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ABSTRACT 
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-
multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is 
derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave 
mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing 
efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is 
significantly reduced by the linear mode coupling. 
Keywords: Few-mode fibres, mode-division multiplexing, differential mode delay, four-wave mixing. 

1. INTRODUCTION 

Mode-division multiplexing (MDM) over few-mode fibres (FMFs) has been proposed as a next-generation 
solution to overcome the impeding installed capacity exhaustion of current single-mode fibres (SMFs) [1]. 
However, the guidance of multiple modes introduce impairments absent in SMFs, namely: differential mode delay 
(DMD) [2],[3], linear mode coupling (XT) [4] and inter-modal (IM) nonlinear (NL) effects [5]-[9]. The IM-NL 
effects are IM cross-phase modulation (IM-XPM) and IM four-wave mixing (IM-FWM).  

Recent experimental investigations regarding propagation along FMFs have shown that IM-NLs are non-
negligible, namely IM-XPM and IM-FWM [5]. In [5], non-degenerated IM-FWM has been experimentally 
observed, demonstrating that IM-FWM can be fully matched over very large frequency separations with large 
chromatic dispersion in each mode contrarily to intra-modal FWM. Thereby, this paper is focused on the impact 
of IM-FWM in MDM-FMF systems.  

The paper is organized as follows. In Section 2, a set of coupled nonlinear Schrödinger equations (CNLSE) is 
derived taking into consideration the existence of mode coupling between modes, extending the work that has been 
presented in [9]. Section 3 presents the assessment of the degradation for MDM-WDM transmission due to IM-
FWM. The main conclusions are gathered in Section 4. 

2. CNLSE DERIVATION AND ANALYSIS 

In order to find the nonlinear terms responsible for IM-NL between a specific set of channels, the total electric 
field has to be written as a sum over M distinct modes, N + 1 distinct frequencies, and 2 orthogonal polarizations. 
The total electric field vector in the frequency domain is given by: 
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where 1,… ,  is the mode index, /2,… , /2  is the frequency channel index (N even, without 
lack of generality), 1, 2  is the polarization index ( 1 refers to x-polarization and 2 refers to y-
polarization), r is the position vector in Cartesian coordinates (x, y, z),  is the angular frequency,  is the unit 
linear polarization vector, j is the imaginary unit, ∑ ∑ ∑ ∑ ,/

/  , 	is the transversal field 

distribution of d, , 	is the Fourier transform of the slowly varying wave envelope , 	 (t is the 
time variable), ∬| , | 	 such that , ⁄  is the normalized electrical field distribution 

and | , | 	 is the instantaneous optical power,  is the value of the frequency dependent propagation 
constant  at , and . . stands for complex conjugate. Note that in (1), ,  is assumed to vary 
negligibly with  within the C-band, small waveguide imperfections, polarization and nonlinear induced 
polarization [10]. ,  and  are solutions of the eigenvalue equation [10].  

The propagation of the total electric field in a FMF is governed by the wave equation [10]: 

, , , ,  (2) 

where	 ,  is the Fourier transform of the nonlinear polarization 	 , 	due to the third-order nonlinear 

silica susceptibility 	χ . Mode coupling is included in (2) considering waveguide imperfections along the fibre, 
,  is replaced by , , ∆ ,  where ∆  varies randomly in each fibre section [9]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78897015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The wave equation (2) can be solved replacing (1), the eigenvalue equation [10], the Taylor series of  
around  and applying the inverse Fourier transform. Afterwards, considering the slowly varying envelope 
approximation (in space and time) [10], selecting mode d by multiplying both sides by ∗ and integrating over the 
x-y transverse plane, and selecting the terms oscillating at each specific frequency  such that 

0, a CNLSE can be written as: 
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where { , b, c, d} are mode indices, {p, q, r, s} are frequency indices, {i, j, k, l} are polarization indices, * stands 

for complex conjugate; Ɗ	in equation (4) is responsible for chromatic dispersion and DMD;  in equation (5) 
is the value of the mth derivative of the frequency dependent propagation constant  at ;  in equation 
(6) groups the independent polarization combinations using the Kronecker delta function ; ∆ , , ,  in 
equation (7) is the phase mismatch between waves , ,  and ;  in equation (8) is the nonlinear 
coefficient between modes (a, b, c, d);  in equation (8) is the IM effective area (Aeff) between modes (a, b, c, 
d) [10]; n2 in equation (8) is the Kerr coefficient, approximately equal to 2.6·10-20 m2/W [10]; ,  in equation 
(9) is the linear mode coupling coefficient between mode d and mode a. The first term on the right-hand side of 
(3) is responsible for all the NL effects taking place between the wave dsl and the all the other 2 × M × (N + 1) 
waves (including itself), this is, it includes all the terms responsible by: self-phase modulation (SPM), XPM, IM-
XPM, FWM, and IM-FWM. Note that SPM, XPM, and FWM refer to the intra-modal NL effects present in 
conventional SMF systems. The second term on right-hand side of (3) is responsible for the linear mode coupling. 

The CNLSE (3) can be simplified considering the phase mismatch properties. Considering a common reference 

frequency , the terms in the RHS of (7) can be written as ≅ , thereby: 

∆ , , , ≅
∙ ∙

∙ ∙
 

Assuming that | | ≫ ∙ 	for any dsl with  and  in the C-band, phase mismatch (10) can 
only be made approximately zero if the terms in the first parenthesis in the RHS of (10) can be made approximately 
zero. Furthermore, assuming that even for pairs of degenerate LP modes the effective index difference is not lower 
than ~10-5 [4], [10], the possible mode matching conditions are (a = m, b = n, c = n, d	= m) and (a = n, b = m, 
c = n, d = m). Considering the abovementioned phase mismatch properties, the CNLSE are given by: 
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In the first term on the RHS of (11) the nonlinear contributions due to SPM (CSPM) (12), XPM (CXPM) (13), FWM 
(CFWM) (14), IM-XPM (CIM‐XPM) (15) and IM-FWM (CIM‐FWM) (16) are identified. In order to solve (11), the split-
step Fourier method (SSFM) is modified for multimode propagation including linear mode coupling as in [9].  



According to (14) and (16), the FWM-induced penalty is highly dependent on the phase mismatch. The smaller is 
the phase mismatch the larger is the induced penalty. The phase mismatch in (14) and (16) can be re-written using 
(7), a Taylor series around  and the frequency condition for an idler in the central frequency ( ), 

 (since ∆ ), can be written as (ignoring the polarization dependency for convenience): 

∆ , , , ⁄ ∆ ≅ ∆ 1 2⁄ ∆  

Note that 0 in any case, since  and  (  and  belong to mode ) see (14) and (16). On the RHS 
of (18): the first term is the walk-off induced by chromatic dispersion of mode , the second term is the DMD 
between modes  and , and the third term is proportional to the frequency slope of the DMD. In the intra-modal 

FWM case ( ), only the first RHS term of (18) is nonzero, and its minimum magnitude is ∆  because 
 cannot be zero according to (14) (  and  since both belong to mode ). The IM-FWM case can 

be divided into three sub-cases:  

(SC1) For pairs of degenerate modes (e.g., LP11a and LP11b), ≅ 	and ≅ , the magnitude of the 

RHS of (18) is approximately ∆ , similarly to FWM, but in this case  can be zero (  and  belong 
to different modes). Therefore, the RHS of (18) is approximately zero for  = 0 and any  value 
between -N/2 and N/2 (except 0). In such conditions,  IM-FWM terms with negligible phase 
mismatch fall into the centre channel of , inducing a high penalty in comparison to the other cases 
(independently of the DMD between the remaining modes that might be guided simultaneously). 

(SC2) For pairs of non-degenerate modes (e.g., LP01 and LP11a/b) with flat DMD, ≅ , only the third term 

in the RHS of (18) is zero. Therefore, the DMD values 	leading to maximum and minimum 

IM-FWM induced penalty are multiples of ∆  and ∆ 2⁄ . 

(SC3) For pairs of non-degenerate modes (e.g., LP01 and LP11a/b) with non-flat DMD, , the third term 
in the RHS of (18) cannot be neglected, thereby the DMD values leading to maximum and minimum 
IM-FWM induced penalty identified for the flat DMD case are shifted. 

3. FWM/IM-FWM Impairments in MDM-WDM Transmission 

In this section, the performance of a MDM system is evaluated through the transmission of a WDM signal with 
N+1 carriers in each FMF mode. The figure of merit measured is the maximum input power (MP) such that the 
central channel of a given mode has a Q-factor of 7, assuming equal power on all carriers. The WDM carriers are 
intensity modulated at 10 Gb/s by de Bruijn sequences with 29 bits using a raised cosine pulse shape with a 0.5 
roll-off. A WDM fixed grid cantered at  and an angular frequency separation of g is considered. Thereby, 
the frequency of a given carrier , can be written as ∆ , with /2,⋯ , /2 .  

The simulation setup considers a fibre length of 80 km, a SSFM step of 50 m, N = 80 and a 50 GHz spacing 
frequency grid. The FMF considered guides 3 LP modes (LP01, LP11a and LP11b), with zero DMD between LP11a and 
LP11b, and with a mode coupling strength such that the leakage from LP01 to the other modes at the end of 33 km is 
equal to -18 dB, matching the measurements in [11]. The remaining FMF characteristics at 1545 nm are: chromatic 
dispersion equal to 20 ps/(nm·km) with a slope equal to 92 fs/(nm2km) for all modes, fibre loss equal to 0.22 dB/km 
for all modes, and  for pairs ( , ) equal to 60 m2 for (LP01, LP01), 80 m2 for (LP11a, LP11a), 240 m2 for 
(LP11b, LP11a), and 120 m2 for (LP01, LP11a). 

In the following, the penalties induced by FWM and IM-FWM are compared. The MP is calculated solving (11) 
taking into account all IM-FWM terms involving modes  and  falling on the central frequency 0	of mode 

, with ,  = {LP01, LP11a, LP11b}. Since the penalty induced on the central channels of modes LP11a and LP11b 
are in average approximately equal, only the penalty for LP11a is shown.  

Fig. 1 shows MP as a function of DMD for each mode combination ( , ), , . These results were obtained 
numerically solving (11) in the presence and absence of mode coupling. The results without mode coupling are 
analysed first. Fig. 1 (a) for  = LP11a shows that IM-FWM with  = LP11b is the dominant penalty (lower MP 
value), and that intra-modal FWM (  = LP11a) is in fact leading to the lower penalty. The severe degradation due 
to IM-FWM is related with the high number of frequency combinations verifying the phase matching condition 
between degenerate modes, as explained above (SC1). Moreover, in Fig. 1 (a) can be seen that the IM-FWM 
induced penalty with  = LP01 (this is, IM-FWM between the pair of non-degenerate modes) is characterized by 

periodical notches at DMD multiple of ∆  as explained above (SC2). In practical cases, these notches 
may be reduced due to the variation of DMD along the fibre length. Fig. 1 (b) shows that IM-FWM is the dominant 

source of penalty characterized by periodical notches at DMD multiple of ∆  (in practical cases these 
notches may be reduced as previously explained).  

In the presence of mode coupling, Fig. 1 (b) shows that FWM and IM-FWM induced penalties in LP01 are not 
affected significantly. However, Fig. 1 (a) shows a significant reduction of the penalty induced by IM-FWM 



between LP11a and LP11b, the overall MP increase can reach 6.5 dB. The different impact of mode coupling on the 
performance of the LP01 mode and of the LP11a/b modes is explained noting that, the mode coupling between LP11a 
and LP11b is much stronger than between LP11a/b and LP01 [11], after some km’s LP11a and LP11b are fully mixed. 

Finally, the insets in Fig. 1 show that the IM-FWM results remain representative when increasing DMD up to 

2⁄ ∆  (~315 ps/km), set by the frequency separation between the central channels and any of the 
extreme WDM channels ( 0 and /2).  

4. CONCLUSIONS 

In this paper, we investigated the impact of IM-FWM on MDM-WDM systems. For such purpose, a set of CNLSE 
including linear mode coupling was derived allowing to isolate the intra-modal FWM and IM-FWM terms. The 
efficiency of IM-FWM between degenerate LP modes is found to be significantly higher than the intra-modal 
FWM efficiency. However, it is shown that the IM-FWM efficiency between pairs of degenerate modes is 
significantly reduced by the linear mode coupling when considering mode coupling strengths presented in the 
literature. Finally, it has been concluded that, in order to have reduced IM-FWM efficiency between non-
degenerate modes over the entire WDM grid, a DMD higher than 630 ps/km is required for 81 channels spaced of 
50 GHz, considering a chromatic dispersion of 20 ps/(km·nm), imposing difficulties for long-haul applications.  
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(a) (b) 
Figure 1. ,  as a function of DMD, for each pair of modes ( , ): (a)  = LP11a and (b)  = LP01.  
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