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Measurements of area summation for luminance-
modulated stimuli are typically confounded by variations
in sensitivity across the retina. Recently we conducted a
detailed analysis of sensitivity across the visual field
(Baldwin, Meese, & Baker, 2012) and found it to be well
described by a bilinear ‘‘witch’s hat’’ function: Sensitivity
declines rapidly over the first eight cycles or so, but more
gently thereafter. Here we multiplied luminance-
modulated stimuli (4 cycles/degree gratings and ‘‘Swiss
cheeses’’) by the inverse of the witch’s hat function to
compensate for the inhomogeneity. This revealed
summation functions that were straight lines (on double
log axes) with a slope of �1/4 extending to �33 cycles,
demonstrating fourth-root summation of contrast over a
wider area than has previously been reported for the
central retina. Fourth-root summation is typically
attributed to probability summation, but recent studies
have rejected that interpretation in favor of a noisy
energy model that performs local square-law
transduction of the signal, adds noise at each location of
the target, and then sums over signal area. Modeling
shows our results to be consistent with a wide field
application of such a contrast integrator. We reject a
probability summation model, a quadratic model, and a
matched template model of our results under the
assumptions of signal detection theory. We also reject
the high threshold theory of contrast detection under
the assumption of probability summation over area.

Introduction

As the area of a sine-wave grating increases, it
becomes easier to detect (Hoekstra, van der Goot, van
den Brink, & Bilsen, 1974; Savoy &McCann, 1975). For
a patch of grating presented in the center of the visual
field, the function that plots threshold against area (on
log–log axes) is curved, being initially steep and then

shallower, such that there is only marginal benefit from
increasing the diameter of the grating beyond eight cycles
or so (Robson & Graham, 1981; Tootle & Berkley, 1983;
Rovamo, Luntinen, & Näsänen, 1993). There are several
processes that contribute to the shape of this function.
The steep initial improvement is thought to be due to
linear summation within spatial filter elements (Meese,
2010). The further improvement beyond this point has
traditionally been attributed to probability summation
over local filter elements (e.g., Robson &Graham, 1981).
The curvature towards an asymptote is explained by
inhomogeneous sensitivity across the visual field, where
contrast sensitivity declines with eccentricity (Howell &
Hess, 1978; Foley, Varadharajan, Koh, & Farias, 2007).
Baldwin, Meese, and Baker (2012) ruled out an
explanation of this inhomogeneity as being due to
receptor density, but Bradley, Abrams, and Geisler
(2014) have demonstrated that an account in terms of
retinal ganglion cell density is plausible. In the absence of
within-filter summation and visual field inhomogeneity
(and under the assumptions described later), probability
summation would produce a log–log summation slope of
about�1/4 (consistent with the intermediate part of the
empirical summation slope; e.g., Meese, Hess & Wil-
liams, 2005) and for this reason is sometimes referred to
as fourth-root summation.

Recent work has provided a serious challenge to the
probability summation interpretation of the fourth-
root summation rule. Studies involving classification
images (Baker et al., 2014), interdigitated micropattern
stimuli known as Battenbergs (Meese, 2010), plaid-
modulated grating stimuli known as Swiss cheeses
(Meese & Summers, 2007, 2009; Baker & Meese, 2011;
Meese & Baker, 2011), and measurement of the
psychometric slope under various conditions of ex-
trinsic uncertainty (Meese & Summers, 2012) have all
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concluded that the probability summation account is
wrong (see also Foley et al., 2007; Morgenstern &
Elder, 2012). Instead, the preferred model for area
summation is one in which local contrasts are extracted
by local filter elements (analogous to simple-cell
receptive fields), followed by square-law contrast
transduction, the addition of independent Gaussian
noise to the output of each transducer, and global
summation over the stimulus region (Meese & Sum-
mers, 2012). In this ‘‘noisy energy’’ model, the cascade
of nonlinear transduction and ideal summation of
inputs (combining signal and noise) results in a fourth-
root summation rule; our view is that this has
masqueraded as probability summation (often with a
tacit assumption of a linear transducer; see Tyler and
Chen, 2000), explaining why the probability summation
model has held sway for so long.

One complication with conventional experiments
involving centrally placed patches of grating is that
retinal inhomogeneity means it can be difficult to assess
the spatial extent of the summation process. Recently we
made a detailed measurement of contrast sensitivity
across the central visual field and found it to be well-
described by a witch’s hat function where sensitivity
declines rapidly over the first eight cycles or so and more
gently thereafter (Baldwin et al., 2012). This function
was then built into the noisy energy model, producing
very good parameter-free predictions of experimental
results when overall sensitivity was normalized (e.g.,
Meese & Summers, 2012). However, this does not
overcome the measurement problem outlined above,
and it remains unclear how far the summation process
extends. Here we take a different approach. Instead of
building the witch’s hat into the model, we constructed a
weighting function from its inverse and used this to
compensate for the inhomogeneous sensitivity by
multiplying it with stimuli (gratings and Swiss cheeses).
Essentially, this applied the conventional normalization
technique that is commonplace in two-component
subthreshold summation experiments. By doing so we
found empirical fourth-root summation functions that
extended to a stimulus diameter of at least 33 cycles (the
largest size we tested). We show that the noisy energy
model provides an excellent prediction of these results
(with a single free parameter to control overall
sensitivity) and, once again, we reject accounts in terms
of probability summation.

Methods

Equipment

Stimuli were stored in a CRS ViSaGe (Rochester,
Kent, UK) and presented on a gamma-corrected CRT

monitor (Eizo Flexscan T68, Bracknell, Berkshire, UK)
with a 14-bit gray-level resolution. The monitor had a
refresh rate of 120 Hz and a mean luminance of 75 cd/
m2. It was viewed from a distance of 1.19 m, having a
resolution of 48 pixels per degree of visual angle (12
pixels/cycle for the 4 cycles/degree stimuli used here).

Observers

Data were collected from three observers: ASB,
DHB, and TSM. The observers were 22, 28, and 46
years old, respectively. All three were psychophysically
experienced (ASB and TSM are authors). Optical
correction appropriate for the viewing distances tested
was worn if required. All experiments were performed
binocularly with natural pupils.

Stimuli

Two types of stimuli were used: circular 4 cycles/
degree sine-phase horizontal gratings (Figure 1a, b),
and Swiss cheese modulated versions of those gratings
(Figure 1c through f; after Meese & Summers, 2007).
Stimuli were windowed by a raised-cosine envelope,
which declined from unity to zero over a distance of 12
pixels. The nominal stimulus diameters that we report
are the full-widths at half magnitude (i.e., 12 pixels
wider than the diameter of the plateau due to the
raised-cosine skirt of the envelope). The Swiss cheese
modulations had a spatial frequency of 0.8 cycles/
degree and were applied in cosine (/ ¼ 908) and
anticosine (/ ¼ 2708) phases (Figure 1c and e). The
centers of the stimuli were at the patterns’ maximum
and minimum contrasts for cosine and anticosine phase
modulations, respectively. Eight sizes were used for the
gratings (1.3 to 33.0 cycles in diameter), the larger five
of which were also used for the Swiss cheeses. We
express stimulus contrast in dB (re 1%), given by 20 3
log10(c), where c is Michelson contrast in percent. For
convenience, in the graphical presentation of our
results we also express stimulus area as 20 times the
log10 of the nominal stimulus diameter squared, relative
to the smallest stimulus area. Note also that our error
measures were derived by calculating the root-mean-
square (RMS) errors between empirical thresholds and
model predictions, where each is expressed in dB.

Stimuli were presented with both (a) flat (uncom-
pensated) contrast profiles, and (b) witch’s hat com-
pensation for the inhomogeneous retinal field. The
compensated stimuli were multiplied by the inverse of
the attenuation surface measured for each observer, as
reported in table 4 of Baldwin et al. (2012; e.g., Figure
1b, d, and f). This was to counteract the effects of
inhomogeneous sensitivity with the aim of producing

Journal of Vision (2015) 15(15):4, 1–12 Baldwin & Meese 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/934653/ on 06/22/2018



an effectively flat contrast response profile over area at
the summation stage in the visual system. The nominal
contrasts of our stimuli are the contrasts of their
grating carriers before modulation (by a Swiss cheese)
and/or compensation (by a witch’s hat), as appropriate.

A quad of fixation points (black 23 2 pixel squares)
were placed snugly around each stimulus (Summers &
Meese, 2009; i.e., the virtual edge of the quad was
matched to the full diameter of the stimulus). Observers
were able to use these markers to infer stimulus size and
the central location of the display, where they fixated
(Meese & Summers, 2012). The stimulus duration was
100 ms.

Procedures

Thresholds were measured using a two-interval
forced-choice technique with auditory feedback on the
correctness of the observer’s response (beeps of
different tones) provided after each trial. A pair of
three-down one-up staircases were used to control the
stimulus contrast for each condition using a step size of
3 dB. Each staircase terminated after either 70 recorded
trials or 12 staircase reversals, whichever occurred first.
For each staircase, recording began after the first two
reversals, where the step sizes were 12 and 6 dB,
respectively. The observers repeated each condition
four times, except for TSM in the Swiss cheese
condition where only two replications were performed.
Stimuli were blocked by size and by stimulus type
(whether they were gratings or Swiss cheeses). Com-
pensated and noncompensated versions of each stim-
ulus were interleaved within a block. For the Swiss
cheese stimuli, the two modulator phase conditions
were also interleaved within a block. (For empirical and
theoretical comparisons between blocked and inter-
leaved designs, see Meese & Summers, 2012.)

Contrast detection thresholds and slopes of the
psychometric functions were calculated by fitting a
Weibull function to the percent-correct data (collapsed
across staircase and repetition) using Palamedes (Prins
& Kingdom, 2009). Note that this ‘‘pool then fit’’
approach has been shown to provide slightly more
accurate estimates of the slope of the psychometric
function than the alternative ‘‘fit then pool’’ approach,
in which Weibull functions are fit to the data from each
session and then averaged (Wallis, Baker, Meese, &
Georgeson, 2013). Parametric bootstrapping was then
performed such that the threshold and psychometric
slope values reported are the median values from the
bootstrap population averaged across observer (1,000
samples per threshold per observer), with 95% confi-
dence intervals (typically smaller than symbol size).

The study was performed under the tenets of the
declaration of Helsinki.

Results and discussion

The results for the full grating stimuli are shown in
Figure 2 for the stimuli without witch’s hat compen-
sation (Figure 2a) and with compensation (Figure 2b).
If summation were linear then thresholds would decline
with a slope equal to that of the steepest dashed line
(�1). The shallower dashed lines represent square-root
(�1/2) and fourth-root (�1/4) summation. The results
without compensation have the typical bowed appear-
ance, replicating previous studies (e.g., Rovamo et al.,
1993; Meese & Summers, 2007, 2012). However, with

Figure 1. Stimulus examples (the stimuli shown are the largest

we used). Stimuli in the left and right columns are uncom-

pensated and compensated, respectively, by multiplication with

a witch’s hat. The first row (a–b) shows gratings (sometimes

called full stimuli). The second (c–d) and third (e–f) rows show

Swiss cheeses in the cosine (/¼ 908) and anticosine (/¼ 2708)

phases, respectively.
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the compensation in place, the bowing of the function
is much less pronounced. Comparing the data with the
fiducial contours (gray dashed lines), it starts with a
slope of around�1/2 and rapidly diminishes to a slope
of �1/4 where it remains. It would seem that our
attempt to compensate for the effects of sensitivity loss
with eccentricity was successful because performance
continues to improve over a much greater range of the
central visual field than has been seen previously.

The results for the Swiss cheese stimuli are shown in
Figure 3, where the same data are shown in each row
(note the reduced range of both axes compared to
Figure 2). For these stimuli there was very little benefit
from increasing stimulus diameter for the uncompen-
sated stimuli (left column), consistent with previous
observations (Meese & Summers, 2007). In our
preferred model this is because the benefits of the extra
signal are weak (coming from increasingly peripheral
retina) and largely offset by the detrimental contribu-
tion of further noise. This effect is not specific to the
Swiss cheese stimuli but is also seen in the full grating
stimuli for the same stimulus diameters, as a compar-
ison with the pale gray symbols (replotted from Figure
2) confirms. However when witch’s hat compensation is
introduced (right column) sensitivity once again im-
proves with a summation slope of about�1/4 over the
full stimulus range tested (e.g., compare data symbols
with the shallowest dashed gray line in Figure 3b).

Slopes of the psychometric functions

To supplement our model analysis we also report the
slopes of the psychometric functions (Weibull b).
Consistent with other studies (Mayer & Tyler, 1986;
Meese & Summers, 2012; Wallis et al., 2013), psycho-
metric slope did not vary systematically over different
stimulus sizes (not shown). Combining data across the

Figure 2. Thresholds for full circular gratings, averaged across

three observers and plotted against area (solid symbols). Panel

(a) is for uncompensated gratings and panel (b) is for

compensated gratings. The dashed gray lines show slopes of�1,
�1/2, and�1/4. Error bars here and in other figures show 95%

confidence intervals, often smaller than symbol size. The

colored curves are fits for the quadratic (Q), noisy energy (NE),

and probability summation (PS) models, each with a single free

parameter to control vertical offset in the plot. Note that the

RMS errors were calculated across left and right panels. The

average standard error across observer thresholds (after

normalizing for overall sensitivity) was 0.65 dB.

Figure 3. Thresholds for the Swiss cheese stimuli, averaged

across observers and plotted against area for two modulation

phases (white and black symbols). The left and right columns

are for uncompensated and compensated stimuli, respectively.

Different rows are for the same human data, but different

models. The continuous colored curves are predictions (no free

parameters) for the quadratic (Q) model (top row), the noisy

energy (NE) model (middle row), and a probability summation

(PS) model (bottom row). The dashed gray lines in each panel

show slopes of�1,�1/2, and�1/4. The right-hand part of the

results and model curves from Figure 2 are replotted here with

reduced opacity. Note that the RMS errors were calculated

across left and right panels. The average standard error across

observer thresholds (after normalizing for overall sensitivity)

was 0.63 dB.

Journal of Vision (2015) 15(15):4, 1–12 Baldwin & Meese 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/934653/ on 06/22/2018



three observers gave the slopes for each condition
shown in Figure 4, with an overall median b of 2.8 (the
individual observer values were 1.8, 3.2, and 3.0 for
ASB, DHB, and TSM, respectively). Previous work by
Robson and Graham (1981), Mayer and Tyler (1986),
and Meese and Summers (2012) found average slopes
of 3.5, 3.5, and 3.6, which are a little steeper than the
slopes from the study here. Our values agree with those
measured by Wallis et al. (2013), who also report slopes
of 2.8. Previous work has shown that the psychometric
function is essentially stationary for practiced observers
and that slightly better estimates of the slope are
achieved when the results are collapsed across multiple
sessions before curve fitting, as we did here (Wallis et
al., 2013).

Modeling

In Appendix A we present the mathematical
development of four different models of area summa-
tion. In all models the stimulus was first multiplied by
the witch’s hat to simulate the inhomogeneous contrast
sensitivity (for the compensated stimuli this trans-
formed it back to the original stimulus). The stimulus
was then filtered with horizontal sine- and cosine-phase
Cartesian-separable log-Gabor filters, with a spatial
frequency bandwidth of 1.6 octaves and an orientation
bandwidth of 6258 (Meese, 2010). A single filtered
image was constructed from the sum of the sine- and

cosine-phase filters. This spatial filtering is needed to
capture the initial steepness of the summation slope
(Meese & Summers, 2012). Note that in our model, the
sampling density of the filters was matched to that of
the image. Within reason, this simplification has no
material impact on our conclusions.

Models were fitted to the full grating results by
minimizing the RMS error (in dB) with a single (and
uninteresting) free parameter that determined overall
sensitivity (i.e., it was an offset parameter that slid the
model curves up and down the plots to find the best fit).
This overall sensitivity was used to produce the
predictions for the Swiss cheese stimuli with no further
parameters.

Noisy energy model

This is our favored model developed in previous
work (Meese, 2010; Meese & Summers, 2012). Each
pixel in the filtered image is subject to square-law
transduction and additive Gaussian noise, followed by
summation over the stimulus area. This was imple-
mented by weighting the stimulus with a template
derived from the envelope of the full stimulus for that
block. A feature of this model is that the summation
template (i.e., the weight of the contributions of signal
and noise in the summing device) is matched to the
stimulus region, over which it is uniform (i.e., it is not
matched to the local contrast modulations; Meese &
Summers, 2007). For Swiss cheese stimuli the contri-
bution from the ‘‘hole’’ regions in the cheese is
dominated by local noise since the signal levels there
are so low.

The model derives its name (Meese & Summers,
2012) from the fact that its summation characteristics
depend on (a) square-law transduction of local contrast
(identical to the energy model), and (b) the dependency
of internal noise on stimulus area, as does the ideal
summation model. (For this reason, Meese, 2010,
referred to the noisy energy model as the ‘‘combination
model’’ because it combined the characteristics of two
of the competing models outlined in the exposition of
that work.) The noisy energy model predicts an
asymptotic summation slope of �1/4 for compensated
stimuli.

Quadratic model (sometimes known as the energy
model)

This model (e.g., Manahilov & Simpson, 1999, 2001)
features square-law contrast transduction at each point
on the output of the linear filtering stage. Performance
is limited by (notional) additive Gaussian noise before
the decision stage, independent of stimulus area. (We
have called this model the quadratic model here, to
emphasize that it sums the squares of its inputs, and to

Figure 4. Slopes of the psychometric functions (the Weibull b
parameter) for the six stimulus conditions (Figure 1) collapsed

across area and observer. The purple dashed line at b ¼ 2.6 is

the noisy energy model prediction (it is also the quadratic

model prediction). The linear transducer in the ideal matched

template model predicts b¼1.3. Under the assumptions of HTT,

probability summation predicts b¼ 4 (derived from the fourth-

root form of the empirical summation slope). One interpreta-

tion of fourth-root summation supposes a transducer exponent

of 4, predicting b ¼ 5.2 (see modeling text for details).
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avoid confusion with different model implementations
that have also been referred to as the ‘‘energy model.’’)
This model predicts an asymptotic summation slope of
�1/2 for compensated stimuli.

A similar threshold prediction would be made by a
matched template model (e.g., Burgess & Ghandehar-
ian, 1984) where the observer constructs a template
matched to the stimulus profile (after witch’s hat
attenuation) and cross-correlates this with the stimulus.
Because the standard deviation of internal noise grows
with the square root of stimulus area, this model also
predicts a summation slope of �1/2 for compensated
stimuli. In fact for the grating stimuli, the matched
template (ideal summation) model makes threshold
predictions that are indistinguishable from the qua-
dratic model (for details see Meese & Summers, 2012).
Note that for the quadratic model the�1/2 summation
slope derives from square-law transduction, whereas
for the template model it derives from ideal summation
of signal and early noise.

Probability summation model under signal detection
theory

Models of probability summation under signal
detection theory (SDT) involve a max operation across
noisy mechanisms. This is mathematically complicated
(e.g., Kingdom, Baldwin, & Schmidtmann, 2015), but
under several conditions can be approximated by a
fourth-root summation rule using Minkowski summa-
tion with an exponent of 4 (e.g., Tyler & Chen, 2000).
The unusual conditions in which the max operator
implementation of probability summation can produce
more summation (equivalent to an exponent of 2) have
been shown to be inconsistent with experiments of the
type here (Meese & Summers, 2012). There is good
evidence that the contrast transducer in human vision is
nonlinear, being well approximated by a squaring
exponent of 2 around threshold (Meese, 2010; Meese &
Summers, 2009, 2012). The combined effects of these
two nonlinearities means that probability summation
can be approximated here using Minkowski summation
with an exponent of 8 (¼ 432). This model predicts an
asymptotic summation slope of �1/8 for compensated
stimuli.

Fourth-root summation and probability summation
under high threshold theory

The fourth-root summation model has a long history
in vision science. At one level it can be treated as a
descriptive model; our results do have a�1/4 slope over
much of their range after all. It is also a good
approximation to probability summation using a max
operator when the contrast transducer is linear (Tyler
& Chen, 2000). Finally, it is also the prediction for

probability summation under high threshold theory
(HTT) when the slope of the psychometric function
(Weibull b) equals 4 (Robson & Graham, 1981),
though more generally, probability summation under
HTT gives a summation slope of 1/b. Note that HTT
underlies the common conception of probability
summation, where it is understood that one calculates
overall sensitivity by combining the probabilities of
detecting the individual components using the standard
statistical procedure for combining probabilities. This
model predicts an asymptotic summation slope of�1/b
for compensated stimuli.

Comparing the model predictions with our data

The fits of the first three of our models are shown by
the colored curves for the full grating stimuli in Figure
2 and for Swiss cheese stimuli in Figure 3. In Figure 3
the predictions for the cosine and anticosine phase
modulators (/ ¼ 908 and 2708) are shown with dashed
and solid curves, respectively. The single parameter fit
of the noisy energy model (purple curve in Figure 2a, b)
is very good. Note how well it captures the initial
steepness of the data (owing to within-filter summa-
tion) and then levels off to horizontal when there was
no compensation (Figure 2a) and to a slope of �1/4
when the witch’s hat stimulus compensation was in
place (Figure 2b). As mentioned in the Introduction,
this fourth-root behavior in the model is due to the
cascading quadratic effects of square-law transduction
and integration of internal noise with the signal (i.e.,
the internal noise at the decision variable increases with
stimulus diameter). This is not seen in the uncompen-
sated case (Figure 2a) because of the loss of sensitivity
to the signal with eccentricity. The predictions (no free
parameters) for the Swiss cheese stimuli (purple curves
in Figure 3c, d) are also very good. Of the three models
plotted in Figures 2 and 3, the RMS errors from the
noisy energy model are by far the best.

The quadratic model (red curves in Figures 2 and 3a,
b) fares much less well. The predicted benefit of area is
too great, with the square-law transduction producing
a slope of�1/2 (compare with the intermediate dashed
gray lines). Because the predictions for the matched-
template model would be very similar to the quadratic
model (see Quadratic model section above), then these
results also lead us to reject the matched-template
model. Similar conclusions have been drawn in a
previous study (Meese & Summers, 2012) where the
matched-template model was considered in more detail.

The probability summation following square-law
transduction model (cyan curves in Figures 2 and 3e,
f) also fails badly. It predicts far too little summation,
both with increasing stimulus diameter (the summa-
tion slopes are too shallow) and also between the full
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and Swiss cheese stimuli (the average difference in the
human data is 5.5 dB, whereas the model predicts 3.1
dB). Indeed, the main reason that the probability
summation model fares so well for the compensated
Swiss cheese stimuli (Figure 3f) is because it underes-
timated the comparison sensitivities for the full
gratings in this region of the summation curve
(Figures 2b and 3f).

Perhaps not surprisingly, the fourth-root model (not
shown) fared nearly as well as the noisy energy model
(bearing in mind that the inclusion of spatial filtering
means that the initial part of the predicted summation
slope is steeper than�1/4). It did not fare quite so well
in predicting the summation between the full and Swiss
cheese stimuli: An average of 3.9 dB for the fourth-root
model, by comparison to 5.5 dB in the human results
(the noisy energy model predicts 5.2 dB). The fourth-
root summation model is largely descriptive in origin
(excepting the spatial filtering, retinal inhomogeneity,
and template, common to all of our models), and so we
must ask what processes it is intended to summarize. As
mentioned above, one interpretation is in terms of
probability summation under the assumptions of HTT
and linear contrast transduction (Robson & Graham,
1981; Meese & Williams, 2000). However, HTT has
been discredited (e.g., Nachmias, 1981). We will return
to this point when we consider the slope of the
psychometric function. Another possible interpretation
of a fourth-root summation slope is in terms of
probability summation arising from a max operator
under SDT (Tyler & Chen, 2000). However, the version
of that model that predicts this slope also involves a
linear transducer, which is almost certainly wrong
(Meese, 2010; Meese & Summers, 2009, 2012). A third
interpretation would be linear summation following a
transducer with an exponent of 4 (Graham, 1989). We
will return to this possibility when we consider the slope
of the psychometric function below. Finally, the
combined effects of a square-law transducer and the
integration of signal and noise within a matched
template also predict a fourth-root rule. Thus, the
success of the fourth-root model can be seen as deriving
from its similarity to the noisy energy model. Indeed,
for the full grating stimuli, the threshold predictions by
the two models are indistinguishable. However, the
models can be differentiated when summation is
assessed by filling in the holes of Swiss cheeses (as
shown by the vertical offset between grating and Swiss
cheese thresholds in Figure 3). In the noisy energy
model, templates are not matched to the plaid
modulations in the stimulus, just to the overall stimulus
size. Thus, noise is constant for a fixed stimulus
diameter so the summation effects derive from a signal
exponent of 2 (the square-law transducer) and are
greater than the fourth-root prediction.

Model predictions for the slopes of the
psychometric functions

The analysis above is sufficient to demonstrate that
the noisy energy model provides a better account of our
data than the other models we have considered.
However, we can also provide a brief analysis based on
the slopes of the psychometric functions (Weibull b).
The noisy energy model and the quadratic model both
involve square-law (p ¼ 2) transduction of signal
contrast (c p ). In the absence of uncertainty (Pelli,
1985), this predicts b¼ 1.3 3 2¼ 2.6 (Pelli, 1987; Tyler
& Chen, 2000; May & Solomon, 2013), very close to the
average of b ¼ 2.8 here, and in agreement with the
slopes from some of our individual conditions (see
Figure 4). It seems likely that the small deviation from
the b¼ 2.6 prediction arises from uncertainty (see
Meese & Summers, 2009), which appears to be greatest
in the uncompensated case, particularly when /¼ 2708
(i.e., when there was no signal contrast in the center of
the visual field). Thus, it is clear that our preferred
model from above (the noisy energy model) is
consistent with the slopes of empirical psychometric
functions.

The template-matching model has a linear trans-
ducer and so predicts a psychometric slope of b¼ 1.3
(Pelli, 1987), at odds with our estimates in this study
(Figure 4). In principle, this shortcoming might be
overcome by supposing a fairly high level of intrinsic
uncertainty across all stimulus conditions. However,
other experiments in which we have assessed intrinsic
uncertainty by manipulating extrinsic uncertainty
suggest that high levels of uncertainty are unlikely for
grating stimuli (Meese & Summers, 2012). As men-
tioned earlier, one interpretation of the fourth-root
summation model involves a contrast transducer of p¼
4; however, this predicts b¼ 1.3 3 4 ¼ 5.2, which is
much higher than what we found empirically (see
Figure 4).

For the probability summation model under the
assumptions of HTT, a psychometric slope of b¼ 4 is
implied by the fourth-root summation curve for
detection thresholds. However, our psychometric
slopes were not consistent with this prediction (Figure
4). Alternatively one might take the slope of the
psychometric function to predict the slope of the
summation function, but that predicts a summation
function that is too steep (a slope of�1/2.8, on average)
compared to the human results (Figure 2b; a slope of
�1/2.8 lies between the upper two pale dashed lines
which have slopes of �1/4 and �1/2). This mismatch
between two empirical measures (slopes of psycho-
metric functions and summation functions) serves as
further evidence to reject HTT under the widely held
assumption that area summation is achieved by
probability summation under that model.
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General discussion and conclusions

Using witch’s hat compensation for the loss of
contrast sensitivity with retinal eccentricity (Baldwin et
al., 2012), we measured spatially extensive fourth-root
summation of contrast (at 4 cycles/degree) across the
central visual field for a stimulus diameter range of 1.3
to 33 cycles (an area factor of 644). This result was
lawful over the full range tested when the minor
deviations from the fourth-root rule (at small stimulus
sizes) were accommodated by spatial filtering, typical of
that known in central human vision (e.g., Meese, 2010).
These results (along with the slopes of the psychometric
functions) were not consistent with probability sum-
mation under SDT or HTT, a template-matching
model or a simple quadratic model, but they were
consistent with a model involving square-law contrast
transduction and the integration of signal and internal
noise over area (the noisy energy model; Meese, 2010).

Our results show that the summation process extends
up to at least 33 stimulus cycles, possibly more. Indeed,
if the process were part of a visual hierarchy involved in
assessing the size and/or area of objects and textures
(Meese & Baker, 2011) then we should expect signal
integration to extend across the entire retinal field, since
the dimensions of real-world objects and textures are not
constrained by retinal image size. However, other work
we have done has fallen short of this conclusion.
Analysis and results of contrast detection of various
Swiss cheese stimuli (see Baker & Meese, 2011), and
reverse correlation analysis of suprathreshold Batten-
berg stimuli (Baker & Meese, 2014), suggest that
contrast integration over area operates up to only about
12 cycles. We see two possible explanations for the
inconsistency between our previous work and that here:

(1) The correct conclusions about the extent of
contrast integration are drawn in our current work,
with previous work being compromised by the loss
of sensitivity with retinal eccentricity. For example,
Baker and Meese (2011) built witch’s hat compen-
sation into their modeling, but not their stimuli (in
which they manipulated carrier and modulator
spatial frequencies, not diameter). A loss of
experimental effect in the results (such as that in
Figures 2a and 3a here) limits what the analysis can
be expected to reveal. Indeed, Baker and Meese
(2011) found it difficult to put a precise figure on
the range of contrast integration, and aspects of
their analysis hinted at a range of .20 cycles for
two of their three observers. Baker and Meese
(2014) made no allowance for eccentricity effects in
their reverse correlation study. The contrast jitter
applied to their target elements ensured they were
above threshold, and so the effects of contrast
constancy should come into play (Georgeson,

1991); however, we cannot rule out the possibilities
that either (a) the contrast constancy process was
incomplete or (b) internal noise effects not evident
at detection threshold (e.g., signal dependent noise)
compromised the conclusions.

(2) The correct conclusions about the extent of
contrast integration come from our previous work.
Our current work points to lawful fourth-root
summation, but not necessarily signal integration
across the full range. On this account, signal
integration takes place up to a diameter of about 12
cycles and a different fourth-root summation
processes take place beyond that point. For
example, from our results here we cannot rule out
the following possibility: Beyond an eccentricity of
;1.58 the transducer becomes linear and overall
sensitivity improves by probability summation
(Tyler & Chen, 2000), but uncertainty (Pelli, 1985;
Meese & Summers, 2012) for more peripheral
targets causes the slope of the psychometric
function to remain steeper than b¼ 1.3 (May &
Solomon, 2013).

We think Occam’s razor would favor the first
account over the second.

Keywords: contrast detection, psychophysics, noisy
energy model, Swiss cheese stimuli, area summation,
spatial summation, witch’s hat, retinal inhomogeneity.
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Appendix A

Here we present the mathematical forms of the
models used in the main body of the paper. We assume
that the limiting internal noise is additive and Gaussian,
meaning that increasing or decreasing its standard
deviation will translate model predictions vertically (on a
log axis). This was the single offset parameter used in
fitting the models to the grating results in Figure 2.
These values were then used in making the zero-free
parameter predictions in Figure 3. Note that if we are
interested only in summation slope, then we can set the
internal noise r to a fixed arbitrary value (r ¼ 1).

For each model, we first derive the exact model
equation used in fitting the behavioral data in the main
body of the paper. We then simplify matters by
disregarding the effects of spatial filtering and the very
minor effects caused by the skirt of the overall stimulus
window. We do this to predict asymptotic summation
slopes, where the number of signal pixels (n) is directly
proportional to the square of the nominal stimulus
diameter (the full width at half window height).

Noisy energy model

The signal to noise ratio (d0) for the general form of
the noisy energy model is

d0 ¼
Pp

i¼1ðc � siÞ
2 � tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1ðri � tiÞ2
q ; ðA1Þ

where c is the stimulus contrast, si is the amplitude of
the ith of p pixels in the filtered ‘‘witch’s hat attenuated’’
image (note that p is constant for all images; it is the
number of pixels in the display and does not depend on
stimulus diameter), ti is the amplitude of the template at
that pixel (in the noisy energy model presented here the
template is matched to the outer boundary of the
stimulus and does not match the Swiss cheese
modulations), and ri is its internal noise standard
deviation (Figure A1). Although each pixel has two
coordinates (x and y), we collapse these to a single
dimension (i) for ease of presentation. Solving Equa-
tion A1 for d0 ¼ 1 gives

cthreshold ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i 5 1ðr2
i � t2

i Þ4
p
ffiffiffiffiffiffiPp p

i 5 1s2
i � ti

: ðA2Þ

This is the model equation used to generate the noisy
energy model predictions. We can also demonstrate
why a fourth-root slope is predicted for compensated
gratings where the template is matched to the stimulus
(t ¼ s), meaning that the template for the nonsignal
pixels is zero. In this case we consider the summation
that occurs over the n signal pixels determined by the

Figure A1. A schematic illustration of the noisy energy model. In this model, the template is matched to stimulus size and the blurred

boundary of the envelope. It is not matched to other stimulus modulations in either luminance or contrast.
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area derived from nominal stimulus diameter, where
the output of the filtering (sum of the sine and cosine
phase filters) is uniform (thereby ignoring the minor
effects of the blurred boundary to the stimuli).

cthreshold ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i 5 1ðr2
i � s2

i Þ4
p
ffiffiffiffiffiffiPp n

i 5 1s3
i

: ðA3Þ

For a constant s (obtained from quadrature filtering)
and r ¼ 1

cthreshold ¼
1ffiffiffi
n4
p
�s ; ðA4Þ

so for any s, the summation slope asymptotes to

cthreshold}
1ffiffiffi
n4
p : ðA5Þ

Quadratic model

The signal to noise ratio for the quadratic model
(Figure A2) is

d0 ¼
Pp

i¼1ðc � siÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1 r2
i

p ; ðA6Þ

and is solved for contrast detection threshold in a

similar manner as for A. The effective internal noise is
constant, giving an asymptotic summation slope of

cthreshold}
1ffiffiffi
n
p ; ðA7Þ

for compensated gratings.

Matched template model

The signal-to-noise ratio for a model where there is a
linear transducer followed by a template matched
exactly to the stimulus (Figure A3) is

d0 ¼
Pp

i¼1 c � si � tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1ðri � tiÞ2

q : ðA8Þ

Solving for the contrast threshold prediction in a
similar manner as for Equation A5 gives the same
result as the quadratic model (Equation A7) for
compensated gratings.

Probability summation model under HTT

For the probability summation model under the
assumptions of HTT, the response at each location in

Figure A2. A schematic illustration of the quadratic model. Note that since summation is mandatory across the entire image, this

scheme is equivalent to having a single source of late noise after summation.

Figure A3. A schematic illustration of the matched template model. In this model, the template is an exact template of the filtered

image after attenuation by the simulated spatial inhomogeneity. (However, note that for our purposes here, we consider this model

only for the case of compensated gratings. In that case, the situation is equivalent to there being no spatial inhomogeneity [to the

extent that our witch’s hat matches that exactly], and no provision for inhomogeneity in the template.)
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the image is perturbed by independent noise. There is

then a threshold set sufficiently high that it is only

rarely exceeded by the noise alone (Figure A4). The

probability of detecting the stimulus can be derived

by combining the probabilities of detection for each

individual pixel

PðdetectÞ ¼ 1� P
n

i¼1
1� PðsiÞ: ðA9Þ

The thresholds predicted from such a system are

given by Minkowski summation over the detector

outputs (assuming that the psychometric function is a

Weibull function), with an exponent equal to the

slope parameter of the psychometric function (Wei-

bull b; Quick, 1974):

cthreshold ¼
Xn
i¼1

sbi

 !�1
b

; ðA10Þ

and for a constant value of s we have:

cthreshold}
1ffiffiffi
nb
p ; ðA11Þ

for compensated gratings.

Probability summation model under signal
detection theory

Although the original probability summation model
was based on HTT, which has been discredited
(Nachmias, 1981), it has been reformulated under signal
detection theory (Pelli, 1985; Tyler & Chen, 2000). This
version replaces the high threshold with a max operation
over noisy detector outputs (Figure A5). For reasonable
assumptions about uncertainty (Tyler & Chen, 2000; see
also Meese & Summers, 2012), threshold predictions
from this model can be approximated by Equation A10,
with b¼4. Lower exponents are justified under particular
conditions of uncertainty (b , 4; see Tyler & Chen, 2000
for details), and higher exponents when the model
includes an accelerating contrast transducer (equal to 4
times the transducer exponent; Meese & Summers, 2012).

Figure A4. A schematic illustration of the HTT of probability summation.

Figure A5. A schematic illustration of a signal detection theory of probability summation.
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