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Abstract

The possibility to analyze, quantify and forecast epidemic outbreaks is funda-
mental when devising effective disease containment strategies. Policy makers are
faced with the intricate task of drafting realistically implementable policies that
strike a balance between risk management and cost. Two major techniques policy
makers have at their disposal are: epidemic modeling and contact tracing. Models
are used to forecast the evolution of the epidemic both globally and regionally,
while contact tracing is used to reconstruct the chain of people who have been
potentially infected, so that they can be tested, isolated and treated immediately.
However, both techniques might provide limited information, especially during an
already advanced crisis when the need for action is urgent.
In this paper we propose an alternative approach that goes beyond epidemic mod-
eling and contact tracing, and leverages behavioral data generated by mobile car-
rier networks to evaluate contagion risk on a per-user basis. The individual risk
represents the loss incurred by not isolating or treating a specific person, both
in terms of how likely it is for this person to spread the disease as well as how
many secondary infections it will cause. To this aim, we develop a model, named
Progmosis, which quantifies this risk based on movement and regional aggregated
statistics about infection rates. We develop and release an open-source tool that
calculates this risk based on cellular network events. We simulate a realistic epi-
demic scenarios, based on an Ebola virus outbreak; we find that gradually restrict-
ing the mobility of a subset of individuals reduces the number of infected people
after 30 days by 24%.
While these results are promising, it is important to underline the fact that this is
only an initial foundational work and to stress some key points. First, this paper
focuses on a theoretical model, rather than on its actual translation into a real-
world system. In particular, centralized deployments of this model would pose
several ethical questions, as they would require access to user data. Decentralized
deployments for which user mobility data never leaves the mobile device of a user
are possible and should be preferred, as they fully protect user privacy. Second,
results are generated from computer-based simulations, under specific assump-
tions. Social factors and technical difficulties might greatly affect results obtained
in the real world. Third, this risk-assessment tool is not designed specifically for
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implementing containment measures based on mobility restrictions. For example,
it could be used to advise users about the most appropriate behavior given his/her
risk profile (e.g., willingly change own behavior, see a doctor, and similar); users
would finally choose whether to follow the advice or not. Finally, the simulations
were run on data call records from a country that is according to WHO Ebola-
free [1], and this work has not been commissioned neither by Orange nor by any
other entity for preparation to a real-world disease outbreak.

1 Introduction

The world is facing a number of severe healthcare challenges and, indeed, the recent Ebola out-
break seems one of the most worrisome and urgent. Mr David Nabarro, Special Envoy of the UN
Secretary-General, said at an informal UN meeting that he had never encountered a challenge like
Ebola in 35 years of his professional life: “This outbreak has moved out of rural areas and it’s com-
ing to towns and cities. It’s no longer just affecting a very well-defined location, it’s affecting a
whole region and it’s now impacting the whole world”1.

Nowadays transportation systems make it possible for people to travel easily across a country and
across the globe, but, unfortunately, they make that possible for diseases too. The spread of diseases
is facilitated by today’s rich transportation networks that enable human disease carriers to quickly
move across distant regions [2]. In this context, drastic measures like banning transportation to
disease-affected areas are difficult to implement, have a high cost and are actually believed to worsen
the outbreak [3] [4]. The need for smaller, targeted interventions matches the increasing availability
of large-scale data, especially coming from mobile networks. The benefit of mobile-phone records
to combat quickly-spreading diseases like Ebola is unquestionable [5].

When an outbreak becomes global, an infected person can be found anywhere, in cities as well as
rural areas, and regardless of country boundaries; this might suggest that no place is really safe.
However, we argue that some people and places are more exposed to the risk than others.

We propose to use such heterogeneity to our advantage and to use mobile networks to unveil such
heterogeneity. We envision a system that utilizes the data coming from mobile carriers and, where
available, social networks and smartphones, to construct individual-based risk models. The system
can assess the risk associated with a person, primarily based on that person’s mobility patterns and,
optionally, on other demographic or behavioral indicators that can be inferred from the data. We
would like to highlight the characterizing features of the proposed solution: first, it can use data
that is readily available (such as cellphone carrier data), and second, it is be able to operate under
uncertainty (it does not require the knowledge of the identity of the infected).

The risk model can be used in several real-world scenarios, especially when a urgent response is
required. Thus, the model can be used to answer the following questions. Who should be tested early
for signs of the disease, and possibly put into quarantine if positive, given that vaccinations can be
produced and performed with a certain rate? Who should get vaccinated first? Who should receive
information about prevention, for example by means of text messages? All these scenarios describe
individual-based interventions that are very hard to administer quickly over large populations. This
model can prioritize the people to be targeted with the intervention sooner rather than later.

2 Motivation

People behavior is highly heterogeneous. Existing epidemic models are based on analyses con-
ducted at population level to assess how infectious a disease is, based on the basic reproductive
ratio r0, i.e., the average number of secondary cases generated by a single infected person. How-
ever, several studies have concluded that spreading processes are usually highly heterogeneous and
that some individuals remain responsible for a large proportion of the spreading. The presence of
these influential spreaders has been investigated for generic networks [6], as well as in epidemics
processes. Superspreading seems to be a common feature of the spread of diseases and targeted

1http://webtv.un.org/watch/david-nabarro-ebola-virus-outbreak-general-
assembly-informal-meeting-69th-session-10-october-2014/3832613824001
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individual-based control measures are much more effective than population-wide measures, as re-
ported by Lloyd-Smith et al. [7]. For this reason, identifying superspreaders is extremely important
in order to contain epidemics.

Existing techniques, such as contact tracing, are not sufficient. Moreover, efforts in fighting dis-
ease outbreaks mainly focus on contact tracing techniques, as it is happening for Ebola [8]. Contact
tracing works by finding all the people who have been in contact with an infected person, and then
interviewing, monitoring, isolating them when necessary. The process is repeated for everyone who
is found to be infected. While contact tracing can be effective, it has some drawbacks. First of
all, information provided by people might be subject to errors, due to fear, shame, faulty memory
or other reasons. Secondly, contact tracing needs time: contact tracing only starts when a person
is already diagnosed with the disease, or at least shows symptoms. Tracing the contacts also takes
time: if the disease has an asymptomatic phase or is highly infective, the contacts might be likely to
have infected others before they are traced.

Localization techniques have already been used successfully during critical scenarios. Re-
cently, Nigeria also resorted to GPS technology to improve, scale up and speed up contact tracing,
repurposing GPS devices used for polio vaccinations [9,10]. The huge effort of the country resulted
in eradication of Ebola and Nigeria was declared ”Ebola-free” by the WHO2. While this success
story demonstrates how location tracking can be very useful during similar scenarios, the very same
strategy could have not been used if the epidemic was in a more advanced state, i.e., if many more
people had already been infected. For this reason, we believe it is very important to investigate
the use of alternative systems that can provide coarser location tracking but for a large number of
individuals.

Medical treatment is scarce and costly. For example, in the case of Ebola, although the disease
is seen as a serious challenge by the whole world, vaccinations have to face serious technical and
financial issues before being administered3). When a commodity such as vaccinations is scarce, who
should be given priority during vaccination?

3 Risk Model

In this section, we propose a method to quantify the risk associated with each person during an
outbreak, depending on their mobility behavior, inferred from their phone-activity. Here we refer it
as the risk model. Our goal is not the estimation of the individual cost (i.e., the chance of getting
infected), but the cost that an entire community faces by not treating a specific person. Early testing,
medical treatment, vaccination, quarantine of specific individuals might reduce cost sustained by the
community at later time.

A general estimate of the total risk R associated to a set of events E is defined by:

R =
∑
E

PE × LE (1)

where PE and LE are the probability and the expected loss for each event, respectively [11].

We bring this definition to the epidemiology domain by considering a scenario in which several
geographic areas are assigned different values of time-varying contagion risk. The risk measures
how likely it is for an individual to get infected in a region. As in common models of infectious
diseases, we assume it is directly proportional to the fraction of infected people in the region and we
also assume homogeneous mixing within the region. Similarly, we assume that the risk to infect a
healthy individual is directly proportional to the fraction of susceptible people in the region.

By staying in a geographic area with a non-zero risk, a person will have some chances to get infected;
the same person will also have a chance to infect someone else, increasing the risk of the geographic
area. When moving between two or more areas, the person will affect the risk of these areas. We
will not determine whether each person is in a susceptible, infective or recovered state. Instead, we
will consider them in all the states and we will assess how risky their mobility behavior is.

2http://www.who.int/mediacentre/news/ebola/20-october-2014/en/
3http://news.sciencemag.org/health/2014/10/leaked-documents-reveal-

behind-scenes-ebola-vaccine-issues
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In general, the way people transmit disease across geographic areas has been extensively studied in
literature [2, 12, 13]. Most of the studies dealing with the effects of mobility on epidemic spreading
usually make the assumption that the mobility patterns of individuals in a subpopulation are ho-
mogeneous [14], while they are indeed highly heterogeneous [2, 15]. This is particularly true for
developing countries, where highly irregular and temporally unstructured contact patterns have been
observed [16].

We consider a disease that has contagion rate per contact β (i.e., given a friendship between an
infected and a susceptible person, a contagion will happen with rate β). Assuming the user u spends
Tu,l fraction of his time in each location l ∈ Lu (hence,

∑
i Tu,i = 1) we define a time-dependant

contagion risk:
Cu(t) = β

∑
l,m∈L

Tu,lTu,m[il(t)sm(t) + im(t)sl(t)]. (2)

where il(t) and sl(t) refer to the of fraction of infected and susceptible population in location l
at time t, respectively. Note that now the probability of the event occurring, in this case, is the
probability that a person becomes infected in a region, according to the time fraction spent there,
while the expected loss is the number of people expected to be infected in another region, according
to the time fraction spent there. As we do not know where the person might be infected, this formula
accounts for all the combinations, which are assumed as equally likely. The maximum risk value,
for a specific state of the network, is reached by an individual who equally spends his time in the
region with the highest infected fraction of individuals and in the region with the highest susceptible
fraction. We might calculate this normalized value but, for ranking purposes, it is not necessary, as
it is a common factor; we can also ignore the rate β for the same reason.

Our proposed model could be generalized by defining different risk classes depending on demo-
graphic indicators, which can be inferred from mobile data [17] or other behavioral indicators, such
as those provided with the D4D-Dataset [18]. It is important to emphasize that a real-world sys-
tem that would use this model would require access to two types of data: global information about
the outbreak, which is already available (e.g., estimated number of infected people in various ge-
ographic regions); individual information about user mobility, which is sensitive information. For
this reason, centralized deployments of the system might not be realizable, as user mobility might
be unaccessible under local regulations and laws. On the other hand, decentralized deployments are
to be preferred. In such deployments the mobility data never leaves the user device, the risk-profile
is calculated on the phone and it is shown only to the user, who optionally chooses to follow tailored
advices.

4 Evaluation

Next, we evaluate the effectiveness of the risk identification and containment model proposed above.
We set up a realistic epidemic scenario and perform stochastic simulations, following an approach
similar to that implemented in GLEaM [19], while keeping track of the movement of individuals
following the real traces found in the dataset. We use the SEIR model, where each individual can
be in one of the following discrete states at any given time instant: susceptible (S), exposed (E),
infected (I), permanently recovered or deceased (R). This model has been used for the 2002 seasonal
influenza outbreak [19] and the 2014 Ebola outbreak [20], among other outbreaks. It is described
by the following set of equations:

dS

dt
= −βS(t)I(t)/N (3)

dE

dt
= βS(t)I(t)/N − kE(t) (4)

dI

dt
= kE(t)− γI(t) (5)

dR

dt
= γI(t) (6)

We inform a spreading model with the realistic parameters taken from estimates of the 2014 Ebola
outbreak in Sierra Leone [20], as reported in Tab. 4. Where σ−1 and γ−1 are the average durations
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of incubation and infectiousness, respectively. The transmission rate per day in absence of control
interventions is β, and r0 = β/γ is the basic reproduction number.

σ−1 5.3 [days]
γ−1 5.61 [days]
r0 2.53
β 0.45

Table 1: Parameters assumed for the simulation.

We simulate the epidemics in the following different contexts:

• in total absence of any treatment;
• when treatment is given with rate ξ per day and people given treatment are chosen ran-

domly;
• when treatment is given with rate ξ per day to highest ranked people, according to the risk

measure Cu.

For simplicity, in this paper we focus only on treatment that takes the form of travel restrictions,
not allowing high-risk individuals to travel outside the metapopulation they are found when the
treatment is applied. This is an extreme scenario, realistic only for diseases for which specific
treatments or vaccinations are not available (e.g., Ebola virus). Without loss of generality, we can
investigate the effects of vaccination and/or early treatment of people with higher-risk movement
patterns. Since we use the same parameters for each metapopulation, and the treatment does not
directly affect the epidemic process (i.e., it is not a vaccination or a cure) but only the movement
of individuals, the local epidemic profiles will be similar and will be more or less shifted in time,
depending on the travel fluxes. We will first show how much we can reduce synchronization by
restricting the travel of high-risk individuals in a simple example.

As an illustrative case, we simulate a synthetic model. In Fig. 1 we show the total number of
infections since the beginning of the simulation for two metapopulations, in two specific contexts.
Individuals are equally assigned to either metapopulation and they belong to two classes: a fraction
of people (1 − f) who do not travel out of their metapopulation, and a fraction of people f who
spend an equal amount of time, on average, in both. We use SEIR with the parameters mentioned
before and we initialize the epidemics with a single infected case in one of the two metapopulations,
chosen randomly. The top plot (f = 0.1) shows a high level of synchronization, while the bottom
plot (f = 0.01) displays a clear delay in the growth of the epidemic size.

We then test our approach initializing simulations with real-data, so that a single randomly chosen
region is the unique source of infection with 100 cases. We use the first six months, from January
to June 2013, to learn the movement habits of individuals. Then we perform simulations under the
three scenarios mentioned above: no countermeasures, people quarantined randomly and people
quarantined according to their risk rank. We set an adaptive quarantine rate of ξ = βi(t) to match
the countermeasure efforts with the speed of growth of the outbreak. Fig. 2 shows results for the
month of July 2013, in terms of how the global prevalence of the disease changes in time in the three
cases. Despite the number of randomly quarantined people is pretty high at the end of the month
(10% of the population), it does not delay the spreading. Targeted quarantine based on risk, instead,
manages to delay the spreading; at the end of the month there are 24% fewer infected individuals
than in the baseline cases.

This effect is obtained by restricting individuals who are in the areas with higher risk, specifically
those who travel to low risk areas. This determines an increased number of infection cases in high-
risk areas, as shown in Fig. 3 and a decreased number of infection cases in low risk areas, as shown
in Fig. 4.

5 Discussion and Limitations

This model assesses risk using data collected from mobile phones, hence it excludes people who
do not use the mobile phones or share them with others. Since mobile penetration rates are already
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Figure 1: A simple example with two metapopulations composed by people who stay always in
their own metapopulation and a fraction f of people who move between them randomly. In the top
figure f = 0.1, while in the bottom figure f = 0.01. The outbreak dynamics in the second case are
less synchronized.

Figure 2: The top plot shows how the total number of infected people changes in time when no
countermeasures are taken (none), when people are quarantined randomly (random) and according
to the highest risk rank (risk). The bottom plot shows how the number of people who have been put
into quarantine grows in time. The proposed identification method reduces the number of infected
individuals with fewer people in quarantine, using only aggregated information of the number of
infected and mobility patterns from mobile phone data providers.

high and increasing in the vast majority of countries, including developing countries, we believe
that the coverage problem will fade out as time goes. Another potential problem when dealing with
network-data is the sparsity of the call activity, but recent studies try to overcome this limitation [21]
by interpolating information in space and time. Furthermore, we would like to remark that the goal
of this method is not to find every high-risk individuals, but a large proportion of them, given the
data available. Moreover, it is worth noting that this method might be also be combined with other
existing disease prevention and containment techniques already in use, such as contact tracing.

The model described in this paper requires access to sensitive data about individual call and mobility
patterns. It is very important to take into account ethical and legislative issues arising from the use
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Figure 3: Number of infected (top plot) and quarantined (bottom plot) in the region where the
first cases were initalized (hence, a region with higher risk than the others). Our proposed approach
determines an increased number of infections in this region, while reducing the total aggregated
number of infections.

Figure 4: Number of infected (top plot) and quarantined (bottom plot) in a low-risk region. Our pro-
posed approach determines a decreased number of infections in regions that have been less affected
by the epidemic, such as the one shown here; this determines a delay in how the global number of
infected grows in time.

of these highly personal data. However, solutions based on the analysis of mobile data, such as that
presented in this work, can play a critical role during emergencies. For this reason, we believe it
is acceptable to use such system when the benefits exceed the risks. We envision the use of such a
system only in well-defined circumstances, within specific time intervals and geographic boundaries,
within the limits defined by the law and under user informed consent. The model could also be used
to design a system that informs users only the users themselves about their own behavior, evaluating
their the risk level and, potentially, suggesting them appropriate actions tailored to their risk profile
(e.g., get tested, seek help, change lifestyle habits, etc.).

It is important to emphasize that a real-world system that would use this model would require access
to two types of data: global information about the outbreak, which is already available (e.g., esti-
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mated number of infected people in various geographic regions); and individual information about
user mobility, which is of sensitive nature. For this reason, centralized deployments of the system
might not be realizable, as user mobility might be unaccessible under local regulations and laws.
On the other hand, decentralized deployments are to be preferred. In such deployments the mobility
data are only stored on the devices. The risk-profile is calculated on the phone and it is shown only
to the user, who might optionally choose to follow tailored advices.

Moreover, we want to stress that the model we propose simply gives a risk measure to each user.
While this measure can be used to select who should be quarantined (i.e., the scenario we used for
our simulation), it can also be used as a basis for less invasive measures, such as deciding who gets
vaccination or who needs to see a doctor.

Finally, it is worth noting that technical and practical constraints might reduce the efficacy of
mobility-based risk-assessment. In particular, we evaluate the model on mobility traces that cor-
respond to an epidemics-free case. People might change significantly their mobility behavior once
they are aware of the epidemic [4]. Users might not carry their device with them at all times,
hence making mobility traces and risk-assessment less effective. Mobility containment and other
individual-based strategies are difficult to enforce and they heavily depend on the ultimate choices
of individuals of accepting the recommendations.

6 Related Work

Human behavior can have a significant impact on infective disease dynamics. In turn, a complex
interplay of disease spread, awareness of the disease, and population beliefs affect human behav-
ior [22]. The mobility of a person, whether that person is infected or not, is a particularly important
factor of disease spread [23]. Awareness-induced changes in movement patterns, such as a decision
to avoid unsafe infected areas, often have a detrimental effect and might lead to even higher disease
spreading, since they result in bringing the infection into previously isolated communities [4, 24].
At the same time, international travel restrictions have been shown to have a limited impact on
disease spreading, due to the high heterogeneity of human mobility patterns [13]. In fact, it is this
heterogeneity, both in terms of population behavior and a-priori infections, that drives disease devel-
opment. In her discussion of HIV and other STDs transmission Aral argues that bridge groups, such
as truckers, the police and the military personnel, transmit infections from highly infected groups,
e.g., sex workers, to previously uninfected populations [25]. Our work is founded on the above ob-
servation, and we propose a model that explicitly takes the transmission of risk into account. While
previous models consider artificial simulations [26] and long-distance [2] or multiscale [12] mobil-
ity networks in order to quantify possible outcomes of different metapopulations movement patterns
on disease spread, we build our model upon individual mobility and interactions, as recorded by
fine-grain cellular network traces.

Our work relies on mobile phone call records for estimating risk transfer in a population. The
suitability of CDRs for tracking population movements and identification of spatial events in popu-
lations has been shown by Bengtsson et al. [27] and Candia et al. [28]. Furthermore, when it comes
to infectivity modeling, in [29] Eames et al. show that simple interaction potential measures, such
as the total number of a user’s connections (total degree), perform almost as well as more complex
measures of interaction, such as individually weighted links. In further work the total node degree
might be used to approximate a user’s potential for contact. Finally, in this work we do not modify
the interaction network over time. Such modifications, orthogonal to our approach, are discussed
in [30], and can be accounted for by having a time-dependent contact network.

7 Conclusions

In this paper we have proposed Progmosis, an approach to disease prevention and containment
that goes beyond traditional epidemic modeling and contact tracing, and leverages behavioral data
generated by mobile carrier networks to evaluate contagion risk on a per-user basis. The individual
risk represents the loss incurred by not isolating or treating a specific person, both in terms of how
likely it is for this person to spread the disease as well as how many secondary infections it will
cause. We have developed and released an open-source tool that calculates this risk based on cellular
network events. We have also simulated a realistic epidemic scenario, based on an Ebola virus
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outbreak. We have found that gradually restricting the mobility of a subset of individuals, selected
using Progmosis greatly reduces the number of infected people, compared to a random choice.

This work focuses on a theoretical model and not on its actual translation into a real-world system. In
particular, a decentralized deployment that preserves user privacy is to be preferred to a centralized
one, which would require access to sensitive user data. While computer-based simulations show
promising results, they are obtained under specific assumptions; real-world constraints and chal-
lenges might greatly affect the effectiveness of this model. It is worth remarking that simulations
were performed using data of a country that is currently Ebola-free according to WHO. Finally, we
would also stress the fact that this work has not been commissioned neither by Orange nor by any
other organisation for preparation to a real-world disease outbreak.
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