: area under the ROC curve; p: Pearson’s correlation coefficient;

favg: mean; fy4: standard deviation; f,,: coeflicient of variation; f;,,.: interquartile range;

fsa1: first-order dispersion index from Poincare plot; fsq2: second-order dispersion index

from Poincare plot.
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