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Abstract. This work contributes to the development of search engines
that self-adapt their size in response to fluctuations in workload. Deploy-
ing a search engine in an Infrastructure as a Service (IaaS) cloud facil-
itates allocating or deallocating computational resources to or from the
engine. In this paper, we focus on the problem of regrouping the metric-
space search index when the number of virtual machines used to run the
search engine is modified to reflect changes in workload. We propose an
algorithm for incrementally adjusting the index to fit the varying num-
ber of virtual machines. We tested its performance using a custom-build
prototype search engine deployed in the Amazon EC2 cloud, while cali-
brating the results to compensate for the performance fluctuations of the
platform. Our experiments show that, when compared with computing
the index from scratch, the incremental algorithm speeds up the index
computation 2–10 times while maintaining a similar search performance.

1 Introduction

A typical search engine distributes its search index into multiple processors to
achieve a sufficiently high throughput [7,6,5,4,13,8,16]. However, the workload
of a search engine typically fluctuates. Therefore, it is desirable that a search
engine adapts its size to avoid wasting resources when the workload is low and to
avoid unacceptable delays when the workload is high. If the engine is deployed
in an Infrastructure as a Service (IaaS) cloud, the cloud facilitates allocating or
deallocating compute resources to or from the engine.

Such an adaptive search engine repeatedly determines the number of proces-
sors to use, appropriately regroups the search data to form a new search index,
and re-deploys the data onto the processors according to the new index.

Fig. 1 illustrates the running of such an adaptive search engine obtained
using our small-scale prototype deployed on Amazon EC2.

In this paper, we focus on an important part of our prototype engine, namely
the mechanism for regrouping the search data for a small or larger number of
processors. We propose an algorithm for this task and evaluate its effectiveness
using controlled tests in the prototype engine. We observe that our algorithm
speeds up this task 2–10 times when compared with computing these groups
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Fig. 1. Search engine updates number of processors whenever the workload changes.

from scratch (see Fig 6). In addition, the search performance does not deteriorate
significantly when using our algorithm (see Fig 5).

The remainder of this paper is organized as follows. Section 2 recalls the back-
ground, in particular Subsection 2.1 describes the architecture of a search engine
with a distributed metric space index. Section 3 reviews related work. Section 4
describes our algorithm for regrouping the search data. Section 5 presents the
design and results of our experiments to validate and evaluate our algorithm.
Section 6 concludes and outlines opportunities for further development.

2 Background

We build on previous research on distributing search data onto processors, in
particular,

we use KmCol [7] for the initial grouping of search data. Let us recall the
main components of KmCol because some of them feature in our incremental
regrouping algorithm.

KmCol groups the search data in 3 steps, which leads to 3 levels of groupings.
We adopt the following notation for the 4 types of object in these groupings:

– Data points: points in a metric space, representing the objects of the search
– LC-clusters: groups of nearby data points
– H-groups: groups of nearby LC-clusters, optimising for sample queries Q
– G-groups: groups of H-groups, one per processor

LC-clusters are computed using the List of Clusters (LC) algorithm [2,7,6,5].
LC-clusters are created to reduce the number of objects that feed into the next,
more resource-intensive algorithm.

H-groups are formed from LC-clusters using K-means with the metric dQ,
derived from the set of sample queries Q, effectively optimising the engine for
queries similar to Q. Due to the nature of K-means, H-groups have varying sizes.

G-groups are computed from H-groups using a procedure we call Group-
Balanced, which attempts to balance their sizes.

The metric dQ is defined using the query-vector model proposed in [14].
The metric dQ makes pairs of points that are near in the natural metric seem

far away from each other if they are close to many queries from Q. Conversely,
the metric dQ makes pairs of faraway points seem almost identical if they are not
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Fig. 2. Searching using distributed metric space index

near any of the queries from the set Q. This means that H-groups finely separate
those LC-clusters that are more likely to contain results of queries, leading to a
good balance of load among processors.

2.1 Search Engine Distributed Architecture

We utilise the search engine parallel processing architecture outlined in Fig 2.
This architecture is analogous to that used in [7,5,4,13]. The Index Planner node
is responsible for calculating G-groups and distributing them to the processors.
It sends each processor not only its LC-clusters, but also an index plan, which
is a map indicating for each LC-cluster on which processor it is. The index plan
is used by the processor when it acts as a ranker for a query to determine which
processors to contact regarding the query.

While search engines typically receive k-nearest neighbor (kNN) queries,
i.e., “find k nearest objects to a specified object q for a small k” [7], search engines
would translate such queries to range queries (q, r), i.e., “find all objects within
distance r from q”, because they are easier to distribute and process. Our engine
also adopts this approach.

The ranker processor calculates the distance among the query and all of the
centers across processors and formulates a query plan, namely the set of LC-
clusters that intersect the ball of the range query (q, r).
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The ranker sends the query and its query plan to the processor pi that con-
tains the first cluster to be visited, namely, the first LC-cluster that intersects
the query ball. Then pi processes all LC-clusters that intersect (q, r). For each
such cluster, pi compares (q, r) against the data points stored inside. The pro-
cessor pi then returns to the ranker the objects that are within (q, r) and passes
the query and its plan to the next processor specified in the plan. This contin-
ues until all the processors in the query plan have returned their results to the
ranker. The ranker sorts the query answers and passes the best k back to the
broker as shown in Fig. 2. Each processor acts both as a processor in charge of
processing a subset of LC-clusters and as a potential ranker.

Note that the architecture in Fig. 2 uses the Global Index Global Centers
(GG) strategy because it uses a single node (i.e., the Index Planner) to compute
the whole index. According to [6], such a global strategy performs better than
local indexing strategies.

3 Related Work

According to [5], distributed metric space query processing was first studied in
[12]. This work was extended in [6] for the LC-based approach, studying various
forms of parallelization. As we said earlier, this study concluded that the GG
strategy performs better than local indexing strategies.

An attractive feature of schemes without a global index is that they lend
themselves to Peer-to-Peer (P2P) processing, which naturally supports resizing
in response to load variations. For example, [11] presents a distributed metric
space index as a P2P system called M-index. Unfortunately, such schemes tend
to lead to a reduced search performance. Moreover, M-index is based on a pivot
partitioning model, which has a high space complexity. For further related work
using P2P metric space indexing see e.g. [9,10,3,15].

We note that [5,1] address the related problem of performance degradation
when query load becomes unbalanced across processors. The query scheduling
algorithm proposed in [5] balances the processing of queries by dynamically
skewing queries towards explicit sections of the distributed index. On the other
hand, [1] proposes dynamic load balancing based on a hypergraph model, but it
is not concerned with multimedia search and does not use metric space index.

4 Adapting search engine size

An adaptive search engine will repeatedly re-evaluate its load and, when ap-
propriate, switch over from p active processors to a different number of active
processors. Recall that the initial H-group and G-groups were computed using
the Km-COL algorithm as described in Sect. 2. Each switchover comprises the
following steps:

1. Determine the new number of processors p′ based on recent load.
2. (Re-)compute H-groups and G-groups (i.e., the index plan) for p′ processors.
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3. Distribute the index plan and the relevant LC-clusters onto each processor.
4. Pause search.
5. Switch to new LC-clusters and plan, de/activating some processors.
6. Resume search.

Our main contribution is an algorithm for step 2 and experimental evidence
of how different ways of implementing step 2 impact search performance after the
switchover. To allow us to focus on step 2 and the resulting search performance,
we perform the switchovers while the engine is inactive, omitting steps 4 and 6.
We also skip step 1 as p and p′ will be determined by our experiment design.

4.1 Computing H-groups and G-groups

We compute G-groups from H-groups in the same way as in the KmCol al-
gorithm. We therefore focus on the computation of H-groups for p′ processors
from H-groups for p processors. We introduce the following three methods (called
transition types):

TT-R: Compute H-groups from scratch using K-means, like KmCol.
TT-S: Reuse the H-groups from previous configuration.
TT-A: Increase the number of H-groups using Adjust-H (Algorithm 1).

Algorithm 1 Adjust-H(d)(H,new size)

Tuning Parameters: d: a metric on C
Input: H: a set of H-groups partitioning C,

new size: the target number of H-groups
(new size > |H|)

Output: updated H with |H| = new size

1: Hsorted = sort by decreasing size(H)

2: while size(Hsorted) 6= new size loop

3: largest group = Hsorted.getFirst()

4: new groups = K-means(d)(largest group, 2) // split

5: Hsorted.insert sorted(new groups)

6: Hsorted.delete(largest group)

7: end loop

8: return Hsorted

Notice that the number of H-groups will never be decreased. This is appro-
priate because,
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as we show in Sect. 5, reducing the number of H-groups does not improve
search performance.

Adjust-H takes as parameters the number new size (= p′ ·w) and the old H-
groups. On line 1, it starts by arranging the H-groups in an ordered collection,
with the largest group first. On lines 2–7, the number of H-groups is increased
by repeatedly splitting the largest H-group into two using K-means, until there
are new size many of them. Thanks to the following observation, we do not need
to study the effect of repeated TT-A on search performance:

Proposition 1 (Repeated TT-A is equivalent to a single TT-A).
For any set H and sequence |H| < p1 < p2 < . . . < pn, it holds:
Adjust-H

(
. . .Adjust-H(Adjust-H(H, p1), p2), . . . , pn

)
= Adjust-H(H, pn)

Proof. A repeated execution of Adjust-H results in successive executions of the
loop that forms the algorithm. There are no commands to change the H-groups
between the successive executions of the loop. Thus the result of the repeated
loop executions is the same as running the loop only once with new size set to
the final value pn. ut

To pursue our goal to speed up switchovers while keeping a good search per-
formance, we will test the search performance implications of the three transition
types TT-R, TT-S and TT-A.

Based on preliminary observations, we formed the following hypotheses:

H1 The time it takes to compute H-groups grows significantly with the number
of these H-groups.

H2 Increasing the number of H-groups does not reduce search performance.
Equivalently, when reducing p, TT-S does not lead to a worse search
performance than TT-R.

H3 Computing a number of H-groups and then splitting them up using TT-A
does not impair search performance when compared to computing the same
number of H-groups directly using TT-R.

We provide experimental evidence supporting these hypotheses in Sect. 5.
Using these hypotheses, on the assumption that they are correct, we propose

the algorithm Regroup (Algorithm 2) to decide which of the three transition
types to use.

The algorithm takes as parameters the numbers wmin and winit. TT-R uses
winit to compute H-groups from scratch, while wmin is used by TT-A to recom-
pute H-groups. Due to hypothesis H2, the values of these tuning parameters
do not significantly affect search performance. We therefore use the fairly low
values winit = 2 and wmin = 1.5 in our experiments in order to reduce the time
it takes to compute the H-groups. At the beginning, if a new Q is provided, it
is necessary to update the metric dQ and recompute the H-groups from scratch
(TT-R, lines 2 and 3). If the number of H-groups is smaller than p′ ∗ wmin, the
number of H-groups is increased (TT-A, line 5). If there is no change in Q and
p > p′, then H is reused (TT-S). Finally, on line 7, new G-groups are computed
from the H-groups, using Group-Balanced, an algorithm borrowed from KmCol.
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Algorithm 2 Regroup(winit, wmin)(p′, H, dQ, Q)

Tuning Parameters: winit, wmin ≥ 1
Input: p′: new number of processors,

H: a set of H-groups partitioning C (optional, needed if Q absent),
dQ: a metric on C (optional, needed if Q absent),
Q: sample set of queries (optional, needed if H absent)

Output: G: a partition of C with |G| = p′,
updated H and dQ

1: if Q is provided then

2: dQ := Query-Vector-Metric(C,Q)

3: H := K-means(dQ)(p′ ∗ winit, C) // TT-R

4: elseif |H| < p′ ∗ wmin then

5: H := Adjust-H(dQ)(H, p′ ∗ wmin) // TT-A

6: end // TT-S: the if block not executed

7: G := Group-Balanced(H, p′)

8: return G,H, dQ

5 Experimental Evidence Supporting Hypotheses

In the experiments, the three transition types are compared in terms of their
effect on search performance and the time it takes to compute H-groups for
the new number of processors. (a component of switch-over performance). The
performance is influenced by the following parameters:

1. Search engine size evolution (SE): We consider only a single switchover
at a time and write it as p → p′. E.g., 5→8 encodes a single switchover
from 5 to 8 processors. In our experiments, we use increasing or decreasing
transitions of the sequence 2, 3, 5, 8, 12, 18 and contrast sets of transitions
sharing a similar ratio p/p′ or sharing the same p′.

2. Dataset (D): A dataset represents the set of objects that needs to be
searched. In our experiments, we used a randomly selected set of 1,000,000
objects from the CoPhIR Dataset1. Each object comprises 282 floating-point
number coordinates.

3. Sample queries (Q): As explained in Sect. 2, the set defines the metric dQ
which is used to partition LC-clusters into H-groups. In our experiments, we
used as Q a randomly selected set of 1,000 objects from the CoPhIR Dataset.

4. Query profile (QP): Query profile simulates how users send queries to the
search engine. It is determined by a sequence of queries and the timing when
each query occurs. In our experiments, we use as queries 100,000 randomly

1 http://cophir.isti.cnr.it/
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selected objects from the CoPhIR Dataset. We fire the queries at a constant
query rate. This rate is not a parameter of the experiment because it is
determined automatically in the process of measuring maximum throughput
as described below.

Search performance is measured using maximum throughput defined as fol-
lows. The current output throughput of a search engine is the rate at which
answers to queries are sent to clients. This is equal to the input throughput,
i.e., the rate at which the queries are arriving, except when the queries are
accumulating inside the engine.

Maximum throughput is the highest output throughput achieved when flood-
ing the input with queries. We have observed that the network stack efficiently
facilitates the queuing of queries until the engine is able to accept them. Each
of the search engine nodes (Fig. 2) was deployed on a separate Amazon EC2
medium virtual machine instance. In each experiment, we used the following
steps to obtain sufficiently reliable throughput measurements despite significant
performance fluctuations of the Amazon cloud platform:

– Conduct two speed tests: an initial and a final test. The two tests are iden-
tical. Each test comprises 4 repetitions of a fixed task based on distributed
searching.

– If the speed variation within these 4 repetitions is over 5%, the cloud is not
considered sufficiently stable.

– Also if the initial and final speed measurements differ by over 2%, the cloud
is not considered sufficiently stable.

– The average of the speed measurements in the initial and final tests is used
to calibrate the maximum throughput measurements obtained in the exper-
iment to account for longer-term variations in the cloud performance.

When the stability tests failed repeatedly, we relaxed the thresholds and took
the average of the measurements obtained from 3 repetitions of the experiment.

We observed that in many experiments, the throughput fluctuates at the
beginning and then stabilises. To discount the initial instability, we run each
search experiment as a sequence of blocks of 100 queries and we wait until there
are four consecutive blocks with a performance variation below 30%. We discount
the preceding blocks that have a higher variance.

We artificially slowed down all processors by a factor of 5 to compensate for
the slow network in the EC2 cloud (around 240 MBits/s), simulating a faster
network, which would be found in typical clusters (around 1 GBit/s).

The full code for our experimental search engine and the experiments de-
scribed in this section is available on http://duck.aston.ac.uk/ngp.

5.1 The Number of H-groups

Experiment E1. To test hypothesis H1, we computed different numbers of H-
groups and observed how the computation time grows with size while the re-
maining parameters are fixed.

The results (Fig. 3(a)) confirm hypothesis H1.
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(a) TT-R computation time grows (b) Throughput is not significantly affected

Fig. 3. Impact of increasing the number of H-groups (= w ∗ p) on performance.

Experiment E2. In a similar setup as experiment E1, we checked whether the
extra computation time spent creating more H-groups translates to better search
performance, in contradiction to hypothesis H2. We have done this for p = 8 and
p = 18 and the same values of w as for E1. The results of E2 in Fig. 3(b) show
that the throughput is not significantly affected by w, confirming H2.

5.2 Search Performance of TT-S

Experiments E3 and E4. Reusing H-groups for p′ < p (TT-S) is much faster than
recomputing H-groups (TT-R). The alternative phrasing of hypothesis H2 states
that this speed up does not come at a cost to the search performance. Here we
report on experiments that confirm hypothesis H2 in the alternative phrasing:
The same switchover p→ p′ is performed using TT-R and independently using
TT-S and the resulting search performance is measured.

These two experiments differ in the set of switchovers considered as follows:

– E3 varies p′ and fixes the ratio p/p′.
– E4 varies the ratio p/p′ and fixed p′.

The results of these experiments shown in Fig. 4 support H2: TT-S does not
lead to worse search performance than TT-R when switching over to a smaller
number of processors.

5.3 Comparing TT-A and TT-R

Experiments E5 and E6. In this section, we test hypothesis H3 by comparing
the results of experiments that measure the search performance after computing
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Fig. 4. TT-S and TT-R produce similar throughput, measured separately for increasing
p′ (E3) and increasing p/p′ (E4).

H-groups using TT-R and TT-A. Moreover, we capture the computation time
of the transitions to measure the speed-up of TT-A over TT-R.

As with E3 and E4, the experiments differ in the set of switchovers considered
as follows:

– E5 varies the ratio p/p′ and fixed p′.
– E6 varies p′ and fixes the ratio p/p′.

The results of experiments E5 and E6 in Fig. 5 support hypothesis H3,
namely they show that the maximum throughputs after TT-A is similar to,
sometimes even better than the maximum throughput after TT-R. Plots in Fig. 6
show that in this context the speed-up of TT-A versus TT-R is 2–10 times.

6 Conclusions

We have proposed a new algorithm for planning an incremental regrouping of
a metric-space search index when a search engine is switched over to a differ-
ent size. This algorithm is inspired by the results of a set of experiments we
conducted. These experiments also indicate that our algorithm facilitates 2–10
times faster switchover planning and leads to a similar search performance when
compared with computing the index from scratch.

In this work, we studied only the re-computation of the metric-space index
when the search engine changes size. We plan to develop and study the remain-
ing aspects of an adaptive search engine, such as determining when and how to
change the engine size and re-distributing the search data among processors pro-
cessors according to the newly computed search index while keeping the engine
responsive.
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Fig. 5. TT-A and TT-R lead to a similar maximum throughput after switchovers with
various p′ and with various ratios.

Fig. 6. TT-A is faster than TT-R in switchovers with with various p′ and various
ratios.
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