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Abstract
GitHub is the most popular repository for open source
code (Finley 2011). It has more than 3.5 million users,
as the company declared in April 2013, and more than
10 million repositories, as of December 2013. It has a
publicly accessible API and, since March 2012, it also
publishes a stream of all the events occurring on public
projects. Interactions among GitHub users are of a com-
plex nature and take place in different forms. Devel-
opers create and fork repositories, push code, approve
code pushed by others, bookmark their favorite projects
and follow other developers to keep track of their activ-
ities.
In this paper we present a characterization of GitHub,
as both a social network and a collaborative platform.
To the best of our knowledge, this is the first quantita-
tive study about the interactions happening on GitHub.
We analyze the logs from the service over 18 months
(between March 11, 2012 and September 11, 2013),
describing 183.54 million events and we obtain in-
formation about 2.19 million users and 5.68 million
repositories, both growing linearly in time. We show
that the distributions of the number of contributors per
project, watchers per project and followers per user
show a power-law-like shape. We analyze social ties
and repository-mediated collaboration patterns, and we
observe a remarkably low level of reciprocity of the so-
cial connections. We also measure the activity of each
user in terms of authored events and we observe that
very active users do not necessarily have a large number
of followers. Finally, we provide a geographic charac-
terization of the centers of activity and we investigate
how distance influences collaboration.

1 Introduction
In recent years, GitHub1, a hosting platform for software
projects, has gained much popularity among a large number
of software developers around the world. This platform of-
fers version control hosting, as other platforms have done in
the past (e.g., SourceForge2, Assembla3, BitBucket4). How-

Copyright © 2014, Association for the Advancement of Artificial
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1https://github.com/
2https://sourceforge.net/
3https://www.assembla.com/
4https://bitbucket.org/

ever, this service has much emphasis on its social features,
as summarized in its motto “GitHub: social coding”. In fact,
GitHub is not simply offering a code hosting service, like
its competitors had been doing for a long time, but also an
easy-to-use and cheap (or even free in its basic version) on-
line tool for collaborative software development and many
features supporting the community of developers. For all
these reasons, GitHub has successfully lowered the barrier
to collaboration in open source. The importance of this col-
laboration platform seems to be increasing, as its founder
has plans to extend the use cases beyond software develop-
ment (Lunden 2013). At the same time, most of the data con-
cerning collaboration on public5 software repositories can be
accessed and analyzed. This represents a unique opportunity
to study aspects of human behavior related to collaboration
at scale.

GitHub is based on the Git revision control system6. In
GitHub a user can create code repositories and push code
to them. Every repository has a list of collaborators; they
can make changes to the content of the repository and they
review the contributions that are submitted to the repository,
accepting or discarding them. In this sense, they are not the
only people collaborating on the project. In fact, every per-
son that wishes to contribute to a project, without being a
collaborator, can fork it7. This action makes a duplicate of
the repository, allowing developers to work independently,
committing changes only to their own fork. When develop-
ers complete a certain task (e.g., a new feature or a bug fix),
they can send the changes to the original repository, through
a so-called pull request. Then, a collaborator of the original
repository reviews the changes contained in the pull request
and decides whether to accept it in the original repository (in
the Git jargon, merge it to the parent repository), or refuse it,
optionally motivating his or her choice. Once the new code
is accepted in the original repository, its author becomes one

5GitHub also offers fee-based private repositories. Since it is
not possible to access any information about private repositories,
our analysis will focus on public repositories.

6http://git-scm.com/
7In the open-source context, the term forking had a negative

connotation in the past, i.e., it has often been used to refer to groups
of developers separating for different views on a project and split-
ting their forces on independent projects. Instead, in GitHub, fork-
ing is a normal part of the process of contributing to a project.
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of the contributors of the project. In addition to that, GitHub
users can follow other users, to be notified of their actions.
The website is not used only for collaboration, but also as a
resource to find quality software. Users can star interesting
repositories that they want to bookmark for later reference.
Other features are also available (e.g., issue tracking, down-
loads, gists, and so on) but we will not consider them in this
work.

In this paper, to the best of our knowledge, we present the
first in-depth quantitative analysis of GitHub, as a unique
example of large-scale real-world collaboration platform
mainly used for software projects. The contributions we
make in this paper can be summarized as follows:
• We conduct basic structural analyses and we show that the

distributions of the number of contributors and watchers
per project and followers per user show a power-law-like
shape.

• We analyze social ties and repository-mediated collabora-
tion patterns. We find a very low reciprocity of the social
ties, which is remarkably different from the findings of
studies of other types of social networks.

• We study the depth and width of the trees corresponding
to forked repositories and we observe that in GitHub col-
laboration on forks seems to happen on a limited number
of key projects.

• We investigate the correlation between the activity of
users and their popularity in the network and we observe
that very active users do not necessarily have a large num-
ber of followers.

• We provide a geographic characterization of activities and
collaborations. We find that users tend to interact with
people they are close to and that repositories with a low
number of collaborators tend to have them concentrated
around a few specific geographic locations, rather than
scattered around the world. Finally, we observe a simi-
larity between the geographical distributions of following
and contributions ties.
The paper is organized as follows. We first discuss re-

lated work in this area. Then, we present the data collec-
tion methodology and we describe the characteristics of the
dataset. We study the networks representing the interactions
between entities, extracted from the dataset. We conclude
the article by discussing our key findings and outlining our
future work.

2 Related Work
Several researchers from different communities have been
interested in analyzing behavior on websites and online
tools that enable large-scale collaboration, most notably
Wikipedia. Indeed, a large body of research has focused
on understanding how people coordinate their collaboration
efforts in the constant update and expansion of the crowd-
sourced online encyclopedia through a variety of method-
ologies (see for example (Kittur et al. 2007; Vuong et al.
2008)). A relevant approach in relation to the topic of this
work is the network analysis of the collaboration structure
in Wikipedia presented in (Brandes et al. 2009). More in

general, open-source projects have been the subject of sev-
eral studies specifically aimed at uncovering the social struc-
ture that emerges from the interactions between develop-
ers (Valverde and Solé 2007; Bird et al. 2008) and at analyz-
ing the individual contributions to specific projects (Hindle,
German, and Holt 2008).

Recently, given its increasing popularity, there has been a
surge in interest in GitHub and its underlying social dynam-
ics. Some projects are currently undergoing with the specific
aim of providing easy-to-use and efficient tools for access-
ing data from GitHub, especially in real-time. For example,
(Gousios and Spinellis 2012) discusses a system to gather
streams and data from GitHub in a scalable fashion to over-
come the limitations imposed by the GitHub API, specifi-
cally directed at researchers.

In (Dabbish et al. 2012) an in-depth qualitative user study
is conducted on a small group of GitHub users, aimed
at understanding the motivations that are the basis of on-
line collaboration and the consequences of using a trans-
parent large-scale tool on the practice of software develop-
ment. They find that people use GitHub for several rea-
sons: to learn how to code better, to follow popular de-
velopers, to find new interesting projects, and to promote
themselves and their work. They also find that actions
in GitHub, such as following a user, committing changes
and accepting/rejecting code, are heavily influenced by spe-
cific characteristics of the interactions happening in the
system. Some other studies have investigated the geo-
graphical distribution of collaborations (Heller et al. 2011;
Shrestha, Zhu, and Miller 2013). An example is that of
Heller et al. (Heller et al. 2011), who use visualization tech-
niques to identify patterns of collaboration, including geo-
graphic characteristics of the interactions between cities and
influence among them.

With respect to this body of work, to the best of our
knowledge, our paper presents the first systematic quanti-
tative analysis of the interactions in GitHub. We believe
that our quantitative methodology complements the existing
qualitative work by providing insights about global patterns
of interactions that are not possible to obtain by means of
small-scale and interview-based studies.

3 Description of the Dataset
The full list of public events that have happened on GitHub
is available on the GitHub Archive website8. In this paper,
we analyze events that happened on GitHub over a period
of 18 months, between March 11, 2012 and September 11,
2013, retrieved from that archive. Our dataset includes var-
ious types of events performed by users on public reposi-
tories or following events between users (i.e., when a user
starts following another user). The total number of retrieved
events is 183,540,210 and they fall into 18 categories9. Each
event, regardless of its kind, usually includes some metadata
about the entities involved (e.g., the profile information of a

8http://www.githubarchive.org
9http://developer.github.com/v3/activity/events/
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Figure 1: Number of events detected in the GitHub stream.

user, his or her number of followers, the language of a repos-
itory, etc.). Fig. 1 shows how events are distributed among
the various categories. One outlier user under the name of
Try-Git shows an uncommonly high number of collabora-
tions. As it is a learning tool that pushes code automatically
to other users’ repositories, we discarded it from the dataset.

In order to explore the geographic features of users, we
investigate the location information that can be found in the
user profiles. In our dataset, 345,625 users have a non-empty
location field. As the field is optional, there is little incentive
to fill it with fake information. Therefore, we can reasonably
assume that most of the non-empty entries are truthful. In
order to convert the text field to an unambiguous location,
we use the MapQuest Open Geocoding API10. We evalu-
ate the validity of the geocoder by considering a sample of
1,000 users in the population of users with non-empty lo-
cation field and assessing the fraction of correctly geocoded
elements by manually labeling them. We find that 106 el-
ements are incorrectly geocoded. From the analysis of this
sample, therefore, we can say that the geocoder fails to cor-
rectly convert to coordinates in 10.6 ± 1.91% cases of the
original population, with 95% confidence level. Incorrectly
geocoded entries in the sample fail mostly for the following
reasons: because they describe multiple locations (for ex-
ample "London and Nottingham"), because they have no
geographic meaning (e.g., "localhost", "emacs") be-
cause they are ambiguous (e.g., "San Jose", rather than
"San Jose, CA").

It is important to be aware that this data source suffers
a time bias, since the archive does not include events hap-
pened before March 2011. In Fig. 2 we show the number of
unique users and public repositories seen in the event stream
since March 11, 2012. As previously discussed, we are able
to retrieve metadata when entities are involved in an event.
In other words, we do not have information about dormant
entities that were created before March 11, 2012 and do no
longer generate any event during the subsequent 18 months
(e.g., an inactive user, an abandoned repository). We are

10Data: © OpenStreetMap contributors, available under the
Open Database License. Geocoding: courtesy of MapQuest
(http://www.mapquest.com).
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Figure 2: Number of unique repositories and unique users
detected from the stream since March 11, 2012. The dashed
and dotted blue lines show the number of repositories and
the number of users detected from the event stream, respec-
tively. The three squares and circles indicate the number of
repositories and users in three specific dates as advertised by
GitHub itself on its website.

also not able to extract pre-existing following relations from
the stream. After a short transitory period, which is present
because of the temporal bias of our data collection process
based on events, both curves show linear growth with dif-
ferent coefficients, with the ratio describing the number of
repositories over the number of users reaching a steady value
of approximately 2.59. The figure also reports the number of
repositories and users (indicated using squares and circles,
respectively) publicly declared by GitHub. In our dataset,
we observe a lower number of users and repositories for two
reasons. Firstly, the official numbers include all the users
and repositories created since the launch of the website in
2008, whereas our dataset contains only the active users and
repositories in the period taken into consideration. Secondly,
the official statistics probably include private repositories,
that do not produce events on the public timeline we are
able to access. For these reasons, we can conclude that a
large number of users do not actively use the website (i.e.,
do not generate events) or they act exclusively on private
repositories. These figures also suggest that a large number
of repositories are either abandoned or private.

4 Structural Analysis
In this section we define, extract and analyze several net-
works, generated from the event stream, which describe in-
teractions between users and repositories.
• We represent users’ following relations by means of a

directed graph GF , which we call followers graph. We
are able to reconstruct this network by looking at follow
events in the stream.

• We represent the collaborations of users on reposito-
ries as a bipartite graph GC , the collaborators graph,
where repository nodes are connected to their collabora-
tors nodes. We are able to infer this network by extracting
from push events information about who uses write per-
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Figure 3: Distribution of degree, in-degree and out-degree
of the social graph. The distributions were shifted along the
y-axis to put in evidence their structure. The three distri-
butions exhibit a power-law scaling behavior, with different
exponents, for values in the range from 20 to 1000.

mission and on which repositories. We refer to G⊥C , the
projected collaborators graph, as to the graph obtained by
projecting the collaborators graph onto the set of users. In
this projected graph users who collaborate in at least one
repository are connected to each other.

• We represent users assigning a star to a repository as a
bipartite graph GS , the stargazers graph. This network
can be generated using the information found in watch
events.

• Finally, we build the contributors graphGN by analyzing
the content of every push event, which includes author-
ship information of the pushed commits.

For our static analyses we consider these networks as they
appear on the final day of the time window we take into con-
sideration.

Followers and Collaborators Networks
As previously explained, a user follows other users in order
to be regularly updated about events regarding them (e.g.,
forks, created repositories, starred repositories, and so on).
The followers graph GF we obtain has a total of 671,751
nodes and 2,027,564 edges, with a resulting graph density
of 4.4932e-06 and an average degree of 3.019. The low
graph density and average degree indicate that on GitHub
the follow action is associated with a high cost, as follow-
ing many developers results in receiving many notifications
from them. This result also reflects the fact that following
links in GitHub do not play the same important role they
have in other social networks, such as Facebook or Twitter.

Fig. 3 shows the distributions of the in-degree, out-degree
and total degree of the users in GF . All the three distribu-
tions show a power-law scaling behavior, characterized by
different regimes. We also note that for degrees smaller than
k ≈ 20, in all the three cases the scaling relation is not satis-
fied. Interestingly, we also find that the degree distributions
of GF and of G⊥C follow the same power-law regime, as
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Figure 4: Distribution of the number of followers per users
(red) and the number of total collaborators per user, (blue)
which corresponds to the degree distribution of the users
projection of the collaborators bipartite graph.

shown in Fig. 4. However, the node degree in the followers
graph grows considerably larger than in G⊥C .

The followers network is also characterized by low reci-
procity: only 9.6% of the pairs of users have a reciprocal
relation between them, while the remaining 90.4% are one-
way. Other studies on social networks reported consider-
ably higher levels of reciprocity, such as 22.1% for Twit-
ter (Kwak et al. 2010), 68% for Flickr (Cha, Mislove, and
Gummadi 2009) and 84% for Yahoo! 360 (Kumar, Novak,
and Tomkins 2010). The consistently lower reciprocity in
Twitter is partially motivated by the presence of a few pop-
ular programmers, the so-called “rockstar programmers”,
who exhibit high in-degrees and low out-degrees. However,
we believe the profoundly different nature of GitHub, com-
pared to other social networks, might also play a role in this.
In fact, social networks are mostly used for leisure and they
thrive on distractions coming from noisy timelines; on the
contrary, the productivity of GitHub developers might be
critically disrupted by non-relevant notifications, which are
hence kept to a minimum. In other words, establishing links
has high cost in GitHub, as people do not “follow-back” un-
less they are professionally interested in the activity of their
followers.

In order to uncover the presence of node degree correla-
tions, we first measure the degree assortativity. We say that
a network shows an assortative mixing (Newman 2002) if
nodes with a large number of links tend to share edges with
high degree nodes. Similarly, if nodes with a small num-
ber of links tend to share edges with low degree nodes we
say that a network shows a disassortative mixing. In our
case we find a value of -0.0386, which suggests a tendency
to a disassortative mixing of users. We also evaluate the
rich-club coefficient φ (Zhou and Mondragón 2004), which
measures the tendency of high degree nodes to form tightly
interconnected communities. Although apparently similar to
the concept of assortative mixing, the rich-club phenomenon
is not necessarily associated with the latter, as one can de-
fine a disassortative network that still shows evidence of a
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rich-club phenomenon. Let Ek denote the number of edges
among the Nk nodes having a degree higher than k. The
rich-club coefficient φ(k) is defined as follows:

φ(k) =
2Ek

Nk(Nk − 1)
(1)

It represents the fraction of edges connecting nodes in
Nk out of the maximum possible amount they can share,
i.e., Nk(Nk−1)

2 . More specifically, here we use the normal-
ized rich-club coefficient proposed by (Colizza et al. 2006),
where the normalization is introduced to account for the fact
that high degree nodes have a higher probability of sharing
edges than low degree ones. Fig. 5(a) shows the rich-club in-
dex of the followers graph, for increasing degree k. We use
the definition of the rich-club index for GF considering it as
an undirected graph. Interestingly, we see that low degree
nodes show a less accentuated rich-club phenomenon, while
high degree nodes do not. In other words, the plot indicates
that hubs, i.e., popular developers, tend to share links with
lower degree nodes rather than being tightly interconnected
among them.

Compared to the followers graph, the collaborators graph
G⊥C also shows disassortative mixing of the nodes, with a
value of −0.0518. However, the characteristics of the rich-
club phenomenon are remarkably different. Fig. 5(b) shows
the rich-club index of G⊥C , for increasing values k of the
degree. We observe that up to k ≈ 30 the nodes show a
strong rich-club phenomenon, with a pronounced increase
followed by a sudden drop around k ≈ 40. This effect is
amplified by the projection operation itself, as each group of
collaborators forms a clique in G⊥C .

We also measure the clustering coefficient (Watts and
Strogatz 1998) of G⊥C and we compare it with that of the
followers graph. Again, we expect the average clustering
coefficient of the network to be high due to the way in which
G⊥C is constructed. Indeed, we find a value of 0.395 for G⊥C
and of 0.012 for GF . Note, however, that this implies that

users contributing to the same repositories do not necessarily
follow each other, as in that case we would expect the aver-
age clustering coefficients of the two networks to be similar.
Once again, this underlines the fact that the social interac-
tions captured by the two structures are rather different.

We now investigate the relation between the number of
followers of a user and his/her contributions to GitHub.We
would expect popular users in terms of contributions to
be followed by a higher number of people. In order to
evaluate this, we measure the Spearman correlation coeffi-
cient (Lehmann 2006) between the number of followers and
the number of contributions per user, and we find a value of
0.2568, with p-value < 0.01, indicating the lack of a clear
correlation between the two dimensions. This result is un-
expected, as it would seem reasonable to assume for active
users, i.e., users that contribute to a large number of reposi-
tories, to be more popular in terms of followers.

Interactions on Repositories
Despite the large number of repositories hosted at GitHub,
developers work only on a consistently smaller fraction of
them. Only 62.90% of the total number of repositories we
obtain information for experience at least one code commit
during the 18 months taken into consideration. Only 74.22%
of these repositories have at least two contributors, meaning
that one active repository out of four is exclusively authored
by a single individual. This might happen for a variety of
reasons: the project might not look promising to other users
or the owners of the repository might reject contributions.
This fraction includes activity both from one-time and ha-
bitual collaborators. Commonly, long-term contributors are
turned into collaborators, so that they can help developing
big projects. However, this kind of collaboration is quite
rare, as only 9.61% of the repository has at least 2 of them.
This is not surprising: collaborators need to be trusted in-
dividuals who have full understanding of the project goals
and structure, as they have write access on the repository
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and they determine which contributions should be accepted.
Fig. 6 reports the distribution of number of contributors,
stargazers and collaborators per repository.

Forking and Repository Tree Structure
The fork operation is intended to let users actively contribute
to a project. This action produces a copy of the parent repos-
itory and essentially generates a simple tree structure. Fur-
ther forks on the leaves of the tree increase its depth, while
forking an internal node results in an increased width of the
set of its children. We interpret the repository tree as a di-
rected acyclic graph, where the fork operation generates a
directed edge from the parent repository to its child. In the
following we refer to the depth of the tree as the longest path
from the root to its leaves, and to its width as the maximum
number of children over the internal nodes or 1 if the root
has no children.

For a few repositories the maximum depth goes up to
12. However, these few structures are hardly the result of
collaboration, in our opinion. In fact, user accounts in-
volved in their creation do not exist anymore. For this
reason, we suppose these accounts have been removed
due to abnormal or suspicious activity. We also find that
the average depth is 3.0695, but the mode is 0, indicat-
ing that the majority of repositories has a low number of
contributions. The width, on the other hand, goes up to
10,256, which is normal considering that many people fork
to contribute to popular packages, such as mxcl/homebrew.
Top repositories include heroku/node-js-sample, YOU-
LOST/THE-GAME (apparently, a ludic non-software reposi-
tory) and facebook-tornado. The overall average width
is very low (1.0653), showing that just a few popular repos-
itories get forked, while the vast majority of them (93.91%)
have a width of just 1. This, together with the observation

that the majority of the repositories has depth equal to 0 and
width equal to 1, seems to suggest that forks on GitHub hap-
pen on a limited number of key projects.

5 Activity, Social Presence and Indirect
Rewards

Human activities are commonly driven by reward mecha-
nisms of some kind: people work to earn money and achieve
a social status, they play games because they have fun,
they travel because they enjoy seeing new places. A re-
cent work has found that areas of brain connected to re-
wards are activated during the use of social networks web-
sites (Meshi, Morawetz, and Heekeren 2013). One of the
aspects that drives activity in GitHub, among others, is self-
promotion (Dabbish et al. 2012). We hypothesize that for
a hybrid service like GitHub, both a social network and a
collaboration network, some kind of indirect reward mech-
anism might and potentially underpin user activity. Even if
it is not possible to provide definitive evidence about that,
in the following we will show some interesting correlations
between the activity of a user and some indirect rewards in
terms of “social prestige” in GitHub.

In social networks, a common measure of user popular-
ity and influence is given by the in-degree (Wasserman and
Faust 1994). Therefore, it is reasonable to consider new con-
nections as sort of rewards for users receiving them, as they
increase their popularity. In order to investigate this aspect
in GitHub we will search for correlation between user activ-
ity and degrees in the several graphs we have introduced. In
Fig. 7(a) we plot the number of authored events (i.e., for
which the user actively executes an action) for each user
against the number of followers. We firstly note that peo-
ple with a higher number of followers are commonly more
active and people with lower levels of activity generally have
fewer followers. However, we also observe that many users
with a very high number of events have a very low num-
ber of followers: a higher level of activity does not directly
translate into a larger number of followers. A similar phe-
nomenon is also visible in Fig. 7(b), where we plot the num-
ber of authored events against the number of repositories for
which a user is a collaborator or the repository owner. Be-
ing the collaborator can also be seen as a kind of indirect
reward, as it is more important and prestigious than being a
contributor. Collaborators receive permissions to modify the
repository, whereas contributors only contribute their code
through pull requests.

We are also interested to see whether a higher out-degree
on the social graph is an indicator of a higher activity. How-
ever, in Fig. 7(c) it is possible to note that a much weaker
correlation between these two quantities is present. A simi-
lar behavior can be observed in Fig. 7(d), where we plot ac-
tivity versus the number of starred (i.e., bookmarked) repos-
itories. In other words, users who follow many other users or
bookmark many repositories are not much more active than
those who do not.
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Figure 7: Number of actions executed by a user against (a) user followers, (b) number of repositories with write privileges, (c)
followed users, (d) starred repositories.

6 The Geography of Collaboration
In Fig. 8 we show the geographic distribution of users in our
dataset around the world. The majority of users is located in
Europe and North America while other geographic regions
have a consistently smaller number of users. The Tab. 1,
listing the 20 most common countries and cities indicated in
GitHub user profiles, confirm this consideration. The pop-
ularity of GitHub among developers living in the USA is
really prominent, as 3 users out of 10 are based there.

Impact of Geographic Proximity
We also analyze the impact of physical proximity on the pat-
terns of collaboration between different users. Are people
more likely to follow people who are closer to them? In
Fig. 9 we show the distribution of the distance covered by
each pair of users connected by a directed link in the so-
cial network. The first part of the distribution shows that
links decrease with distance, until x = 5000 km: these are
intra-continental links. The sudden drop at x = 5000 km is
due to the ocean separating North America and Europe, that
are the two regions where GitHub is mostly popular. For
larger distances, the distribution increases again, showing a
big presence of intercontinental links. This analysis, how-
ever, considers all the links, without discriminating them on
a per-user basis.

We now want to see how local or global is the neighbor-
hood of a user, depending on how far his connections are
located. In order to do that, we calculate for each user the
average distance of their followers, their followed users and
reciprocated links (i.e. users that are both followers and fol-
lowed). In Fig. 10 we show the probability density function
of the values of this measure. As expected, the distribution
of these values decreases as the distance increases, indicat-
ing that users tend to interact with people that are close. We
also notice that in the majority of the cases the average dis-
tances of the reciprocated connections of a user, usually con-
sidered as evidence of friendship or mutual acquaintance or
collaboration, tend to be smaller compared to the other two
types of links.

Globality and Distant Collaboration

We now investigate if geographic proximity has an impact
on the collaboration between users. In this case, we cannot
compute the geographic distance between collaborators of
a certain repository and the repository itself, as we cannot
assign geographic coordinates to a repository. Project col-
laborators might be sparse around the globe or concentrated
in a single city. In order to quantify how sparse they are, we
define the globality of a set of users S as follows:



Figure 8: Distribution of GitHub users in the world. For each user, a partially transparent point is drawn on the map. The
majority of users is located in North America and in Europe. The leading countries are the United States and the United
Kingdom. A 15% random sample of the original distribution was used to make this figure.
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Figure 9: Distributions of the inter-users distance covered
by each follow link. The distribution has a maximum at the
lowest distance and gradually decreases for high distances.

G =
1

Ndmax

∑
i,j∈S

dij (2)

where dmax is the maximum distance between two points
on Earth where two generic users are localized and N is the
number of users taken into consideration. This measure is
the normalized average of distances between all the points in
the set. When all points coincide the measure is 0, whereas
when the points are evenly distributed at the antipodes the
measure is 1.
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Figure 10: Distributions of the average geographic distance
of a user’s outgoing, incoming and reciprocated links, re-
spectively represented by blue circles, red squares and green
diamonds.

In Fig. 11 we plot the value of globality against the num-
ber of collaboration for all the repositories that have at least
two collaborators with location information in their profile.
Although points are quite dispersed in the plot we can make
some considerations. For repository with a low number
of collaborators, globality reaches values close to its max-
imum. As the number of collaborators goes up, the value of
globality is found to be lower. This suggests that reposito-
ries with a low number of collaborators tend to have them



Rank Country %
1 USA 30.14
2 UK 6.43
3 Germany 5.28
4 China 5.11
5 India 4.05
6 France 3.87
7 Canada 3.69
8 Brazil 3.60
9 Russia 3.14

10 Japan 2.83
11 Australia 2.00
12 Spain 1.92
13 Netherlands 1.84
14 Sweden 1.51
15 Ukraine 1.37
16 Italy 1.32
17 Poland 1.02
18 Switzerland 0.86
19 Belgium 0.75
20 Mexico 0.74

City %
San Francisco, US 3.84

London, GB 3.33
New York City, US 2.93

Beijing, CN 1.98
Paris, FR 1.80
Tokyo, JP 1.69

Seattle, US 1.59
Berlin, DE 1.49

Chicago, US 1.39
Shanghai, CN 1.34
Bangalore, IN 1.32
Toronto, CA 1.23
Moscow, RU 1.17
Austin, US 1.12
Boston, US 1.07

Los Angeles, US 1.01
Sydney, AU 0.94
Portland, US 0.88

Melbourne, AU 0.85
Stockholm, SE 0.81

Table 1: Top 20 countries and cities, ranked by absolute
number of users.

concentrated around one or more key locations rather than
scattered around the globe.

We now investigate how social and collaborations links
are distributed among countries. In order to do that, we
build two square matrices MGF

and MG⊥
C

describing the
number of links between countries. An element mij of the
matrices indicates the number of links from people in coun-
try i to people in country j. The rows are normalized to
sum to unity. This matrix has a precise meaning: each row
shows how links coming from the people in a given coun-
try are distributed geographically. For clarity, in Fig. 12 we
show the normalized matrices only for the top 20 countries,
although the following measures are calculated on the full
matrices. We first note that both matrices have a strong diag-
onal component (on average 0.245 and 0.346 for followers
and collaborators, respectively), in accordance with the fact
that links are more likely to be directed to the same country
of origin. The two matrices are also significantly similar, as
confirmed by the low average cosine distance, amounting to
0.277.

7 Conclusions
In this paper we have analyzed the events happening on
GitHub, the most popular repository for open source code,
for 18 months between March 11, 2012 and September 11,
2013. We have obtained information about 2.19 million
users and 5.68 million repositories. From this dataset we
have derived four networks: a bipartite network describing
the collaborations of users on repositories, a bipartite net-
work describing the stars (bookmarks) assigned by users to
repositories, a bipartite network describing the contributions
of users on repositories and a directed social network de-
scribing the follow relations between users. We have showed
that the distributions of the number of collaborators per
project, contributors per project, stargazers per project and
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Figure 11: Scatter plot showing, for each repository, the
number collaborators and the globality calculated over their
geographic points. Intriguingly, repositories with a high
number of collaborators exhibit smaller values of globality.

user followers show a power-law-like shape. We have found
a very low reciprocity of the social ties, which is remarkably
different from results of studies in other social networks; we
have also observed that collaboration between users happens
on a small fraction projects. We have found that very active
users do not necessarily have a large number of followers.
Finally, we have investigated the impact of geography on
collaboration. Consistently to what happens in other social
networks, users tend to interact with people that are close,
as long-range links have a higher cost. A similar consider-
ation can be made for repositories with a high number of
collaborators, which tend to be managed by collaborators
gravitating around specific locations.

We believe that our work provides novel insights about
the complex dynamics of collaboration on a planetary scale.
Our future research agenda includes the investigation of the
software engineering issues that emerge from our quantita-
tive analysis, especially with respect to the flow of informa-
tion (and knowledge) that is present in the network of users.
We think that this might represent a starting point for the de-
velopment of novel strategies and tools for supporting online
collaboration more effectively and efficiently.
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