Caesium bis(5-bromosalicylaldehyde thiosemicarbazonato- $\kappa^{3} O, N, S$)ferrate(III): supramolecular arrangement of low-spin $\mathrm{Fe}^{I I}$ complex anions mediated by Cs^{+}cations

Robyn Elizabeth Powell, Carl H. Schwalbe, Graham J. Tizzard and Petra J. van Koningsbruggen

Acta Cryst. (2015). C71, 169-174

Copyright © International Union of Crystallography
Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Caesium bis(5-bromosalicylaldehyde thiosemicarbazonato- $\left.\kappa^{3} O, N, S\right)$ ferrate(III): supramolecular arrangement of low-spin Fe ${ }^{\text {III }}$ complex anions mediated by Cs^{+}cations

Robyn Elizabeth Powell, ${ }^{\text {a }}$ Carl H. Schwalbe, ${ }^{\text {b }}$ Graham J. Tizzard ${ }^{\text {c }}$ and Petra J. van Koningsbruggen ${ }^{\text {a* }}$

${ }^{\mathrm{a}}$ School of Engineering and Applied Sciences, Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham B4 7ET, England, ${ }^{\mathbf{b}}$ School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, England, and ${ }^{\mathbf{c}}$ National Crystallography Service, Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England
Correspondence e-mail: p.vankoningsbruggen@aston.ac.uk

Received 12 November 2014
Accepted 29 January 2015
The synthesis and crystal structure determination (at 293 K) of the title complex, $\mathrm{Cs}\left[\mathrm{Fe}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)_{2}\right]$, are reported. The compound is composed of two dianionic O, N, S-tridentate 5-bromosalicylaldehyde thiosemicarbazonate(2-) ligands coordinated to an $\mathrm{Fe}^{\mathrm{III}}$ cation, displaying a distorted octahedral geometry. The ligands are orientated in two perpendicular planes, with the O - and S-donor atoms in cis positions and the N -donor atoms in trans positions. The complex displays intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, creating $R_{4}^{4}(18)$ rings, which link the $\mathrm{Fe}^{\mathrm{III}}$ units in the a and b directions. The $\mathrm{Fe}^{\mathrm{III}}$ cation is in the low-spin state at 293 K.

Keywords: spin-crossover behaviour; low-spin state Fe ${ }^{\text {III }}$; crystal structure; caesium salt; salicylaldehyde thiosemicarbazone; $\mathrm{Fe}^{\text {III }}$ coordination compound.

1. Introduction

It is recognised that octahedral metal complexes with $3 d^{4}-3 d^{7}$ configurations with specific ligands can exhibit spin-crossover behaviour, i.e. the magnetic interconversion between low-spin and high-spin states, dependent upon external perturbations of temperature, pressure or light irradiation (Gütlich \& Goodwin, 2004). In recent years, particular interest has been focused on $\mathrm{Fe}^{\text {III }}\left(3 d^{5}\right)$ complexes of substituted derivatives of R-salicylaldehyde 4- R^{\prime}-thiosemicarbazone (Floquet et al., 2003, 2006, 2009; Li et al., 2013; Yemeli Tido et al., 2008; Yemeli Tido, 2010; Powell et al., 2014) for generating $\mathrm{Fe}^{\mathrm{III}}$ spincrossover. The spin-crossover properties of this class of $\mathrm{Fe}^{\text {III }}$ bis(ligand) complexes have been found to be sensitive to the
presence of a particular counter-ion, the degree of solvation and the nature of the R - and R^{\prime}-substituted ligands (van Koningsbruggen et al., 2004; Yemeli Tido et al., 2008). Furthermore, it has been established that varying the pH during the synthesis of the $\mathrm{Fe}^{\mathrm{III}}$ bis(ligand) units leads to the formation of $\mathrm{Fe}^{\mathrm{III}}$ compounds differing in the degree of deprotonation of the ligand, whereby the complex unit can be neutral, monocationic, tricationic or monoanionic (Floquet et al., 2009; Yemeli Tido et al., 2010; Yemeli Tido, 2010).

In $\mathrm{Fe}^{\text {III }}$ compounds, it is possible for the tridentate R-salicylaldehyde $4-R^{\prime}$-thiosemicarbazone ligand $\left(\mathrm{H}_{2} L\right)$ to exist in tautomeric forms, and the ligand may also be present in its neutral, anionic or dianionic form. Free $\mathrm{H}_{2} L$ in solution exists in two tautomeric forms, i.e. the thione (left) and thiol (right) forms illustrated in Scheme 1.

Scheme 1
We recently reported the structure (at 100 K) of $\mathrm{Cs}\left[\mathrm{Fe}(L 1)_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$, where $L 1^{2-}=3$-ethoxysalicylaldehyde 4-methylthiosemicarbazonate(2-) (Powell et al., 2014). Both of the ligands were found to be twofold deprotonated, as no H atoms were located on the phenolate O or thiolate S atoms. From the values of the geometric parameters, it was established that the $\mathrm{Fe}^{\mathrm{III}}$ cation is in the low-spin state. Continuing our research, we have varied the R and R^{\prime} substituents of the ligand and studied the structural and electronic properties of the resulting $\mathrm{Fe}^{\text {III }}$ coordination compounds. Herein, we report the room-temperature structure of the title $\mathrm{Fe}^{\mathrm{III}}$ salt, $\mathrm{Cs}[\mathrm{Fe}-$ $\left.(L 2)_{2}\right]$, (I), containing two dianionic tridentate 5 -bromosalicylaldehyde thiosemicarbazonate $(2-)\left(L 2^{2-}\right)$ ligands.

(I)

2. Experimental

2.1. Synthesis and crystallization

5-Bromosalicylaldehyde thiosemicarbazone was synthesized according to the procedure described in the literature by Yemeli Tido (2010). 5-Bromosalicylaldehyde (98%, 49 mmol)

Table 1
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
β (${ }^{\circ}$)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$
$\mathrm{Cs}\left[\mathrm{Fe}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)_{2}\right]$
733.02

Monoclinic, $P 2_{1} / c$
293
20.2500 (14), 12.0868 (8), 9.0389 (5)
90.337 (1)
2212.3 (2)

4
Mo $K \alpha$
6.13
$0.08 \times 0.08 \times 0.01$

Rigaku AFC12 four-circle Kappa diffractometer
Multi-scan (CrystalClear-SM Expert; Rigaku, 2013)
0.640, 0.941

29088, 5073, 4211
0.045
0.649
$0.033,0.086,1.04$
5073
272
H -atom parameters constrained 0.88, -0.85

Computer programs: CrystalClear-SM Expert (Rigaku, 2013), ROTAX (Cooper et al., 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).
was dissolved in ethanol (80 ml) with constant stirring and then added to thiosemicarbazide ($99 \%, 49 \mathrm{mmol}$) dissolved in ethanol (40 ml). The mixture was refluxed for 120 min . After the mixture had been allowed to cool to room temperature, a yellow solid, i.e. 5-bromosalicylaldehyde thiosemicarbazone, was isolated by filtration and dried.
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 0.27 \mathrm{~g})$ was dissolved in methanol $(10 \mathrm{ml}) .5$-Bromosalicylaldehyde thiosemicarbazone (2.0 mmol , $0.54 \mathrm{~g})$ was dissolved in methanol $(60 \mathrm{ml})$ with the addition of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{mmol}, 0.67 \mathrm{~g})$. To this mixture, the methanolic $\mathrm{Fe}^{\mathrm{III}}$ salt solution was added with constant stirring. The resulting dark-green solution was stirred and heated to 353 K for approximately 10 min . The solution was then allowed to stand at room temperature until crystals were formed. Darkgreen microcrystals of (I) were isolated by filtration and dried.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The structure of (I) was solved routinely by direct methods and refined by least squares, with H atoms placed in anticipated positions and non-H atoms given anisotropic displacement parameters. However, the refined parameters did not match the quality of the data set, since the unweighted discrepancy index R_{1} of 0.092 was much higher than the $R_{\text {int }}$ value of 0.045 . Since all 50 of the reflections with the worst discrepancy had $F_{\text {obs }}>F_{\text {calc }}$, twinning was suspected, and the closeness of the unit-cell β angle to 90° suggested a mechanism for pseudo-merohedral twinning. Application of ROTAX (Cooper et al., 2002) indi-
cated 180° rotation about the a axis as the likely twin law. Repeating the refinement with this twin law drastically reduced the discrepancy indices.

Now, all polar H atoms were omitted from the model and sought in a difference Fourier map. The H atoms on the secondary atoms N13 and N23 were located in a difference Fourier map at peak heights between 0.60 and 0.70 e \AA^{-3}, while no comparable peaks appeared adjacent to N11, N12, $\mathrm{N} 21, \mathrm{~N} 22$ or any O or S atom. In subsequent refinements, the amino H atoms thus established were treated as riding, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The remaining H atoms were included in the refinement in calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aryl $(-\mathrm{CH}=) \mathrm{H}$ atoms. After final refinement, R_{1} reached 0.033 and $w R_{2}$ was equal to 0.086 , and a fractional contribution of 0.1306 (8) from the minor twin component was indicated.

3. Results and discussion

The crystal structure of (I) (Fig. 1) was determined at 293 K . Compound (I) crystallizes in the monoclinic system in the space group $P 2_{1} / c$. The asymmetric unit corresponds to the formula unit $\mathrm{Cs}\left[\mathrm{Fe}(L 2)_{2}\right]\left[L 2^{2-}\right.$ is 5-bromosalicylaldehyde thiosemicarbazonate (2-)] with no atom on a special position. The central $\mathrm{Fe}^{\text {III }}$ cation is hexacoordinated by two dianionic O, N, S-tridentate $L 2^{2-}$ ligands, displaying a distorted octahedral $\mathrm{Fe}^{\mathrm{III}} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ geometry. Deprotonation occurs for the phenol O and thiol S atoms. Selected geometric parameters are listed in Table 2.

The $\mathrm{Fe}^{\text {III }} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ unit is distorted from ideal octahedral geometry, as indicated by the bond angles (Table 2) of the donor atoms and atom Fe 1 (see below). The tridentate $L 2^{2-}$ ligands are coordinated to the $\mathrm{Fe}^{\text {III }}$ cation by the O - and S donor atoms, which are situated in two perpendicular planes in

Figure 1
The molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

Table 2
Selected geometric parameters ($\AA \AA^{\circ}$).

Fe1-S11	$2.2321(11)$	$\mathrm{Fe} 1-\mathrm{O} 21$	$1.956(3)$
$\mathrm{Fe} 1-\mathrm{S} 21$	$2.2422(11)$	$\mathrm{Fe} 1-\mathrm{N} 11$	$1.947(3)$
$\mathrm{Fe} 1-\mathrm{O} 11$	$1.942(3)$	$\mathrm{Fe} 1-\mathrm{N} 21$	$1.938(3)$
$\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$3.7159(11)$	$\mathrm{Cs} 1-\mathrm{N} 12^{\mathrm{ii}}$	$3.326(3)$
$\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$3.5564(11)$	$\mathrm{Cs} 1-\mathrm{N} 22^{\mathrm{iii}}$	$3.470(3)$
$\mathrm{Cs} 1-\mathrm{O} 11$	$3.220(3)$	$\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$	$3.699(4)$
$\mathrm{Cs} 1-\mathrm{O} 21$	$3.129(3)$		
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{S} 21$	$93.66(4)$	$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 21$	$89.20(12)$
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{N} 11$	$86.01(9)$	$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 11$	$89.40(11)$
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{O} 11$	$177.50(9)$	$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 21$	$93.78(12)$
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{O} 21$	$89.78(10)$	$\mathrm{N} 11-\mathrm{Fe} 1-\mathrm{N} 21$	$175.33(12)$
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{N} 21$	$90.57(9)$	$\mathrm{C} 18-\mathrm{S} 11-\mathrm{Fe} 1$	$95.12(13)$
$\mathrm{S} 21-\mathrm{Fe} 1-\mathrm{O} 11$	$88.81(9)$	$\mathrm{C} 28-\mathrm{S} 21-\mathrm{Fe} 1$	$94.61(14)$
$\mathrm{S} 21-\mathrm{Fe} 1-\mathrm{O} 21$	$176.56(10)$	$\mathrm{N} 11-\mathrm{N} 12-\mathrm{C} 18$	$113.5(3)$
$\mathrm{S} 21-\mathrm{Fe} 1-\mathrm{N} 11$	$90.96(9)$	$\mathrm{N} 21-\mathrm{N} 22-\mathrm{C} 28$	$113.6(3)$
$\mathrm{S} 21-\mathrm{Fe} 1-\mathrm{N} 21$	$86.07(9)$	$\mathrm{N} 12-\mathrm{C} 18-\mathrm{S} 11$	$124.3(3)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{O} 21$	$87.75(12)$	$\mathrm{N} 22-\mathrm{C} 28-\mathrm{S} 21$	$124.8(3)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 11$	$94.35(12)$	$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$	$137.96(7)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$176.98(5)$	$\mathrm{N} 12^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$85.01(6)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$129.54(5)$	$\mathrm{N} 12^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$103.23(6)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{N} 12^{\mathrm{iii}}$	$92.97(7)$	$\mathrm{N} 12^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{N} 22^{\mathrm{iii}}$	$156.35(8)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{N} 22^{i i i}$	$65.82(7)$	$\mathrm{N} 12^{\mathrm{ii}}-\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$	$143.33(8)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$	$100.65(7)$	$\mathrm{N} 22^{\mathrm{iii}}-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$115.72(6)$
$\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{O} 21$	$50.34(7)$	$\mathrm{N} 22^{\mathrm{iii}}-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$98.64(6)$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$126.82(5)$	$\mathrm{N} 22^{\mathrm{iii}}-\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$	$56.10(8)$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$178.78(5)$	$\mathrm{N} 23^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$82.29(6)$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{N} 12^{\mathrm{ii}}$	$75.63(7)$	$\mathrm{N} 23^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$	$42.99(6)$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{N} 22^{\text {iii }}$	$82.42(7)$	$\mathrm{S} 21^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$	$53.27(2)$

Symmetry codes: (i) $x, y, z-1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.
the cis positions, such that the N -donor atoms are situated in mutually trans positions.

X-ray structural data of similar $\mathrm{Fe}^{\mathrm{III}}$ bis(ligand) compounds containing dianionic thiosemicarbazonate(2-) ligands show that the $\mathrm{Fe}-\mathrm{S}, \mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{N}$ bond distances are in the ranges $2.23-2.31,1.93-1.95$ and $1.88-1.96 \AA$, respectively, for low-spin $\mathrm{Fe}^{\text {III }}$ compounds, and 2.40-2.44, 1.96-1.99 and 2.05$2.15 \AA$, respectively, for corresponding high-spin $\mathrm{Fe}^{\mathrm{III}}$ compounds (van Koningsbruggen et al., 2004). Comparison of the bond distances of (I) involving the $\mathrm{Fe}^{\mathrm{III}}$ atom and the donor atoms (Table 2) suggests that the present compound contains low-spin $\mathrm{Fe}^{\text {III }}$ at 293 K .

The distortion of the $\mathrm{Fe}^{\text {III }} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ unit results from the constraints imposed by the five- and six-membered chelate rings formed. The six-membered chelate ring involves a significantly wider bite angle than the ideal octahedral value of $90^{\circ}\left[\mathrm{O} 11-\mathrm{Fe}-\mathrm{N} 11=94.35(12)^{\circ}\right.$ and $\mathrm{O} 21-\mathrm{Fe}-\mathrm{N} 21=$ $93.78(12)^{\circ}$], while the bite angle is narrowed in the fivemembered chelate ring [$\mathrm{S} 11-\mathrm{Fe}-\mathrm{N} 11=86.01(9)^{\circ}$ and $\mathrm{S} 21-$ $\left.\mathrm{Fe}-\mathrm{N} 21=86.07(9)^{\circ}\right]$. There is no major strain relief through puckering: the r.m.s. deviations from the least-squares planes of the atoms comprising the six-membered $\mathrm{Fe} 1 / \mathrm{N} 11 / \mathrm{C} 17 / \mathrm{C} 11 /$ $\mathrm{C} 12 / \mathrm{O} 11$ and $\mathrm{Fe} 1 / \mathrm{N} 21 / \mathrm{C} 27 / \mathrm{C} 21 / \mathrm{C} 22 / \mathrm{O} 21$ chelate rings are 0.034 and $0.038 \AA$, respectively; the corresponding values for the five-membered $\mathrm{Fe} 1 / \mathrm{N} 11 / \mathrm{N} 12 / \mathrm{C} 18 / \mathrm{S} 11$ and $\mathrm{Fe} 1 / \mathrm{N} 21 / \mathrm{N} 22 /$ C28/S21 rings are 0.014 and $0.009 \AA$, respectively. Compared with the 120° angles in a regular hexagon, the $\mathrm{O}-\mathrm{Fe}-\mathrm{N}$ bite angle is deficient by $\mathrm{ca} 26^{\circ}$, and each of the remaining angles in the six-membered rings is within 2° of 125°. Because the angle at the vertex of a regular pentagon is only 108°, the $\mathrm{S}-\mathrm{Fe}-\mathrm{N}$ bite angles are deficient by only 22°. However, the $\mathrm{C}-\mathrm{S}-\mathrm{Fe}$
angles are only about 95°, providing an additional deficiency of 13° and a total which could be neatly offset by increasing the other angles to $c a 120^{\circ}$. (In fact, the $\mathrm{N}-\mathrm{N}-\mathrm{C}$ angles are $<120^{\circ}$ and the $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles are $>120^{\circ}$.) Such 120° angles are consistent with $s p^{2}$ hybridization at the C and N atoms. The stability of the $\mathrm{Fe}^{\mathrm{III}}$ complex is enhanced by the high degree of electron delocalization throughout the chelated ligands.

The bond distances of the ligands coordinated to the $\mathrm{Fe}^{\text {III }}$ cation in (I) can be related to bond order. The $\mathrm{C}-\mathrm{S}, \mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bonds obtained for (I) show characteristics of a bond order between a single and a double bond. As expected, the C18-S11 bond distance of 1.750 (4) \AA and the C28-S21 bond distance of 1.753 (4) A suggest a partial electron delocalization of these bonds. Ryabova, Ponomarev, Zelentsov, Shipilov \& Atovmyan (1981) reported the related low-spin compound $\mathrm{NH}_{4}\left[\mathrm{Fe}(L 2)_{2}\right]$ at 298 K , which crystallizes in the centrosymmetric space group Pnca with $Z^{\prime}=0.5$. Thus, the ligands coordinated around the $\mathrm{Fe}^{\mathrm{III}}$ cation are related by symmetry. The $\mathrm{C}-\mathrm{S}$ bond distances of (I) correspond with the $\mathrm{C}-\mathrm{S}$ bond distance of $1.750(9) \AA$ for $\mathrm{NH}_{4}\left[\mathrm{Fe}(L 2)_{2}\right]$, suggesting the occurrence of partial electron delocalization in both compounds. Furthermore, the electron delocalization of the ligands is confirmed by a bond order larger than 1 for the $\mathrm{C}-\mathrm{N}$ bond involving the deprotonated hydrazinic N atom. The bond distances for the C17-N11 and C27-N21 bonds in (I) are 1.281 (5) and 1.296 (5) \AA, respectively, which are similar to the $\mathrm{C}-\mathrm{N}$ bond distance of 1.292 (10) A reported for $\mathrm{NH}_{4}\left[\mathrm{Fe}(L 2)_{2}\right]$. In addition, the $\mathrm{N}-\mathrm{N}$ bond distances of (I) are $\mathrm{N} 11-\mathrm{N} 12=1.394$ (4) \AA and $\mathrm{N} 21-\mathrm{N} 22=1.401$ (4) \AA, indicating partial electron delocalization.

The Cs^{+}cation of (I) is at the centre of an irregular sevendonor atom polyhedron, the donor atoms of which originate from symmetry-related equivalents of both symmetry-independent ligands. Selected geometric parameters are listed in Table 2.

Several donor atoms coordinated to the $\mathrm{Fe}^{\mathrm{III}}$ atom of (I) form interactions with the Cs^{+}cation in the second coordination sphere, modulating the electron density of the $\mathrm{Fe}-$ donor-atom bonds and hence influencing the electronic state of the $\mathrm{Fe}^{\text {III }}$ cation.

The phenolate O 11 and $\mathrm{O} 21 \mathrm{Fe}^{\text {III }}$ donor atoms bind to the Cs^{+}cation within the same $\mathrm{Fe}^{\text {III }}$ unit. The $\mathrm{Cs}-\mathrm{O}$ distances are $\mathrm{Cs} 1-\mathrm{O} 11=3.220(3) \AA$ and $\mathrm{Cs} 1-\mathrm{O} 21=3.129(3) \AA$, somewhat longer than the mean Cs-O bond length of 3.074 (1) \AA in the hydrated Cs^{+}cation (Mähler \& Persson, 2012). The small $\mathrm{O} 11-\mathrm{Cs} 1-\mathrm{O} 21$ bond angle of $50.34(7)^{\circ}$ is a corollary of the closeness of the two ligands bound to $\mathrm{Fe}^{\text {IIII }}$. The $\mathrm{Cs} 1 \cdots \mathrm{Fe}$ separation involving the μ-diphenolate bridge is 4.2703 (6) \AA and the $\mathrm{Cs}-\mathrm{O}-\mathrm{Fe}$ bond angles are $\mathrm{Cs} 1-\mathrm{O} 11-$ $\mathrm{Fe}=109.12(11)^{\circ}$ and $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe}=112.16(11)^{\circ}$.

The thiolate $\mathrm{S} 11^{\mathrm{i}}$ and $\mathrm{S} 21^{\mathrm{i}}$ [symmetry code: (i) $x, y, z-1$] $\mathrm{Fe}^{\text {III }}$ donor atoms coordinate to the Cs^{+}cation with bond distances of 3.7159 (11) and 3.5564 (11) \AA, respectively. Moreover, the terminal $\mathrm{N} 23^{\mathrm{i}}$ atom of the same $\mathrm{Fe}^{\text {III }}$ unit forms a bond with the Cs^{+}cation, with a $\mathrm{Cs} 1-\mathrm{N} 23^{\mathrm{i}}$ bond distance of 3.699 (4) A. The proximity of atoms N23 and S21 is shown by the small $\mathrm{N} 23^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$ bond angle of $42.99(6)^{\circ}$, whereas

Figure 2
A projection showing the unit cell of (I). The Cs^{+}cation has been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (v) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (vi) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (vii) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (viii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ix) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.]
the small S21 $1^{\mathrm{i}}-\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}$ bond angle of 53.27 (2) \AA is related to the vicinity of the two ligands bound to $\mathrm{Fe}^{\mathrm{III}}$. Furthermore, the thiolate S -donor atoms coordinate to the Cs^{+}cation, as well as to the $\mathrm{Fe}^{\mathrm{III}}$ cation, which gives rise to the $\mathrm{Cs} 1 \cdots \mathrm{Fe}^{\mathrm{i}}$ separation of 4.7695 (6) \AA [symmetry code: (i) $x, y, z-1$]. The $\mathrm{Cs}-\mathrm{S}-\mathrm{Fe}$ bond angles involving the μ-dithiolate bridge are $\mathrm{Cs} 1-\mathrm{S} 11^{\mathrm{i}}-\mathrm{Fe}=103.80(4)^{\circ}$ and $\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}-\mathrm{Fe}=108.55(4)^{\circ}$. In addition, atoms $\mathrm{N} 12^{\mathrm{ii}}$ and $\mathrm{N} 22^{\mathrm{iiii}}$ [symmetry codes: (ii) x, $-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $\left.x,-y+\frac{3}{2}, z-\frac{1}{2}\right]$ next to the imine N -donor atoms in the first coordination sphere of $\mathrm{Fe}^{\mathrm{III}}$ are also coordinated to the Cs^{+}cation (see Table 2).

The $\mathrm{Cs}^{+} \ldots \mathrm{Cs}^{+}$separations of 7.4530 (5) \AA for $\mathrm{Cs} 1 \cdots \mathrm{Cs} 1(x$, $\left.-y+\frac{3}{2}, z+\frac{1}{2}\right)$ and $7.6404(5) \AA$ for $\operatorname{Cs} 1 \cdots \operatorname{Cs} 1\left(x,-y+\frac{1}{2}, z-\frac{1}{2}\right)$ do correlate with the shortest $\mathrm{Fe}^{\mathrm{III}} . . . \mathrm{Fe}^{\mathrm{III}}$ separations in (I). These are 7.5369 (9) \AA for $\mathrm{Fe} \cdots \mathrm{Fe}\left(x,-y+\frac{3}{2}, z+\frac{1}{2}\right)$ and 7.5559 (6) \AA for $\operatorname{Fe} \cdots \mathrm{Fe}\left(x,-y+\frac{1}{2}, z-\frac{1}{2}\right)$.

The previously reported compound $\mathrm{Cs}\left[\mathrm{Fe}(L 1)_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ [L1 is 3-ethoxysalicylaldehyde 4-methylthiosemicarbazonate (2-)] displays $\mathrm{Fe}^{\mathrm{III}} \ldots \mathrm{Fe}^{\mathrm{III}}(x+1, y, z)$ separations of 8.486 (3) \AA (Powell et al., 2014). The absence of any solvent molecule in (I) allows the $\mathrm{Fe}^{\mathrm{III}}$ units to be closer to each other in the crystal structure than in the former compound. Furthermore, the R and R^{\prime} substituents of the ligands coordinated to the $\mathrm{Fe}^{\mathrm{III}}$ atom, i.e. $R=5-\mathrm{Br}$ and $R^{\prime}=\mathrm{H}$ in (I), and $R=3-\mathrm{EtO}$ and $R^{\prime}=4-\mathrm{Me}$ in $\mathrm{Cs}\left[\mathrm{Fe}(L 1)_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$, might have some effect on how the $\mathrm{Fe}^{\text {III }}$ units are assembled in the crystal
structure. The sizes and positions of the R and R^{\prime} substituents are different, as (I) contains a Br substituent on the $\mathrm{C} 15 / \mathrm{C} 25$ atom of the salicylaldehyde group, whereas $\mathrm{Cs}\left[\mathrm{Fe}(L 1)_{2}\right]$-$\mathrm{CH}_{3} \mathrm{OH}$ contains a relatively bulky ethoxy group on the $\mathrm{C} 13 /$ C 23 atom of the salicylaldehyde group, as well as a methyl substituent on the terminal N atom of the thiosemicarbazide group. In addition, the Br substituent of one $\mathrm{Fe}^{\mathrm{III}}$ unit of (I) provides a hydrogen-bonding interaction with an amino group of a neighbouring $\mathrm{Fe}^{\text {III }}$ unit (see below). The occurrence of intermolecular hydrogen-bonding interactions between $\mathrm{Fe}^{\text {III }}$ units in (I) contributes to the arrangement of the $\mathrm{Fe}^{\mathrm{III}}$ entities in the unit cell.

The hydrogen-bonding interactions of (I) are listed in Table 3 and displayed in Fig. 2. The main features of the molecular packing of (I) are the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds. Although the latter are weak, their grip on the Br atoms is augmented by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions at similar $\mathrm{H} \cdots \mathrm{Br}$ contact distances. The $\mathrm{N} 13-\mathrm{H} 13 B \cdots \mathrm{Br} 2^{\mathrm{v}}$ and $\mathrm{N} 13-\mathrm{H} 13 A \cdots \mathrm{O} 21^{\text {iv }}$ (see Table 3 for symmetry codes) contacts form hydrogen bonds to two different ring systems. In turn, atom O 21 in the former system and atom Br 2 in the latter accept hydrogen bonds from inversion-related atom $\mathrm{N} 13(-x+1,-y,-z+2)$, giving rise to $R_{4}^{4}(18)$ rings (Bernstein et al., 1995). In a similar manner, the $\mathrm{N} 23-\mathrm{H} 23 B \cdots \mathrm{Br}^{\text {vii }}$ and $\mathrm{N} 23-\mathrm{H} 23 A \cdots \mathrm{O} 11^{\text {vi }}$ contacts create $R_{4}^{4}(18)$ rings with inver-sion-related atom $\mathrm{N} 23(-x+2,-y+2,-z+2)$. The ring

Table 3
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 13-\mathrm{H} 13 A \cdots \mathrm{O} 21^{\text {iv }}$	0.86	2.08	2.907 (4)	161
$\mathrm{N} 13-\mathrm{H} 13 B \cdots \mathrm{Br} 2^{\mathrm{v}}$	0.86	2.72	3.557 (4)	163
$\mathrm{N} 23-\mathrm{H} 23 A \cdots \mathrm{O} 11^{\text {vi }}$	0.86	2.10	2.952 (5)	171
$\mathrm{N} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{Br}^{\text {vii }}$	0.86	2.95	3.590 (4)	133
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Br} 1^{\text {viii }}$	0.93	2.83	3.578 (5)	139
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Br} 2^{\mathrm{ix}}$	0.93	2.86	3.623 (5)	141

Symmetry codes: (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (v) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (vi) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (vii) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (viii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2} ;\left(\right.$ (ix) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.
systems created by the hydrogen bonding between the $\mathrm{Fe}^{\mathrm{III}}$ units link them in the a and b directions. Furthermore, the Cs^{+} cations link the $\mathrm{Fe}^{\text {III }}$ complex anions into a chain along [010].

Compound (I) does not contain any solvent molecules in the crystal lattice. This feature has also been observed for the following $\mathrm{Fe}^{\mathrm{III}}$ compounds: $\mathrm{Cs}\left[\mathrm{Fe}(\text { thsa })_{2}\right]\left(\mathrm{H}_{2}\right.$ thsa is salicylaldehyde thiosemicarbazone; Ryabova, Ponomarev, Zelentsov \& Atovmyan, 1981), $\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Br} \text {-thsa })_{2}\right]$ (Ryabova, Ponomarev, Zelentsov, Shipilov \& Atovmyan, 1981) and $\mathrm{NH}_{4}[\mathrm{Fe}(5-$ Cl-thsa) $)_{2}$ (Ryabova et al., 1978), for which relevant data are compiled in Table 4. This table shows the nonsolvated $\mathrm{Fe}^{\mathrm{III}}$ bis(ligand) compounds together with the spin state of the $\mathrm{Fe}^{\text {III }}$ cation at the temperature at which the crystal structure was determined. The crystallographic data of (I) will now be compared with similar $\mathrm{Fe}^{\text {III }}$ bis(ligand) type compounds (Table 4), all of which are nonsolvated compounds.

The $\mathrm{Fe}^{\mathrm{III}}$ cation in the compound $\mathrm{Cs}\left[\mathrm{Fe}(\text { thsa })_{2}\right]$ is in a highspin state at both 103 and 298 K , whereas the $\mathrm{Fe}^{\mathrm{III}}$ cation in $\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Cl}-\mathrm{thsa})_{2}\right]$ is in a low-spin state at both 135 and 298 K (Table 4). Furthermore, in $\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Br} \text {-thsa) })_{2}\right.$, the $\mathrm{Fe}^{\text {III }}$ cation is in a low-spin state at 298 K , while the $\mathrm{Fe}^{\text {III }}$ cation in (I) is in a low-spin state at 293 K . A transition from low-spin to high-spin $\mathrm{Fe}^{\mathrm{III}}$ has been detected for similar materials with increasing temperature (Ryabova et al., 1982), but crystallographic data are not available for these nonsolvated materials. Noting that (I) contains low-spin $\mathrm{Fe}^{\mathrm{III}}$ at 293 K , perhaps it may exhibit a change in spin state above room temperature.

The generation of any spin transition is governed by the energy difference between the high-spin and low-spin electronic states. This energy gap can be tuned by variation of the ligand field strength. The features of the second coordination sphere, such as the arrangement of $\mathrm{Fe}^{\mathrm{III}}$ units within a unit cell belonging to a particular crystal system, also influence the
ligand field characteristics. The packing of $\mathrm{Fe}^{\text {III }}$ units is evidenced by symmetry requirements, which are embedded within the space group in which the material crystallizes. X-ray structural analysis has revealed that the $\mathrm{Fe}^{\mathrm{III}}$ bis(ligand) type compounds (Table 4) adopt different crystal systems and space groups compared with (I). Compound (I) displays a monoclinic crystal system and crystallizes in the space group $P 2_{1} / c$ with $Z=4$, or alternatively $Z^{\prime}=1$. In contrast, the nonsolvated $\mathrm{Fe}^{\text {III }}$ bis(ligand) compounds listed in Table 4 all exhibit an orthorhombic crystal system, although in some cases their space groups differ. For example, $\mathrm{Cs}\left[\mathrm{Fe}(\text { thsa })_{2}\right]$ crystallizes in the space group $\mathrm{Pna2}_{1}$ with $Z^{\prime}=1$, whereas $\mathrm{NH}_{4}[\mathrm{Fe}(5-\mathrm{Br}-$ thsa) $)_{2}$] in its tabular form crystallizes in the space group Pnca with $Z^{\prime}=0.5$. The compound $\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Cl}-\mathrm{thsa})_{2}\right]$ also crystallizes in the space group Pnca, also with $Z^{\prime}=0.5$. The $\mathrm{Fe}^{\text {III }}$ bis(ligand) entities present variances with respect to their symmetry; in some instances, a value for Z^{\prime} of 0.5 is encountered, which for space group Pnca implies that the ligands coordinated to the $\mathrm{Fe}^{\mathrm{III}}$ cation are related by twofold rotational symmetry. Interestingly, Ryabova, Ponomarev, Zelentsov, Shipilov \& Atovmyan (1981) reported that $\mathrm{NH}_{4}{ }^{-}$ [$\mathrm{Fe}(5-\mathrm{Br} \text {-thsa })_{2}$] crystallizes in two different forms, one crystallizing as tabular plates and the other as mica-like crystals. It was established that these two different polymorphs exhibit a spin-crossover at different temperatures, i.e. the mica-like crystals in the region around 200 K and the tabular plate crystals in the region around 300 K . It appears that the crystallographic data analysed so far for this family of materials do not reveal a relation between $\mathrm{Fe}^{\mathrm{III}}$ spin state and the crystal system and space group.

It is widely recognized that significant changes in the electronic state of $\mathrm{Fe}^{\text {III }}$ bis(ligand) compounds may arise from the associated cation in the complex system, the R substituents at the benzene ring of the salicylaldehyde group or the introduction of R^{\prime} substituents into the thioamide group of the thiosemicarbazide group, and the $\mathrm{Fe}^{\mathrm{III}} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ geometry. The main difference observed between the compounds (Table 4) compared with (I) is the varying size of the associated cation (either NH_{4}^{+}or Cs^{+}) in the crystal structure and the variation in the slight distortions of the octahedral $\mathrm{Fe}^{\text {III }} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ coordination sphere. It appears that the variation of the associated cation in the $\mathrm{Fe}^{\text {III }}$ bis(ligand) compounds may have an indirect impact on the spin state of $\mathrm{Fe}^{\mathrm{III}}$ by influencing the crystal packing. In addition to the difference in size between $\mathrm{NH}_{4}{ }^{+}$

Table 4
Selected average Fe -donor-atom bond distances for nonsolvated $\mathrm{Fe}^{\mathrm{III}}$ bis(ligand) complexes of R-salicylaldehyde R^{\prime}-thiosemicarbazone.

Compound \dagger	Temperature (K)	Space group and Z^{\prime}	$\mathrm{Fe}-\mathrm{S}(\AA)$	$\mathrm{Fe}-\mathrm{N}(\AA)$	$\mathrm{Fe}-\mathrm{O}(\AA)$	Spin state \ddagger	Reference
$\mathrm{Cs}\left[\mathrm{Fe}(\text { thsa })_{2}\right]$	298	$P n a 2_{1}, Z^{\prime}=1$	2.44	2.12	1.96	HS	 Atovmyan (1981)
	103	$P n a 2_{1}, Z^{\prime}=1$	2.44	2.15	1.96	HS	 Atovmyan (1981)
$\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Br}-\mathrm{thsa})_{2}\right] \S$	298	$P n c a, Z^{\prime}=0.5$	2.23	1.93	1.95	LS	Ryabova, Ponomarev, Zelentsov, Shipilov \& Atovmyan (1981)
$\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Cl}-\mathrm{thsa})_{2}\right]$	298	$P n c a, Z^{\prime}=0.5$	2.24	1.95	1.93	LS	Ryabova et al. (1978) Ryabova et al. (1978)

[^0]and Cs^{+}cations, the former may engage in directed interactions through hydrogen bonding, while the latter presents a more uniform electrostatic field without a preferred direction for hydrogen bonds. The R and R^{\prime} substituents of the ligand may exhibit steric and electronic effects [including being involved in hydrogen bonding, via the Br substituents in (I)], but at this stage it is unclear how these features may be harnessed to induce a particular spin state for $\mathrm{Fe}^{\mathrm{III}}$.

The $\mathrm{Fe}^{\text {III }} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ coordination spheres of the compounds are slightly distorted from ideal octahedral geometry. It has been acknowledged that there are subtle differences in the $\mathrm{Fe}^{\text {III }}$ coordination geometry among the members of this particular type of compound. Clearly, the stabilization of $\mathrm{Fe}^{\mathrm{III}}$ in a particular spin state is governed by a subtle balance of geometric parameters, as is implied by the fact that a single compound, i.e. $\mathrm{NH}_{4}\left[\mathrm{Fe}(5-\mathrm{Br} \text {-thsa })_{2}\right]$, exists in slightly different polymorphs, each with its own distinct magnetic behaviour. The latter example shows that it is too early to derive a possible relation between $\mathrm{Fe}^{\mathrm{III}}$ spin state and $\mathrm{Fe}^{\mathrm{III}} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ geometry and crystal packing (the latter evidenced by crystal system and space group).

The development of a strategy towards the synthesis of $\mathrm{Fe}^{\text {III }}$ bis(ligand) compounds with a predetermined spin state will require the measurement and analysis of crystallographic data from a larger number of $\mathrm{Fe}^{\text {III }}$ compounds of this family, including these having different R and/or R^{\prime} substituents and a variety of associated cations. Other parameters that we are currently considering in our studies are the alteration of the degree of solvation and the tuning of the deprotonation characteristics of the R-salicylaldehyde R^{\prime}-thiosemicarbazone ligand.

The authors thank the EPSRC UK National Crystallography Service (Coles \& Gale, 2012) at the University
of Southampton for the collection of the crystallographic data.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Coles, S. J. \& Gale, P. A. (2012). Chem. Sci. 3, 683-689.
Cooper, R. I., Gould, R. O., Parsons, S. \& Watkin, D. J. (2002). J. Appl. Cryst. 35, 168-174.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Floquet, S., Boillot, M. L., Rivière, E., Varret, F., Boukheddaden, K., Morineau, D. \& Négrier, P. (2003). New J. Chem. 27, 341-348.
Floquet, S., Guillou, N., Négrier, P., Rivière, E. \& Boillot, M. L. (2006). New J. Chem. 30, 1621-1627.
Floquet, S., Muñoz, M. C., Guillot, R., Rivière, E., Blain, G., Réal, J. A. \& Boillot, M. L. (2009). Inorg. Chim. Acta, 362, 56-64.
Gütlich, P. \& Goodwin, H. A. (2004). Editors. Spin Crossover in Transition Metal Compounds I, in Topics in Current Chemistry, Vol. 233, pp. 1-47. Berlin: Springer.
Koningsbruggen, P. J. van, Maeda, Y. \& Oshio, H. (2004). Spin Crossover in Transition Metal Compounds, edited by P. Gütlich \& H. A. Goodwin, Topics in Current Chemistry, Vol. 233, pp. 259-324. Berlin: Springer.
Li, Z.-Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. \& Sato, O. (2013). Chem. Eur. J. 19, 12948-12952.
Mähler, J. \& Persson, I. (2012). Inorg. Chem. 51, 425-438.
Powell, R. E., Schwalbe, C. H., Tizzard, G. J. \& van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.

Rigaku (2013). CrystalClear-SM Expert. Riguku Corporation, The Woodlands, Texas, USA.
Ryabova, N. A., Ponomarev, V. I., Atovmyan, L. O., Zelentsov, V. V. \& Shipilov, V. I. (1978). Koord. Khim. 4, 119-126.
Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. \& Atovmyan, L. O. (1981). Kristallografiya, 26, 101-108.
Ryabova, N. A., Ponomarev, V. V., Zelentsov, V. V. \& Atovmyan, L. O. (1982). Kristallografiya, 27, 81-91.
Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V., Shipilov, V. I. \& Atovmyan, L. O. (1981). J. Struct. Chem. 22, 111-115.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yemeli Tido, E. W. (2010). PhD thesis, University of Groningen, The Netherlands.
Yemeli Tido, E. W., Alberda van Ekenstein, G. O. R., Meetsma, A. \& van Koningsbruggen, P. J. (2008). Inorg. Chem. 47, 143-153.
Yemeli Tido, E. W., Faulmann, C., Roswanda, R., Meetsma, A. \& van Koningsbruggen, P. J. (2010). J. Chem. Soc. Dalton Trans. 39, 1643-1651.

supporting information

Acta Cryst. (2015). C71, 169-174 [doi:10.1107/S2053229615001928]

Caesium bis(5-bromosalicylaldehyde thiosemicarbazonato- $\left.\kappa^{3} O, N, S\right)$ ferrate(III): supramolecular arrangement of low-spin $\mathrm{Fe}^{\text {III }}$ complex anions mediated by Cs^{+} cations

Robyn Elizabeth Powell, Carl H. Schwalbe, Graham J. Tizzard and Petra J. van Koningsbruggen

Computing details

Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell refinement: CrystalClear-SM Expert (Rigaku, 2013); data reduction: CrystalClear-SM Expert (Rigaku, 2013); program(s) used to solve structure: ROTAX (Cooper et al., 2002), SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Caesium bis(5-bromosalicylaldehyde thiosemicarbazonato- $\kappa^{3} O, N, S$)ferrate(III)

Crystal data
$\mathrm{Cs}\left[\mathrm{Fe}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{3} \mathrm{OS}\right)_{2}\right]$
$M_{r}=733.02$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=20.2500$ (14) \AA
$b=12.0868$ (8) \AA
$c=9.0389$ (5) \AA
$\beta=90.337(1)^{\circ}$
$V=2212.3(2) \AA^{3}$
$Z=4$

Data collection

Rigaku AFC12 four-circle Kappa diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 28.5714 pixels mm^{-1}
profile data from ω scans
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
$T_{\text {min }}=0.640, T_{\text {max }}=0.941$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.086$
$S=1.04$
5073 reflections
272 parameters
$F(000)=1396$
$D_{\mathrm{x}}=2.201 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 26513 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=6.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, green
$0.08 \times 0.08 \times 0.01 \mathrm{~mm}$

29088 measured reflections
5073 independent reflections
4211 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=3.0^{\circ}$
$h=-26 \rightarrow 25$
$k=-15 \rightarrow 15$
$l=-11 \rightarrow 11$

[^1]H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0451 P)^{2}+1.5804 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.88 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cs1	0.751537 (18)	0.50484 (2)	0.23503 (3)	0.05227 (10)
Brl	1.01607 (3)	0.26269 (5)	0.25045 (6)	0.06040 (16)
Br 2	0.48231 (3)	0.80167 (6)	0.31594 (7)	0.06880 (19)
Fel	0.74977 (3)	0.50049 (4)	0.70739 (5)	0.02473 (11)
S11	0.67238 (5)	0.45208 (8)	0.86988 (11)	0.0343 (2)
S21	0.82731 (5)	0.52595 (8)	0.88220 (12)	0.0337 (2)
O11	0.81413 (14)	0.5428 (2)	0.5594 (3)	0.0341 (6)
O21	0.68600 (14)	0.4811 (2)	0.5460 (3)	0.0350 (6)
N11	0.77067 (15)	0.3435 (2)	0.6968 (3)	0.0267 (6)
N12	0.73750 (16)	0.2668 (2)	0.7844 (4)	0.0317 (7)
N13	0.65757 (18)	0.2458 (3)	0.9599 (4)	0.0426 (9)
H13A	0.6658	0.1760	0.9637	0.051*
H13B	0.6274	0.2738	1.0152	0.051*
C11	0.86003 (19)	0.3619 (3)	0.5187 (4)	0.0314 (8)
C12	0.8591 (2)	0.4775 (3)	0.5013 (5)	0.0328 (8)
C13	0.9081 (2)	0.5247 (4)	0.4112 (6)	0.0529 (13)
H13	0.9097	0.6012	0.4021	0.063*
C14	0.9531 (2)	0.4625 (4)	0.3369 (6)	0.0549 (12)
H14	0.9842	0.4963	0.2765	0.066*
C15	0.9522 (2)	0.3487 (4)	0.3522 (5)	0.0418 (10)
C16	0.9071 (2)	0.2994 (4)	0.4412 (5)	0.0383 (9)
H16	0.9074	0.2228	0.4511	0.046*
C17	0.81546 (19)	0.3017 (3)	0.6145 (5)	0.0335 (8)
H17	0.8198	0.2251	0.6163	0.040*
C18	0.69182 (19)	0.3110 (3)	0.8677 (4)	0.0298 (8)
N21	0.72844 (15)	0.6554 (2)	0.7352 (3)	0.0267 (6)
N22	0.76224 (16)	0.7196 (3)	0.8402 (4)	0.0327 (7)
N23	0.84049 (18)	0.7187 (3)	1.0217 (4)	0.0439 (9)
H23A	0.8311	0.7864	1.0420	0.053*
H23B	0.8708	0.6848	1.0711	0.053*
C21	0.63791 (19)	0.6633 (3)	0.5574 (4)	0.0321 (8)
C22	0.64042 (19)	0.5535 (3)	0.5056 (4)	0.0331 (8)

C 23	$0.5922(3)$	$0.5206(4)$	$0.4022(6)$	$0.0547(13)$
H 23	0.5923	0.4478	0.3689	0.066^{*}
C 24	$0.5447(2)$	$0.5919(4)$	$0.3480(6)$	$0.0547(12)$
H 24	0.5132	0.5672	0.2803	0.066^{*}
C 25	$0.5446(2)$	$0.7003(4)$	$0.3957(5)$	$0.0451(11)$
C 26	$0.5898(2)$	$0.7354(4)$	$0.4990(5)$	$0.0394(9)$
H 26	0.5887	0.8085	0.5312	0.047^{*}
C 27	$0.68104(19)$	$0.7074(3)$	$0.6680(5)$	$0.0333(8)$
H 27	0.6745	0.7809	0.6945	0.040^{*}
C 28	$0.80755(19)$	$0.6654(3)$	$0.9119(4)$	$0.0310(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.0839 (2)	0.04022 (16)	0.03278 (14)	0.01202 (14)	0.00531 (16)	0.00140 (11)
Br1	0.0472 (3)	0.0737 (4)	0.0604 (3)	0.0188 (2)	0.0121 (2)	-0.0177 (3)
Br2	0.0481 (3)	0.0909 (4)	0.0674 (4)	0.0290 (3)	0.0013 (3)	0.0313 (3)
Fel	0.0313 (2)	0.0162 (2)	0.0268 (2)	0.00079 (19)	0.0026 (2)	0.00010 (18)
S11	0.0395 (5)	0.0238 (4)	0.0398 (5)	0.0007 (4)	0.0103 (4)	0.0019 (4)
S21	0.0390 (5)	0.0256 (4)	0.0365 (5)	0.0029 (4)	-0.0060 (4)	-0.0031 (4)
O11	0.0434 (15)	0.0211 (13)	0.0380 (15)	0.0036 (11)	0.0130 (12)	0.0031 (11)
O21	0.0472 (16)	0.0209 (13)	0.0368 (15)	0.0060 (11)	-0.0101 (13)	-0.0040 (11)
N11	0.0355 (15)	0.0183 (14)	0.0261 (15)	0.0005 (12)	-0.0011 (12)	0.0017 (11)
N12	0.0400 (17)	0.0183 (14)	0.0369 (18)	-0.0004 (12)	0.0034 (14)	0.0057 (12)
N13	0.046 (2)	0.0313 (18)	0.051 (2)	0.0027 (16)	0.0128 (17)	0.0141 (16)
C11	0.0359 (19)	0.0259 (19)	0.0325 (19)	0.0046 (15)	0.0046 (16)	-0.0021 (15)
C12	0.037 (2)	0.0273 (19)	0.034 (2)	0.0011 (16)	0.0053 (16)	0.0002 (15)
C13	0.060 (3)	0.035 (2)	0.064 (3)	-0.001 (2)	0.031 (3)	0.005 (2)
C14	0.052 (3)	0.051 (3)	0.061 (3)	0.002 (2)	0.026 (2)	0.002 (2)
C15	0.037 (2)	0.049 (3)	0.040 (2)	0.0086 (19)	0.0058 (18)	-0.0081 (19)
C16	0.039 (2)	0.035 (2)	0.042 (2)	0.0081 (18)	0.0012 (18)	-0.0053 (17)
C17	0.040 (2)	0.0176 (17)	0.043 (2)	0.0045 (15)	0.0007 (17)	-0.0018 (15)
C18	0.0337 (19)	0.0271 (19)	0.0285 (18)	-0.0026 (15)	-0.0037 (15)	0.0046 (14)
N21	0.0345 (15)	0.0186 (14)	0.0268 (15)	-0.0008 (12)	0.0032 (12)	-0.0024 (11)
N22	0.0413 (18)	0.0221 (15)	0.0347 (17)	-0.0020 (13)	-0.0006 (14)	-0.0082 (13)
N23	0.048 (2)	0.037 (2)	0.046 (2)	0.0021 (16)	-0.0102 (17)	-0.0144 (16)
C21	0.035 (2)	0.0272 (19)	0.034 (2)	0.0026 (16)	0.0036 (15)	0.0030 (15)
C22	0.038 (2)	0.028 (2)	0.033 (2)	0.0036 (16)	-0.0042 (16)	0.0017 (16)
C23	0.063 (3)	0.036 (2)	0.065 (3)	0.000 (2)	-0.024 (3)	-0.007 (2)
C24	0.049 (3)	0.061 (3)	0.054 (3)	0.004 (2)	-0.019 (2)	0.000 (2)
C25	0.038 (2)	0.056 (3)	0.041 (2)	0.012 (2)	-0.0009 (18)	0.014 (2)
C26	0.040 (2)	0.037 (2)	0.042 (2)	0.0086 (18)	0.0032 (19)	0.0056 (17)
C27	0.041 (2)	0.0173 (16)	0.041 (2)	0.0030 (15)	0.0010 (17)	-0.0029 (15)
C28	0.038 (2)	0.0261 (18)	0.0294 (18)	-0.0035 (15)	0.0035 (15)	-0.0040 (14)

Geometric parameters (\AA, ${ }^{\circ}$)

Fe1-S11	2.2321 (11)	C11-C12	1.406 (5)
Fel-S21	2.2422 (11)	C11-C16	1.407 (5)
Fel-O11	1.942 (3)	C11-C17	1.450 (6)
Cs $1-\mathrm{S} 11^{\text {i }}$	3.7159 (11)	C12-C13	1.407 (6)
Cs1-S21 ${ }^{\text {i }}$	3.5564 (11)	C13-C14	1.362 (6)
Cs1-O11	3.220 (3)	C13-H13	0.9300
Cs1-O21	3.129 (3)	C14-C15	1.382 (7)
$\mathrm{Fe} 1-\mathrm{O} 21$	1.956 (3)	C14-H14	0.9300
Fel-N11	1.947 (3)	C15-C16	1.359 (6)
Fel-N21	1.938 (3)	C16-H16	0.9300
Cs 1-C12	3.254 (4)	C17-H17	0.9300
Cs1-N12 ${ }^{\text {ii }}$	3.326 (3)	N21-C27	1.296 (5)
Cs1-C22	3.385 (4)	N21-N22	1.401 (4)
Cs1-N22iii	3.470 (3)	N22-C28	1.298 (5)
Cs1-C13	3.547 (6)	$\mathrm{N} 22-\mathrm{Cs} 1^{\text {vi }}$	3.470 (3)
Cs 1-C23	3.577 (6)	N23-C28	1.356 (5)
Cs1-C28 ${ }^{\text {i }}$	3.691 (4)	$\mathrm{N} 23-\mathrm{Cs} 1^{\text {iv }}$	3.699 (4)
Cs1-N23 ${ }^{\text {i }}$	3.699 (4)	N23-H23A	0.8600
$\mathrm{Br} 1-\mathrm{C} 15$	1.900 (4)	N23-H23B	0.8600
Br2-C25	1.897 (4)	C21-C26	1.407 (5)
S11-C18	1.750 (4)	C21-C22	1.408 (5)
S11-Cs1 ${ }^{\text {iv }}$	3.7159 (11)	C21-C27	1.427 (6)
S21-C28	1.753 (4)	C22-C23	1.406 (6)
S21-Cs1 ${ }^{\text {iv }}$	3.5564 (11)	C23-C24	1.379 (7)
O11-C12	1.317 (5)	C23-H23	0.9300
O21-C22	1.322 (5)	C24-C25	1.380 (7)
N11-C17	1.281 (5)	C24-H24	0.9300
N11-N12	1.394 (4)	C25-C26	1.372 (7)
N12-C18	1.310 (5)	C26-H26	0.9300
N12-Cs1 ${ }^{\text {v }}$	3.326 (3)	C27-Cs1 ${ }^{\text {vi }}$	3.807 (4)
N13-C18	1.343 (5)	C27-H27	0.9300
N13-H13A	0.8600	C28-Cs1 ${ }^{\text {iv }}$	3.691 (4)
N13-H13B	0.8600		
S11-Fe1-S21	93.66 (4)	Fe1-S11-Cs1 ${ }^{\text {iv }}$	103.80 (4)
S11-Fel-N11	86.01 (9)	C28-S21-Cs1 ${ }^{\text {iv }}$	80.30 (13)
S11-Fe1-O11	177.50 (9)	Fe1-S21-Cs1 ${ }^{\text {iv }}$	108.55 (4)
S11-Fe1-O21	89.78 (10)	C12-O11-Fe1	125.8 (2)
S11-Fe1-N21	90.57 (9)	C12-O11-Cs1	79.7 (2)
S21-Fe1-O11	88.81 (9)	Fel-O11-Cs1	109.12 (11)
S21-Fe1-O21	176.56 (10)	C22-O21-Fe1	125.7 (2)
S21-Fe1-N11	90.96 (9)	C22-O21-Cs1	89.4 (2)
S21-Fe1-N21	86.07 (9)	Fe1-O21-Cs1	112.16 (12)
O11-Fel-O21	87.75 (12)	C17-N11-N12	114.4 (3)
O11-Fe1-N11	94.35 (12)	C17-N11-Fe1	124.6 (3)
O11-Cs $1-\mathrm{S} 11^{\text {i }}$	176.98 (5)	N12-N11-Fe1	121.0 (2)

O11-Cs1-N12 ${ }^{\text {ii }}$
Cs
$11-\mathrm{Cs} 1-\mathrm{N} 23{ }^{\text {i }}$
O11-Cs1-O21
O21-Cs1-S11 ${ }^{1}$
O21-Cs1-S21 ${ }^{\text {i }}$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{N} 12{ }^{\text {iii }}$
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{N} 22{ }^{\text {iii }}$
Cs1-N23
11-Fe1-N21
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 11$
$21-\mathrm{Fe} 1-\mathrm{N} 21$
N11-Fe1-N21
C18-S11-Fe1
28-S2
N11-N12-C18
N21-N22-C28
-
N22-C28-S21
N12ii-Cs1-S11 ${ }^{\text {i }}$
-
N12i- ${ }^{\text {ii }}$ - 1 - N
12
22
N22 ${ }^{\text {iii- }}$ - $\mathrm{Cs} 1-\mathrm{N} 23$
N23 ${ }^{\text {i }}$ - Cs1-S11 ${ }^{\text {i }}$
$\mathrm{N} 23{ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{S} 21^{\mathrm{i}}$
- $\mathrm{Cs} 1-\mathrm{S} 11^{\text {i }}$
$21-\mathrm{Cs} 1-\mathrm{C} 12$
11-Cs1-C12
$2-\mathrm{Cs} 1-\mathrm{N} 12^{\text {ii }}$
$21-\mathrm{Cs} 1-\mathrm{C} 22$
$11-\mathrm{Cs} 1-\mathrm{C} 22$
12-Cs1-C22
12^{ii} - $\mathrm{Cs} 1-\mathrm{C} 22$
- C
$22-\mathrm{Cs} 1-\mathrm{N} 22$
Cs1-C13
-Cs1-C13
C12-Cs1-C13
- $\mathrm{Cs} 1-\mathrm{C} 1$
C22-Cs1-C13
$22^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 13$
2-Cs1-S21
2

129.54 (5)
92.97 (7)
65.82 (7)
100.65 (7)
50.34 (7)
126.82 (5)
178.78 (5)
75.63 (7)
82.42 (7)
137.96 (7)
89.20 (12)
89.40 (11)
93.78 (12)
175.33 (12)
95.12 (13)
94.61 (14)
113.5 (3)
113.6 (3)
124.3 (3)
124.8 (3)
85.01 (6)
103.23 (6)
156.35 (8)
143.33 (8)
115.72 (6)
98.64 (6)
56.10 (8)
82.29 (6)
42.99 (6)
53.27 (2)
67.16 (9)
23.47 (8)
81.82 (9)
22.99 (8)
64.99 (8)
85.89 (9)
90.97 (9)
81.64 (9)
71.09 (9)
89.17 (9)
40.15 (9)
23.37 (10)
94.77 (10)
105.07 (10)
76.00 (10)
112.34 (7)
158.08 (7)
90.50 (8)

C18-N12-Cs1 ${ }^{\text {v }}$	122.8 (2)
N11-N12-Cs1 ${ }^{\text {v }}$	122.6 (2)
C18-N13-H13A	120.0
C18-N13-H13B	120.0
H13A-N13-H13B	120.0
C12-C11-C16	119.1 (4)
C12-C11-C17	123.9 (3)
C16-C11-C17	117.0 (4)
C12-C11-Cs1	57.6 (2)
C16-C11-Cs1	107.5 (3)
C17-C11-Cs1	105.8 (2)
O11-C12-C11	124.0 (4)
O11-C12-C13	118.6 (4)
C11-C12-C13	117.3 (4)
O11-C12-Cs1	76.8 (2)
C11-C12-Cs1	101.1 (3)
C13-C12-Cs1	90.1 (3)
C14-C13-C12	122.5 (4)
C14-C13-Cs1	109.9 (4)
C12-C13-Cs1	66.5 (3)
C14-C13-H13	118.7
C12-C13-H13	118.7
Cs1-C13-H13	93.4
C13-C14-C15	119.4 (4)
C13-C14-H14	120.3
C15-C14-H14	120.3
C16-C15-C14	120.3 (4)
C16-C15-Br1	120.5 (3)
C14-C15-Br1	119.1 (3)
C15-C16-C11	121.3 (4)
C15-C16-H16	119.4
C11-C16-H16	119.4
N11-C17-C11	126.5 (3)
N11-C17-H17	116.8
C11-C17-H17	116.8
N12-C18-N13	119.1 (3)
N13-C18-S11	116.6 (3)
C27-N21-N22	114.0 (3)
C27-N21-Fe1	124.9 (3)
N22-N21-Fe1	121.0 (2)
$\mathrm{C} 28-\mathrm{N} 22-\mathrm{Cs} 1^{\text {vi }}$	131.6 (2)
$\mathrm{N} 21-\mathrm{N} 22-\mathrm{Cs} 1^{\text {vi }}$	108.5 (2)
$\mathrm{C} 28-\mathrm{N} 23-\mathrm{Cs} 1^{\text {iv }}$	79.1 (2)
$\mathrm{C} 28-\mathrm{N} 23-\mathrm{H} 23 \mathrm{~A}$	120.0
Cs1 ${ }^{\text {iv }}$ - $\mathrm{N} 23-\mathrm{H} 23 \mathrm{~A}$	116.4
C28-N23-H23B	120.0
$\mathrm{Cs} 1^{\mathrm{iv}}-\mathrm{N} 23-\mathrm{H} 23 \mathrm{~B}$	75.2
$\mathrm{H} 23 \mathrm{~A}-\mathrm{N} 23-\mathrm{H} 23 \mathrm{~B}$	120.0

O21-Cs1-C23	40.25 (10)
O11-Cs1-C23	87.66 (10)
C12-Cs1-C23	107.16 (11)
N12i- Cs1-C23	85.29 (10)
C22-Cs1-C23	23.09 (10)
N22 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{C} 23$	83.58 (9)
C13-Cs1-C23	127.81 (11)
S21- $\mathrm{Cs} 1-\mathrm{C} 23$	140.36 (9)
O21-Cs1-C28 ${ }^{\text {i }}$	153.27 (7)
O11-Cs1-C28 ${ }^{\text {i }}$	121.63 (8)
C12-Cs1-C28 ${ }^{\text {i }}$	115.54 (9)
N12ii- $\mathrm{Cs} 1-\mathrm{C} 28^{\mathrm{i}}$	130.71 (8)
C22-Cs1-C28 ${ }^{\text {i }}$	133.56 (9)
$\mathrm{N} 22^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{C} 28^{\text {i }}$	72.13 (8)
C13-Cs1-C28 ${ }^{\text {i }}$	92.40 (10)
S21-Cs1-C28 ${ }^{\text {i }}$	27.92 (6)
C23-Cs1-C28 ${ }^{\text {i }}$	126.05 (10)
C12-Cs1-N23 ${ }^{\text {i }}$	97.50 (9)
C22-Cs1-N23 ${ }^{\text {i }}$	125.66 (9)
C13-Cs1-N23 ${ }^{\text {i }}$	75.54 (10)
$\mathrm{C} 23-\mathrm{Cs} 1-\mathrm{N} 23{ }^{\text {i }}$	128.77 (10)
C28 ${ }^{\text {i }}$ Cs1-N23 ${ }^{\text {i }}$	21.14 (8)
C12-Cs1-S11 ${ }^{\text {i }}$	157.37 (7)
C22-Cs1-S11 ${ }^{\text {i }}$	112.74 (7)
C13-Cs1-S11 ${ }^{\text {i }}$	142.19 (8)
C23-Cs1-S11 ${ }^{\text {i }}$	89.93 (8)
C28 ${ }^{\text {i }}$ Cs1-S $11^{\text {i }}$	61.33 (6)
N21-Fe1-Cs1	96.96 (9)
O11-Fe1-Cs1	45.44 (9)
N11-Fe1-Cs1	87.70 (9)
O21-Fe1-Cs1	42.73 (9)
S11-Fe1-Cs1	132.16 (3)
S21-Fe1-Cs1	133.86 (3)
C18-S11-Cs1 ${ }^{\text {iv }}$	94.66 (13)
O21-Cs1—Fe1-N21	-88.03 (14)
O11-Cs1-Fe1-N21	81.96 (14)
C12-Cs1-Fe1-N21	110.71 (14)
N12 ${ }^{\text {ii- }}$ Cs1-Fe1-N21	-162.21 (11)
C22-Cs1-Fe1-N21	-61.58 (13)
N22 ${ }^{\text {iii- }}$ - $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{N} 21$	16.75 (11)
C13-Cs1-Fe1-N21	98.26 (12)
S21-Cs1-Fe1-N21	94.76 (10)
C23-Cs1-Fe1-N21	-73.36 (12)
C28- $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{N} 21$	43.14 (14)
N23--Cs1-Fe1-N21	47.78 (11)
S11-Cs1-Fe1-N21	-99.68 (10)
O21-Cs1-Fe1-O11	-170.00 (16)

C26-C21-C22	119.0 (4)
C26-C21-C27	116.8 (4)
C22-C21-C27	124.2 (4)
$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 23$	118.6 (4)
O21-C22-C21	123.9 (4)
C23-C22-C21	117.5 (4)
$\mathrm{O} 21-\mathrm{C} 22-\mathrm{Cs} 1$	67.6 (2)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{Cs} 1$	86.1 (3)
C21-C22-Cs1	115.4 (3)
C24-C23-C22	122.7 (4)
C24-C23-Cs1	120.8 (4)
C22-C23-Cs1	70.8 (3)
C24-C23-H23	118.6
C22-C23-H23	118.6
Cs1-C23-H23	79.0
C23-C24-C25	119.0 (4)
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	120.5
C25-C24-H24	120.5
C26-C25-C24	120.3 (4)
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{Br} 2$	119.9 (4)
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{Br} 2$	119.8 (3)
C25-C26-C21	121.4 (4)
C25-C26-H26	119.3
C21-C26-H26	119.3
N21-C27-C21	126.6 (3)
N21-C27-Cs1 ${ }^{\text {vi }}$	95.3 (2)
C21-C27-Cs1 ${ }^{\text {vi }}$	132.9 (3)
N21-C27-H27	116.7
$\mathrm{C} 21-\mathrm{C} 27-\mathrm{H} 27$	116.7
N22-C28-N23	118.0 (4)
N23-C28-S21	117.2 (3)
$\mathrm{N} 22-\mathrm{C} 28-\mathrm{Cs} 1^{\text {iv }}$	116.2 (2)
$\mathrm{N} 23-\mathrm{C} 28-\mathrm{Cs} 1^{\text {iv }}$	79.8 (2)
S21-C28-Cs1 ${ }^{\text {iv }}$	71.78 (12)
Fe1-O11-C12-Cs1	106.2 (2)
C16-C11-C12-O11	174.6 (4)
C17-C11-C12-O11	-6.4 (7)
Cs1-C11-C12-O11	81.5 (4)
C16-C11-C12-C13	-2.8 (6)
C17-C11-C12-C13	176.2 (4)
Cs1-C11-C12-C13	-95.9 (4)
C16-C11-C12-Cs1	93.1 (4)
C17-C11-C12-Cs1	-87.8 (4)
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	-39.76 (19)
N12i- $\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	-117.6 (2)
C22-Cs1-C12-O11	-26.0 (2)
N22 ${ }^{\text {iii-}} \mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	45.5 (2)

supporting information

C12-Cs1-Fe1-O11	28.75 (15)
N12ii-Cs1-Fe1-O11	115.83 (12)
C22-Cs1-Fe1-O11	-143.55 (15)
N22 ${ }^{\text {iii-_Cs1—Fe1-O11 }}$	-65.21 (12)
C13-Cs1-Fe1-O11	16.30 (14)
S21- ${ }^{\text {i }}$ - $1-\mathrm{Fe} 1-\mathrm{O} 11$	12.80 (12)
C23-Cs1-Fe1-O11	-155.32 (14)
C28--Cs1-Fe1-O11	-38.82 (15)
N23--Cs1-Fe1-O11	-34.18 (13)
S11--Cs1-Fe1-O11	178.36 (12)
O21-Cs1-Fe1-N11	91.61 (14)
O11-Cs1-Fe1-N11	-98.40 (14)
C12-Cs1-Fe1-N11	-69.65 (14)
N12i- $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{N} 11$	17.43 (11)
C22-Cs1-Fe1-N11	118.06 (14)
N22 ${ }^{\text {iii-_Cs1—Fe1—N11 }}$	-163.61 (11)
C13-Cs1-Fe1-N11	-82.10 (13)
S21--Cs1-Fe1-N11	-85.59 (10)
C23-Cs1-Fe1-N11	106.28 (12)
C28--Cs1-Fe1-N11	-137.22 (14)
N23 ${ }^{\text {i- }} \mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{N} 11$	-132.58 (11)
S11-Cs1-Fe1-N11	79.96 (10)
O11-Cs1-Fe1-O21	170.00 (16)
C12-Cs1-Fe1-O21	-161.25 (15)
N12ii-Cs1-Fe1-O21	-74.17 (12)
C22-Cs1-Fe1-O21	26.45 (15)
N22 ${ }^{\text {iii-}}$ - $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{O} 21$	104.78 (12)
C13-Cs1-Fe1-O21	-173.71 (14)
S21- $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{O} 21$	-177.20 (11)
C23-Cs1-Fe1-O21	14.67 (14)
C 28 - $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{O} 21$	131.17 (15)
N23--Cs1-Fe1-O21	135.81 (13)
S 11 - $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{O} 21$	-11.65 (12)
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{S} 11$	9.09 (11)
O11-Cs1-Fe1-S11	179.09 (12)
C12-Cs1-Fe1-S11	-152.16 (11)
N12 ${ }^{\text {ii }}$-Cs1—Fe1—S11	-65.08 (7)
C22-Cs1-Fe1-S11	35.54 (11)
N22 ${ }^{\text {iii-_Cs1—Fe1—S11 }}$	113.87 (7)
C13-Cs1-Fe1-S11	-164.62 (10)
S21-Cs1-Fe1-S11	-168.11 (5)
C23-Cs1-Fe1-S11	23.76 (9)
C28 - $\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{S} 11$	140.26 (11)
N23 - ${ }^{\text {Cs }} 1-\mathrm{Fe} 1-\mathrm{S} 11$	144.91 (8)
S11-Cs1-Fe1-S11	-2.55 (4)
O21-Cs1-Fe1-S21	-179.27 (12)
O11-Cs1-Fe1-S21	-9.27 (12)
C12-Cs1-Fe1-S21	19.48 (11)

C13-Cs1-C12-O11	119.4 (4)
S21- ${ }^{\text {i }}$ - $1-\mathrm{C} 12-\mathrm{O} 11$	141.44 (18)
$\mathrm{C} 23-\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	-35.1 (2)
C28 - Cs1-C12-O11	111.0 (2)
N23 - $\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	99.5 (2)
S11- $\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{O} 11$	-172.58 (13)
O21-Cs1-C12-C11	82.9 (2)
O11-Cs1-C12-C11	122.7 (4)
N12 ${ }^{\text {ii }}-\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{C} 11$	5.1 (2)
C22-Cs1-C12-C11	96.7 (2)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 12-\mathrm{C} 11$	168.2 (3)
C13-Cs1-C12-C11	-117.9 (4)
S21- ${ }^{\text {i }}$ - $1-\mathrm{C} 12-\mathrm{C} 11$	-95.9 (2)
C23-Cs1-C12-C11	87.6 (3)
C28--Cs1-C12-C11	-126.3 (2)
N23 - $\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{C} 11$	-137.9 (2)
S11-Cs1-C12-C11	-49.9 (4)
O21-Cs1-C12-C13	-159.2 (3)
O11-Cs1-C12-C13	-119.4 (4)
N12ii-Cs1-C12-C13	123.0 (3)
C22-Cs1-C12-C13	-145.4 (3)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 12-\mathrm{C} 13$	-74.0 (3)
S21-Cs1-C12-C13	22.0 (3)
C23-Cs1-C12-C13	-154.5 (3)
C28--Cs1-C12-C13	-8.4 (3)
N23i-Cs1-C12-C13	-20.0 (3)
S11- $\mathrm{Cs} 1-\mathrm{C} 12-\mathrm{C} 13$	68.0 (3)
O11-C12-C13-C14	-174.4 (5)
C11-C12-C13-C14	3.1 (8)
Cs1-C12-C13-C14	-99.4 (6)
O11-C12-C13-Cs1	-75.0 (4)
C11-C12-C13-Cs1	102.5 (4)
O21-Cs1-C13-C14	136.9 (3)
O11-Cs1-C13-C14	150.3 (4)
C12-Cs1-C13-C14	117.8 (5)
N12 ${ }^{\text {ii }}$ - $\mathrm{Cs} 1-\mathrm{C} 13-\mathrm{C} 14$	61.4 (3)
C22-Cs1-C13-C14	153.7 (3)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 13-\mathrm{C} 14$	-140.7 (4)
S21- ${ }^{\text {i }}$ - $1-\mathrm{C} 13-\mathrm{C} 14$	-41.9 (3)
C23-Cs1-C13-C14	149.1 (3)
C28 - Cs1-C13-C14	-69.8 (3)
N23 - Cs1-C13-C14	-82.7 (3)
S11-Cs1-C13-C14	-26.6 (4)
O21-Cs1-C13-C12	19.1 (3)
O11-Cs1-C13-C12	32.5 (2)
N12 ${ }^{\text {iii-Cs1-C13-C12 }}$	-56.4 (3)
C22-Cs1-C13-C12	35.9 (3)
N22 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{C} 13-\mathrm{C} 12$	101.5 (3)

N12 ${ }^{\text {ii }}$-Cs1-Fe1-S21	106.56 (7)
C22-Cs1-Fe1-S21	-152.82 (11)
N22 ${ }^{\text {iii- }}$ - 1 1-Fe1-S21	-74.49 (7)
C13-Cs1-Fe1-S21	7.02 (9)
S21-Cs1-Fe1-S21	3.53 (4)
C23-Cs1-Fe1-S21	-164.60 (10)
C28- ${ }^{\text {Cs }} 1-\mathrm{Fe} 1-\mathrm{S} 21$	-48.10 (11)
N23 ${ }^{\text {- }} \mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{S} 21$	-43.45 (8)
S11--Cs1-Fe1-S21	169.09 (5)
N21-Fe1-S11-C18	-174.90 (16)
N11-Fe1-S11-C18	1.91 (15)
O21-Fe1-S11-C18	91.32 (15)
S21-Fe1-S11-C18	-88.80 (13)
Cs1-Fe1-S11-C18	85.17 (13)
N21-Fe1-S11-Cs1 ${ }^{\text {iv }}$	-78.82 (9)
N11-Fe1-S11-Cs1 ${ }^{\text {iv }}$	97.99 (9)
O21-Fe1-S11-Cs1 ${ }^{\text {iv }}$	-172.60 (8)
S21-Fe1-S11-Cs1 ${ }^{\text {iv }}$	7.28 (4)
Cs1-Fe1-S11-Cs1 ${ }^{\text {iv }}$	-178.751 (19)
N21-Fe1-S21-C28	1.22 (15)
O11-Fe1-S21-C28	90.51 (15)
N11-Fe1-S21-C28	-175.16 (15)
S11-Fe1-S21-C28	-89.10 (13)
Cs1-Fe1-S21-C28	97.10 (13)
N21-Fe1-S21-Cs1 ${ }^{\text {iv }}$	82.53 (9)
O11-Fe1-S21-Cs1 ${ }^{\text {iv }}$	171.81 (8)
N11-Fe1-S21-Cs1 ${ }^{\text {iv }}$	-93.86 (9)
S11-Fe1-S21-Cs1 ${ }^{\text {iv }}$	-7.79 (4)
Cs1-Fe1-S21-Cs1 ${ }^{\text {iv }}$	178.407 (19)
N21-Fe1-O11-C12	168.4 (3)
N11-Fe1-O11-C12	-8.5 (3)
O21-Fe1-O11-C12	-97.7 (3)
S21-Fe1-O11-C12	82.4 (3)
Cs1-Fe1-O11-C12	-91.0 (3)
N21-Fe1-O11-Cs1	-100.59 (12)
N11-Fe1-O11-Cs1	82.45 (12)
O21-Fe1-O11-Cs1	-6.78 (11)
S21-Fe1-O11-Cs1	173.33 (8)
O21-Cs1-O11-C12	130.0 (2)
N12ii-Cs1-O11-C12	61.5 (2)
C22-Cs1-O11-C12	151.2 (2)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{O} 11-\mathrm{C} 12$	-129.3 (2)
C13-Cs1-O11-C12	-32.4 (2)
S21- ${ }^{\text {i }}$ - $1-\mathrm{O} 11-\mathrm{C} 12$	-48.4 (2)
C23-Cs1-O11-C12	146.6 (2)
C28- $\mathrm{Cs} 1-\mathrm{O} 11-\mathrm{C} 12$	-81.5 (2)
N23--Cs1-O11-C12	-84.3 (2)
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{O} 11-\mathrm{Fe} 1$	5.49 (9)

S21-Cs1-C13-C12	-159.7 (3)
C23-Cs1-C13-C12	31.3 (3)
C28- $\mathrm{Cs} 1-\mathrm{C} 13-\mathrm{C} 12$	172.4 (3)
N23--Cs1-C13-C12	159.5 (3)
S11-Cs1-C13-C12	-144.4 (2)
C12-C13-C14-C15	-1.5 (9)
Cs1-C13-C14-C15	-75.8 (6)
C13-C14-C15-C16	-0.4 (8)
C13-C14-C15-Br1	-179.1 (4)
C14-C15-C16-C11	0.6 (7)
Br1-C15-C16-C11	179.3 (3)
C12-C11-C16-C15	1.1 (6)
C17-C11-C16-C15	-178.1 (4)
Cs1-C11-C16-C15	63.1 (4)
N12-N11-C17-C11	-176.4 (4)
Fel-N11-C17-C11	2.2 (6)
C12-C11-C17-N11	-1.1(7)
C16-C11-C17-N11	177.9 (4)
Cs1-C11-C17-N11	-62.4 (5)
N11-N12-C18-N13	-178.3 (3)
Cs1 ${ }^{\text {v }}$ - $\mathrm{N} 12-\mathrm{C} 18-\mathrm{N} 13$	13.6 (5)
N11-N12-C18-S11	0.7 (5)
Cs1 ${ }^{\mathrm{v}}$ - $\mathrm{N} 12-\mathrm{C} 18-\mathrm{S} 11$	-167.32 (17)
Fe1-S11-C18-N12	-2.1 (3)
$\mathrm{Cs} 1^{\mathrm{iv}}$ - $\mathrm{S} 11-\mathrm{C} 18-\mathrm{N} 12$	-106.4 (3)
Fel-S11-C18-N13	177.0 (3)
Cs1 ${ }^{\text {iv- }} \mathrm{S} 11-\mathrm{C} 18-\mathrm{N} 13$	72.7 (3)
O11-Fe1-N21-C27	93.9 (3)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 21-\mathrm{C} 27$	6.2 (3)
S11-Fe1-N21-C27	-83.6 (3)
S21-Fe1-N21-C27	-177.3 (3)
$\mathrm{Cs} 1-\mathrm{Fe} 1-\mathrm{N} 21-\mathrm{C} 27$	49.0 (3)
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 21-\mathrm{N} 22$	-90.0 (3)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 21-\mathrm{N} 22$	-177.7 (3)
S11-Fe1-N21-N22	92.4 (3)
S21-Fe1-N21-N22	-1.2 (3)
Cs1-Fe1-N21-N22	-134.9 (2)
C27-N21-N22-C28	176.9 (3)
Fe1-N21-N22-C28	0.4 (4)
C27-N21-N22-Cs1 ${ }^{\text {vi }}$	-27.6 (3)
Fe1-N21-N22-Cs1 ${ }^{\text {vi }}$	155.88 (15)
$\mathrm{Fe} 1-\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 23$	-170.7 (4)
Cs1-O21-C22-C23	72.1 (4)
Fe1-O21-C22-C21	10.8 (6)
$\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 21$	-106.4 (4)
Fe1-O21-C22-Cs1	117.2 (3)
C26-C21-C22-O21	175.6 (4)
C27-C21-C22-O21	-5.0 (6)

C12-Cs1-O11-Fe1	-124.5 (3)
N12i- $\mathrm{Cs} 1-\mathrm{O} 11-\mathrm{Fe} 1$	-63.05 (11)
C22-Cs1-O11-Fe1	26.63 (11)
N22 ${ }^{\text {iii-}} \mathrm{Cs} 1-\mathrm{O} 11-\mathrm{Fe} 1$	106.12 (12)
C13-Cs1-O11-Fe1	-156.93 (19)
S21- ${ }^{\text {i }}$ - $1-\mathrm{O} 11-\mathrm{Fe} 1$	-172.93 (7)
C23-Cs1-O11-Fe1	22.11 (13)
C28- $\mathrm{Cs} 1-\mathrm{O} 11-\mathrm{Fe} 1$	153.92 (10)
N23 ${ }^{\text {- }} \mathrm{Cs} 1-\mathrm{O} 11-\mathrm{Fe} 1$	151.16 (11)
N21-Fe1-O21-C22	-10.1 (3)
O11-Fe1-O21-C22	-99.1 (3)
N11-Fe1-O21-C22	166.5 (3)
S11-Fe1-O21-C22	80.5 (3)
Cs1-Fe1-O21-C22	-106.2 (3)
N21-Fe1-O21-Cs1	96.17 (12)
O11-Fe1-O21-Cs1	7.12 (11)
N11-Fe1-O21-Cs1	-87.26 (12)
S11-Fe1-O21-Cs1	-173.27 (8)
O11-Cs1-O21-C22	123.2 (2)
C12-Cs1-O21-C22	142.5 (2)
N12i- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{C} 22$	-130.4 (2)
$\mathrm{N} 22{ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{O} 21-\mathrm{C} 22$	58.5 (2)
C13-Cs1-O21-C22	134.4 (2)
C23-Cs1-O21-C22	-30.6 (2)
C28- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{C} 22$	40.8 (3)
N23i-Cs1-O21-C22	67.3 (2)
S11-Cs1-O21-C22	-58.1 (2)
O11-Cs1-O21-Fe1	-5.56 (9)
C12-Cs1-O21-Fe1	13.76 (11)
N12i- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe} 1$	100.81 (12)
C22-Cs1-O21-Fe1	-128.8 (3)
N22 ${ }^{\text {iii- }}$ - $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe} 1$	-70.32 (11)
C13-Cs1-O21-Fe1	5.66 (13)
C23-Cs1-O21-Fe1	-159.33 (19)
C28- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe} 1$	-88.0 (2)
N23- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe} 1$	-61.43 (16)
S11-- $\mathrm{Cs} 1-\mathrm{O} 21-\mathrm{Fe} 1$	173.12 (7)
O11-Fe1-N11-C17	1.7 (3)
O21-Fe1-N11-C17	89.4 (3)
S11-Fe1-N11-C17	179.3 (3)
S21-Fe1-N11-C17	-87.1 (3)
Cs1-Fe1-N11-C17	46.7 (3)
O11-Fe1-N11-N12	-179.8 (3)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 11-\mathrm{N} 12$	-92.1 (3)
S11-Fel-N11-N12	-2.2 (2)
S21-Fe1-N11-N12	91.3 (3)
Cs1-Fel-N11-N12	-134.8 (3)
C17-N11-N12-C18	-179.9 (3)

C26-C21-C22-C23	-2.9 (6)
C27-C21-C22-C23	176.5 (4)
C26-C21-C22-Cs1	96.5 (4)
C27-C21-C22-Cs1	-84.1 (4)
O11-Cs1-C22-O21	-45.30 (19)
C12-Cs1-C22-O21	-34.2 (2)
N12ii-Cs1-C22-O21	47.5 (2)
N22 iii- $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{O} 21$	-116.8 (2)
C13-Cs1-C22-O21	-47.7 (2)
$\mathrm{S} 21{ }^{\text {i }}$ - $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{O} 21$	178.45 (13)
C23-Cs1-C22-O21	123.1 (4)
C28--Cs1-C22-O21	-156.09 (18)
N23--Cs1-C22-O21	-130.5 (2)
S11- $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{O} 21$	132.53 (19)
$\mathrm{O} 21-\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 23$	-123.1 (4)
O11-Cs1-C22-C23	-168.4 (3)
C12-Cs1-C22-C23	-157.3 (3)
N12ii-Cs1-C22-C23	-75.6 (3)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 23$	120.1 (3)
C13-Cs1-C22-C23	-170.8 (3)
S21- ${ }^{\text {i }}$ - $1-\mathrm{C} 22-\mathrm{C} 23$	55.3 (4)
C28- $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 23$	80.8 (3)
N23--Cs1-C22-C23	106.4 (3)
S11- $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 23$	9.4 (3)
O21-Cs1-C22-C21	118.2 (4)
O11-Cs1-C22-C21	72.9 (3)
C12-Cs1-C22-C21	84.0 (3)
N12i- $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 21$	165.7 (3)
N22 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 21$	1.4 (3)
C13-Cs1-C22-C21	70.5 (3)
S21-Cs1-C22-C21	-63.3 (4)
C23-Cs1-C22-C21	-118.7 (4)
C28--Cs1-C22-C21	-37.9 (3)
N23 ${ }^{\text {- }} \mathrm{Cs} 1-\mathrm{C} 22-\mathrm{C} 21$	-12.3 (3)
S11- Cs1-C22-C21	-109.3 (3)
O21-C22-C23-C24	-176.8 (5)
C21-C22-C23-C24	1.8 (8)
Cs1-C22-C23-C24	-114.9 (5)
O21-C22-C23-Cs1	-61.8 (3)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{Cs} 1$	116.8 (4)
O21-Cs1-C23-C24	147.7 (4)
O11-Cs1-C23-C24	127.8 (4)
C12-Cs1-C23-C24	141.0 (4)
N12ii-Cs1-C23-C24	-139.1 (4)
C22-Cs1-C23-C24	117.3 (5)
N22 ${ }^{\text {iii }}$ - $\mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 24$	61.8 (4)
C13-Cs1-C23-C24	128.5 (4)
S21-Cs1-C23-C24	-34.0 (4)

Fe1-N11-N12-C18	1.5 (4)
C17-N11-N12-Cs1 ${ }^{\text {- }}$	-11.8 (4)
Fe1-N11-N12-Cs1 ${ }^{\text {v }}$	169.55 (13)
O21-Cs1-C11-C12	-87.8 (2)
O11-Cs1-C11-C12	-32.1 (2)
N12 ${ }^{\text {ii }}$ - $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 12$	-174.2 (3)
C22-Cs1-C11-C12	-82.3 (2)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 12$	-12.0 (3)
C13-Cs1-C11-C12	34.6 (3)
S21-Cs1-C11-C12	93.1 (2)
C23-Cs1-C11-C12	-98.6 (3)
C28- ${ }^{\text {Cs }} 1-\mathrm{C} 11-\mathrm{C} 12$	64.9 (3)
N23- ${ }^{\text {Cs}} 1-\mathrm{C} 11-\mathrm{C} 12$	46.2 (3)
S11- $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 12$	152.6 (2)
O21-Cs1-C11-C16	158.4 (3)
O11-Cs1-C11-C16	-145.9 (3)
C12-Cs1-C11-C16	-113.8 (4)
N12 ${ }^{\text {ii }}$ - $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 16$	72.0 (3)
C22-Cs1-C11-C16	163.9 (3)
N22 ${ }^{\text {iii- }}$ Cs1-C11-C16	-125.8 (3)
C13-Cs1-C11-C16	-79.2 (3)
S21-Cs1-C11-C16	-20.7 (3)
C23-Cs1-C11-C16	147.5 (3)
C28--Cs1-C11-C16	-48.9 (3)
N23- ${ }^{\text {Cs }} 1-\mathrm{C} 11-\mathrm{C} 16$	-67.6 (3)
S11-Cs1-C11-C16	38.7 (3)
O21-Cs1-C11-C17	32.7 (2)
O11-Cs1-C11-C17	88.3 (2)
C12-Cs1-C11-C17	120.4 (4)
N12 ${ }^{\text {ii }}$ - $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 17$	-53.8 (2)
C22-Cs1-C11-C17	38.1 (2)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 17$	108.4 (2)
C13-Cs1-C11-C17	155.1 (3)
S21-Cs1-C11-C17	-146.5 (2)
C23-Cs1-C11-C17	21.8 (3)
C28-- $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 17$	-174.6 (2)
N23- $\mathrm{Cs} 1-\mathrm{C} 11-\mathrm{C} 17$	166.7 (2)
S11- ${ }^{\text {i }}$ - $1-\mathrm{C} 11-\mathrm{C} 17$	-87.0 (2)
Fe1-O11-C12-C11	11.7 (6)
Cs1-O11-C12-C11	-94.6 (4)
Fe1-O11-C12-C13	-171.0 (4)
Cs1-O11-C12-C13	82.8 (4)

C28--Cs1-C23-C24	-0.5 (4)
N23--Cs1-C23-C24	26.0 (4)
S11- $\mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 24$	-54.1 (4)
O21-Cs1-C23-C22	30.4 (2)
O11-Cs1-C23-C22	10.5 (3)
C12-Cs1-C23-C22	23.8 (3)
N12 ${ }^{\text {ii- }} \mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 22$	103.7 (3)
N22 ${ }^{\text {iii- }} \mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 22$	-55.4 (3)
C13-Cs1-C23-C22	11.3 (3)
S21- $\mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 22$	-151.2 (2)
C28- Cs1-C23-C22	-117.8 (3)
N23 ${ }^{\text {- }} \mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 22$	-91.3 (3)
S11- $\mathrm{Cs} 1-\mathrm{C} 23-\mathrm{C} 22$	-171.3 (3)
C22-C23-C24-C25	0.6 (9)
Cs1-C23-C24-C25	-85.2 (6)
C23-C24-C25-C26	-2.0 (8)
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{Br} 2$	177.1 (4)
C24-C25-C26-C21	1.0 (7)
$\mathrm{Br} 2-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	-178.2 (3)
C22-C21-C26-C25	1.6 (6)
C27-C21-C26-C25	-177.9 (4)
N22-N21-C27-C21	-179.4 (4)
Fe1-N21-C27-C21	-3.0 (6)
N22-N21-C27-Cs1 ${ }^{\text {vi }}$	23.8 (3)
Fe1-N21-C27-Cs1 ${ }^{\text {vi }}$	-159.93 (19
C26-C21-C27-N21	-179.8 (4)
C22-C21-C27-N21	0.8 (7)
C26-C21-C27-Cs1 ${ }^{\text {vi }}$	-32.0 (5)
C22-C21-C27-Cs1 ${ }^{\text {vi }}$	148.6 (3)
N21-N22-C28-N23	-176.4 (3)
Cs1 ${ }^{\text {vi- }} \mathrm{N} 22-\mathrm{C} 28-\mathrm{N} 23$	35.5 (5)
N21-N22-C28-S21	1.0 (5)
Cs1 ${ }^{\text {vi- }}$ N22- $\mathrm{C} 28-\mathrm{S} 21$	-147.2 (2)
N21-N22-C28-Cs1 ${ }^{\text {iv }}$	-84.2 (3)
Cs1 ${ }^{\text {vi }}$ - $\mathrm{N} 22-\mathrm{C} 28-\mathrm{Cs} 1^{\text {iv }}$	127.6 (2)
$\mathrm{Cs} 1^{\mathrm{iv}}$ - $\mathrm{N} 23-\mathrm{C} 28-\mathrm{N} 22$	114.3 (3)
Cs1 ${ }^{\text {iv - }}$ N23-C28-S21	-63.3 (2)
Fe1-S21-C28-N22	-1.6 (4)
Cs1 ${ }^{\text {iv }} \mathrm{S} 21-\mathrm{C} 28-\mathrm{N} 22$	-109.7 (3)
Fe1-S21-C28-N23	175.8 (3)
Cs1 ${ }^{\text {iv- }}$ - $21-\mathrm{C} 28-\mathrm{N} 23$	67.7 (3)
Fe1-S21-C28-Cs1 ${ }^{\text {iv }}$	108.05 (4)

Symmetry codes: (i) $x, y, z-1$; (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $x,-y+3 / 2, z-1 / 2$; (iv) $x, y, z+1$; (v) $x,-y+1 / 2, z+1 / 2$; (vi) $x,-y+3 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 13-\mathrm{H} 13 A \cdots \mathrm{O} 21^{v}$	0.86	2.08	$2.907(4)$	161

supporting information

$\mathrm{N} 13 — \mathrm{H} 13 B \cdots \mathrm{Br} 2^{\text {vii }}$	0.86	2.72	$3.557(4)$	163
$\mathrm{~N} 23 — \mathrm{H} 23 A \cdots \mathrm{O} 11^{\text {vi }}$	0.86	2.10	$2.952(5)$	171
$\mathrm{~N} 23 — \mathrm{H} 23 B \cdots \mathrm{Br}^{\text {viii }}$	0.86	2.95	$3.590(4)$	133
$\mathrm{C} 13 — \mathrm{H} 13 \cdots \mathrm{Br}^{1 \mathrm{x}}$	0.93	2.83	$3.578(5)$	139
$\mathrm{C} 23 — \mathrm{H} 23 \cdots \mathrm{Br}^{\mathrm{x}}$	0.93	2.86	$3.623(5)$	141

Symmetry codes: (v) $x,-y+1 / 2, z+1 / 2$; (vi) $x,-y+3 / 2, z+1 / 2$; (vii) $-x+1, y-1 / 2,-z+3 / 2$; (viii) $-x+2, y+1 / 2,-z+3 / 2$; (ix) $-x+2, y+1 / 2,-z+1 / 2$; (x) $-x+1$, $y-1 / 2,-z+1 / 2$.

[^0]: \dagger The ligands are defined as follows: H_{2} thsa is salicylaldehyde thiosemicarbazone, $\mathrm{H}_{2}-5$ - Br -thsa is 5-bromosalicylaldehyde thiosemicarbazone and H_{2}-5-Cl-thsa is 5-chlorosalicylaldehyde thiosemicarbazone. \ddagger The spin states are defined as low-spin (LS) and high-spin (HS). § Determined for crystals of tabular form.

[^1]: 0 restraints
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites

