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Abstract. In this paper, we propose a new edge-based matching kernel
for graphs by using discrete-time quantum walks. To this end, we com-
mence by transforming a graph into a directed line graph. The reasons of
using the line graph structure are twofold. First, for a graph, its direct-
ed line graph is a dual representation and each vertex of the line graph
represents a corresponding edge in the original graph. Second, we show
that the discrete-time quantum walk can be seen as a walk on the line
graph and the state space of the walk is the vertex set of the line graph,
i.e., the state space of the walk is the edges of the original graph. As a
result, the directed line graph provides an elegant way of developing new
edge-based matching kernel based on discrete-time quantum walks. For
a pair of graphs, we compute the h-layer depth-based representation for
each vertex of their directed line graphs by computing entropic signa-
tures (computed from discrete-time quantum walks on the line graphs)
on the family of K-layer expansion subgraphs rooted at the vertex, i.e.,
we compute the depth-based representations for edges of the original
graphs through their directed line graphs. Based on the new representa-
tions, we define an edge-based matching method for the pair of graphs
by aligning the h-layer depth-based representations computed through
the directed line graphs. The new edge-based matching kernel is thus
computed by counting the number of matched vertices identified by the
matching method on the directed line graphs. Experiments on standard
graph datasets demonstrate the effectiveness of our new kernel.

1 Introduction

Graph kernels are powerful tools for graph structure analysis in pattern recogni-
tion and machine learning [1]. The main advantage of using graph kernels is that
they characterize graph features in a high dimensional space and thus better pre-
serve graph structures. Generally speaking, a graph kernel is a similarity measure
between a pair of graphs [1]. To extend the large spectrum of kernel methods
from the general machine learning domain to the graph domain, Haussler [2]
has proposed a generic way, namely the R-convolution, to define a graph kernel.
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For a pair of graphs, an R-convolution kernel is computed by decomposing each
graph into smaller subgraphs and counting the number of isomorphic subgraph
pairs between the two original graphs. Thus, a new type of decomposition of a
graph usually results in a new graph kernel. Following this scenario, Kashima et
al. [3] introduced the random walk kernel, which is based on the enumeration of
common random walks between two graphs. Borgwardt et al. [4], on the other
hand, proposed a shortest path kernel by counting the numbers of matching
shortest paths over the graphs. Aziz et al. [5] introduced a backtrackless kernel
using the cycles identified by the Ihara zeta function [6] in a pair of graphs.
Shervashidze et al. [7] developed a fast subtree kernel by comparing pairs of
subtrees identified by the Weisfeiler-Lehman algorithm. Some other alternative
R-convolution kernels include a) the segmentation graph kernel developed by
Harchaoui and Bach [8], b) the point cloud kernel developed by Bach [9], and c)
the (hyper)graph kernel based on directed subtree isomorphism tests [10].

Unfortunately, R-convolution kernels tend to neglect the relative locations of
substructures. This is because R-convolution kernels add an unit value to the
kernel function by roughly identifying a pair of isomorphic substructures, i.e.,
any pair of isomorphic substructures will contribute an unit kernel value. As a
result, the R-convolution kernels cannot establish reliable structural correspon-
dences between the substructures. This drawback limits the precise kernel-based
similarity measure for graphs.

To overcome the problem arising in existing R-convolution kernels, in our
previous work [11, 12], we have developed a new depth-based matching kernel
for graphs. The depth-based matching kernel is based on aligning the h-layer
depth-based representations around vertices of graphs (i.e., aligning the vertices
of the graphs), and is computed by counting the number of matched vertex pairs.
In [11], the depth-based matching kernel can be seen as an aligned subgraph k-
ernel that encapsulates location correspondence information between pairwise
inexact isomorphic h-layer expansion subgraphs. As a result, the depth-based
matching kernel overcomes the shortcoming of neglecting location correspon-
dences between substructures arising in R-convolution kernels.

In this work, we aim to develop our previous work in [11, 12] one step further.
We develop a new edge-based matching kernel for graphs based on discrete-time
quantum walks. For a graph, we commence by transforming the graph into a
directed line graph [6]. The reason of using the directed line graph is that the
line graph is a dual representation of the original graph [6], i.e., the vertex of the
directed line graph represents a corresponding edge of the original graph. More-
over, we show that the discrete-time quantum walk can be seen as a walk on the
line graph and the state space of the walk is the vertex set of the line graph, i.e.,
the state space of the walk is the edges of the original graphs (See details in Sec-
tion 2). Finally, the directed line graph may expose richer graph characteristics
than the original graph [6]. As a result, the directed line graph provides an ele-
gant way of developing new edge-based matching kernel based on discrete-time
quantum walks, which not only reflects quantum-based information but also en-
capsulates richer characteristics of graphs. For a pair of graphs, we compute the



h-layer depth-based representation for each vertex of their directed line graphs
by computing entropic signatures (computed from discrete-time quantum walks
on the line graphs) on the family of K-layer expansion subgraphs rooted at the
vertex, i.e., we compute the depth-based representations for edges of the original
graphs through their directed line graphs. Based on the new representations, we
define an edge-based matching method for the pair of graphs by aligning the
h-layer depth-based representations computed through the directed line graphs.
The new edge-based matching kernel is thus computed by counting the num-
ber of matched vertices identified by the matching method on the directed line
graphs. Experiments on standard graph datasets demonstrate the effectiveness
of our new edge-based matching kernel.

2 Preliminary Concepts

2.1 Directed Line Graphs

In this subsection, we commence by introducing the concept of directed line
graphs. The reasons of using the line graphs are threefold. First, for a graph, its
directed line graph is a dual representation and each vertex of the line graph rep-
resents a corresponding edge in the original graph. Second, the required discrete-
time quantum walk used in this work can be seen as a walk on the line graph
and the state space of the walk is the vertex set of the line graph, i.e., the state
space of the walk is the edges of the original graphs (see details in Section 2.3).
Third, the directed line graph may expose richer graph characteristics than the
original graph [6]. As a result, the directed line graph provides a way of devel-
oping new edge-based matching kernel based on discrete-time quantum walks,
which not only reflects quantum-based information but also encapsulates richer
characteristics of graphs (see details in Section 3).

Based on the definition of Ren et al. in [6], for a sample graph G(V,E), the

directed line graph GD(VD,
−→
ED) is a dual representation of G(V,E). To obtain

GD(VD,
−→
ED), we first construct the associated symmetric digraph SDG(V,Ed)

of G(V,E), by replacing every edge e(u,w) ∈ E(G) by a pair of reverse arcs,
i.e., directed edges ed(u,w) ∈ Ed(G) and ed(w, u) ∈ Ed(G) for u,w ∈ V . The

directed line graph GD(VD,
−→
ED) is the directed graph with vertex set VD and

arc set
−→
ED defined as

VD = Ed(SDG),−→
ED = {(ed(u, v), ed(v, w)) ∈ Ed(SDG)× Ed(SDG) | u, v, w ∈ V, u ̸= w}.

(1)

The Perron-Frobenius operator T = [Ti,j ]|VL|×|VL| of G(V,E) is the adjacency

matrix of the associated directed line graph GD(VD,
−→
ED).

2.2 Discrete-time Quantum Walks

The discrete-time quantum walk is the quantum counterpart of the discrete-time
classical random walk [13]. To simulate the evolution of a discrete-time quantum



walk on a graph G(V,E), we first replace each edge e(u, v) ∈ E with a pair of
directed arcs ed(u, v) and ed(v, u). This in turn ensures the reversibility of the
quantum process. Let us denote the new set of arcs as Ed. Then, the state space
for the discrete-time quantum walk is Ed, and we denote the state corresponding
to the walker being on the arc ed(u, v) as |uv⟩. A general state of the walk is

|ψ⟩ =
∑

ed(u,v)∈Ed

αuv|uv⟩, (2)

where the quantum amplitudes αuv are complex, i.e., αuv ∈ C. The probability
that the walk is in the state |uv⟩ is given by Pr(|uv⟩) = αuvα

∗
uv, where α

∗
uv is

the complex conjugate of αuv.
The evolution of the state vector between the steps t and t+1 is determined by

the transition matrix U . The entries of U determine the transition probabilities
between states, i.e., |ψt+1⟩ = U |ψt⟩. Since the evolution of the walk is linear and
conserves probability, the matrix U must be unitary, i.e., U−1 = U †, where
U † denotes the Hermitian transpose of U .

It is usual to adopt the Grover diffusion matrix [14] as the transition matrix.
Using the Grover diffusion matrices, the transition matrix U has entries

U(u,v),(w,x) =

{
2
dx

− δux, v = w;

0, otherwise,
(3)

where U(u,v),(w,x) gives the quantum amplitude for the transition ed(u, v) →
ed(w, x) and δux is the Kronecker delta, i.e., δux = 1 if u = x and 0 otherwise.
Given a state |u1v⟩, the Grover matrix assigns the same amplitudes to all tran-
sitions |u1v⟩ → |vui⟩, and a different amplitude to the transition |u1v⟩ → |vu1⟩,
where ui denotes a neighbour of v. Finally, note that although the entries of
U are real, they can be negative as well as positive. It is important to stress
that, as a consequence of this, negative quantum amplitudes can arise during the
evolution of the walk. In other words, the definition in Eq.(3) allows destructive
interference to take place.

In quantum mechanics, a pure state can be described as a single ket vector.
A quantum system, however, can also be in a mixed state, i.e., a statistical
ensemble of pure quantum states |ψi⟩, each with probability pi. The density
matrix (or density operator) of such a system is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (4)

Assume a sample graph G(V,E). Let |ψt⟩ denote the state corresponding to a
discrete-time quantum walk that has evolved from the step t = 0 to the step
t = T . We define the time-averaged density matrix ρTG for G(V,E) as

ρTG =
1

T + 1

T∑
t=0

|ψt⟩ ⟨ψt| . (5)



Since |ψt⟩ = U t |ψ0⟩, where U is the transition matrix of the discrete-time
quantum walk, Eq.(5) can be re-written in terms of the initial state |ψ0⟩ as

ρTG =
1

T + 1

T∑
t=0

(U )t |ψ0⟩ ⟨ψ0| (U⊤)t. (6)

As a result, the density matrix ρTG describes a quantum system that has an equal
probability of being in each of the pure states defined by the evolution of the
discrete-time quantum walk from step t = 0 to step t = T . Note that, in fact, for
a graph G(V,E) the state space of the discrete-time quantum walk is the set of

vertices of its directed line graph GD(VD,
−→
ED) (see details in Section 2.3). As

a result, based on the definitions in this Section, the time-averaged probability
of the discrete-time quantum walk to visit a vertex vD ∈ VD at time T is

PT
DQ(vD) = ρTG(vD, vD). (7)

where vD corresponds to an arc ed(u, v) (u, v ∈ V ) residing on an edge e ∈ E.

2.3 The Relation to Perron-Frobenius Operators

The Perron-Frobenius operator (i.e., the adjacency matrix of the directed line
graph) can be represented in terms of the transition matrix of discrete-time
quantum walks. To show this connection, we first introduce the definition of the
positive support of a matrix. The positive support S+(M ) = [si,j ]m×n of the
matrix M = [Mi,j ]m×n is defined to be a matrix with entries

si,j =

{
1, Mi,j > 0,
0, otherwise,

(8)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Based on the definition in [15], we can re-define
the Perron-Frobenius operator defined in Eq.(1) in terms of the unitary matrix
of the discrete-time quantum walk. Let G(V,E) be a sample graph and U be
the unitary matrix associated with the discrete-time quantum walk on G(V,E).
The Perron-Frobenius operator T of G(V,E) is

T = S+(U⊤). (9)

Eq.(1), Eq.(8) and Eq.(9) show us how the discrete-time quantum walk and
the Perron-Frobenius operator (i.e., the directed line graph) are co-related. For

a graph G(V,E) and its directed line graph GD(VD,
−→
ED), VD is just the s-

tate space of the discrete-time quantum walk on G(V,E), i.e., each vertex in

GD(VD,
−→
ED) corresponds to a unique directed arc residing on the correspond-

ing edge in G(V,E). Moreover, if there is a directed edge from a vertex vD ∈ VD
to a vertex uD ∈ VD, the transition of the quantum walk on G(V,E) is allowed
from the arc corresponding to vD to the arc corresponding to uD, and vice versa.
As a result, the discrete-time quantum walk on a graph can also be seen as a



walk performed on its directed line graph. The state space of the walk is the ver-
tex set of the line graph, and the transition of the walk relies on the connections
between pairs of vertices in the line graph.
Discussions As we have stated, the directed line graph possesses some in-
teresting properties that are not available on the original graph. For instance,
compared to the original graph the line graph spans a higher dimensional fea-
ture space and thus exposes richer graph characteristics. This suggests that the
discrete-time quantum walk may reflect richer graph characteristics than the
continuous-time quantum walk on the original graph [21]. Finally, the discrete-
time quantum walk can be seen as a walk on the line graph and the state space
of the walk is the vertex set of the line graph, we propose to use the rooting of
the in-degree distribution of the line graph as the initial state of the walk.

2.4 Depth-based Representations based on Quantum Walks

For G(V,E), let PT
DQ be the probability distribution of discrete-time quantum

walks visiting vertices of the directed line graph GD(VD,
−→
ED). For GD and a ver-

tex vD ∈ VD, let a vertex set NK
vD be defined as NK

vD
= {uD ∈ VD | SG(vD, uD) ≤

K}, where SG(vD, uD) is the shortest path length between vD and uD. For GD,

the K-layer expansion subgraph GK
vD

(VK
vD ;

−→
E K

vD ) around vD is{
VK
vD = {uD ∈ NK

vD};−→
E K

vD = {uD, wD ∈ NK
vD
, (uU , wD) ∈

−→
ED}.

(10)

For GD, the h-layer directed DB representation around vD ∈ VD is defined as

−−→
DBh

GD
(vD) = [HE(G1

vD ), · · · , HE(GK
vD

), · · · , HE(Gh
vD

)]⊤, (11)

where HE(GK
vD ) is the Shannon entropic signature of GK

vD defined as

HE(GK
vD

) = −
∑

vD∈VK
vD

PT
DQ(vD) logPT

DQ(vD), (12)

where PT
DQ(vD) defined in Eq.(7) is the probability of the discrete-time quantum

walk visiting the vertex vD in the directed line graphGD. Note that, the Shannon
entropic signature HE(GK

vD
) is not a strict Shannon entropy measure, since it

is not computed by using all the probabilities of the discrete-time quantum
walk visiting all the vertices in GD. Finally, note that, since the vertices in GD

correspond to corresponding edges in G, the h-layer depth-based representations
of vertices in GD can be seen as the depth-based representations of edges in G.

3 An Edge-based Matching Kernel for Graphs

3.1 Edge-based Matching through Discrete-time Quantum Walks

As we have stated in Section 2.1, the directed line graph provides a way of defin-
ing an edge-based matching method for graphs based on discrete-time quantum



walks. Because, for an original graph and its directed line graph, each vertex of
the line graph represents a corresponding edge in the original graph. Moreover,
the discrete-time quantum walk can be seen as a walk on the line graph. For a
pair of graphs Gp and Gq, we commence by computing the h-layer depth-based

representations of the vertices in their directed line graphs GD;p(VD;p,
−→
ED;p)

and GD;q(VD;q,
−→
ED;q), based on the discrete-time quantum walks on the line

graphs. These representations can be seen as the vectorial signatures of corre-
sponding edges of Gp and Gq. We compute the Euclidean distance between the

h-layer depth-based representations
−−→
DBh(vi) and

−−→
DBh(vj) as the distance mea-

sure of the pairwise vertices vi and uj of the directed line graphs GD;p and GD;q,
respectively. The affinity matrix element R(i, j) is defined as

R(i, j) =∥
−−→
DBh(vi)−

−−→
DBh(uj) ∥2 . (13)

where R is a |VD;p| × |VD;q| matrix. The element R(i, j) represents the dissimi-
larity between vertex vi in GD;p and vertex uj in GD;q. The rows of R(i, j) index
the vertices of GD;p, and the columns index the vertices of GD;q. If R(i, j) is the
smallest element both in row i and in column j, there is a one-to-one correspon-
dence between vertex vi of GD;p and vertex uj of GD;q. We record the state of
correspondence using the correspondence matrix C ∈ {0, 1}|VD;p||VD;q| satisfying

C(i, j) =

1 if R(i, j) is the smallest element
both in row i and in column j;

0 otherwise.
(14)

Eq.(14) implies that if C(i, j) = 1, the vertices vi and vj are matched. Note that,
like the depth-based matching previously introduced in our previous work [12],
for a pair of directed line graphs a vertex from a line graph may have more than
one matched vertex in the other line graph. In our work, we assign each vertex
from a line graph at most one vertex in the other line graph. To achieve this,
we propose to randomly assign each vertex an unique matched vertex through
the correspondence matrix C. We observe that, compared to the depth-based
matching associating Hungarian algorithm [17] for the assignment, our strategy
will not influence the effectiveness of the resulting kernel in Section 3.2, and
the kernel will be more efficient.

3.2 An Edge-based Matching Kernel

Definition 3.1 (The edge-based matching kernel) Consider Gp and Gq as a

pair of sample graphs, GD;p(VD;p,
−→
ED;p) and GD;q(VD;q,

−→
ED;q) are their directed

line graphs. Based on the definitions in Eq.(11), Eq.(13) and Eq.(14), we compute

the correspondence matrix C. The edge-based matching kernel k
(h,T )
DQEB using the

h-layer depth-based representations of the line graphs that is computed based
on discrete-time quantum walks evolved from time 0 to time T is

k
(h,T )
DQEB(Gp, Gq) = k

(h,T )
DQEB(GD;p, GD;q) =

|VD;p|∑
i=1

|VD;q|∑
j=1

C(i, j). (15)



which counts the number of matched vertex pairs between GD;p and GD;q. In-

tuitively, the edge-based matching kernel k
(h,T )
DQEB is positive definite. Because

k
(h,T )
DQEB counts pairs of matched vertices over the correspondence matrix C. �

Discussions Clearly, like our previous depth-based matching kernel [12], the
edge-based matching kernel is also related to the depth-based representation
defined in [18]. However, there are three significant differences. First, the depth-
based representations in [18] are computed on original graphs. By contrast, the
h-layer depth-based representations for graphs required in this work are comput-
ed based on discrete-time quantum walks on directed line graphs transformed
from original graphs. Second, in [18], we only compute the depth-based repre-
sentation rooted at a centroid vertex of an original graph which is identified by
evaluating the variance of the shortest path lengths between vertices. By con-
trast, in this work, we compute the h-layer depth-based representation rooted
at each vertex of the directed line graph. Third, the depth-based representation
from the centroid vertex is a vectorial signature of an original graph, i.e., it is
an embedding vector for the graph. Embedding a graph into a vector tends to
approximate the structural correlations in a low dimensional space, and thus
leads to information loss. By contrast, the edge-based matching kernel aligning
the h-layer depth-based representation represents directed line graphs in a high
dimensional space and thus better preserves graph structures.

Moreover, as we have stated, the directed line graph may expose richer graph
characteristics. Since the cardinality of the vertex set for the directed line graph
is much greater than, or at least equal to, that of the original graph. Moreover,
the h-layer depth-based representations based on discrete-time quantum walks
on directed line graphs encapsulate quantum information relying on the walks.
As a result, the new edge-based matching kernel can not only encapsulate the
correspondence information between edges of original graphs, but also reflec-
t richer graph characteristics and quantum information through discrete-time
quantum walks on directed line graphs. Finally, like our previous depth-based
matching kernel [11], the new edge-based matching kernel can also be seen as
an aligned subgraph kernel (details of the discussion can be found in [11]). Dif-
ferently, the edge-based matching kernel identifies the locational correspondence
between pairwise h-layer expansion subgraphs of the directed line graphs trans-
formed from the original graphs. By contrast, our previous depth-based matching
kernel identifies the locational correspondence between pairwise h-layer expan-
sion subgraphs of the original graphs.

4 Experimental Results

We demonstrate the performance of our new kernel on standard graph datasets
from computer vision databases. These datasets include BAR31, BSPHERE31,
GEOD31, and SHOCK. Details of these datasets can be found as follows.
BAR31, BSPHERE31 and GEOD31 The SHREC 3D Shape database con-
sists of 15 classes and 20 individuals per class, that is 300 shapes [19]. This
is an usual benchmark in 3D shape recognition. From the SHREC 3D Shape



database, we establish three graph datasets named BAR31, BSPHERE31 and
GEOD31 datasets through three mapping functions. These functions are a) ERG
barycenter: distance from the center of mass/barycenter, b) ERG bsphere: dis-
tance from the center of the sphere that circumscribes the object, and c) ERG
integral geodesic: the average of the geodesic distances to the all other points.
The number of maximum, minimum and average vertices for the three datasets
are a) 220, 41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for BSPHERE31),
and c) 380, 29 and 57.42 (for GEOD31), respectively.

Shock The Shock dataset consists of graphs from the Shock 2D shape database.
Each graph is a skeletal-based representation of the differential structure of the
boundary of a 2D shape. There are 150 graphs divided into 10 classes. Each class
contains 15 graphs. The number of maximum, minimum and average vertices for
the dataset are 33, 4 and 13.16 respectively.

Experimental Setup: We evaluate the performance of our new edge-based
matching kernel through discrete-time quantum walks (DQMK), on graph clas-
sification problems. We also compare our kernel with several alternative state-of-
the-art graph kernels. These graph kernels include 1) the depth-based matching
kernel (DBMK) [11, 12], 2) the Weisfeiler-Lehman subtree kernel (WLSK) [7], 3)
the shortest path graph kernel (SPGK) [4], 4) the graphlet count graph kernel
[20] with graphlet of size 4 (GCGK) [20], 5) the un-aligned quantum Jensen-
Shannon kernel (UQJS) [21], and 6) the Jensen-Shannon graph kernel (JSGK)
[22]. For the WLSK kernel, we set the highest dimension (i.e., the highest height
of subtrees) of the Weisfeiler-Lehman isomorphism (for the WLSK kernel) as
10. For the DQMK kernel and the DBMK kernel, we set the highest layer of
the required depth-based representation as 20 and 10 respectively. The reason
for this is that the 10-layer or 20-layer expansion subgraph rooted at a vertex
of an original graph (for the DBMK kernel) or a directed line graph (for the
DQMK kernel) usually encapsulates most vertices of the original graph or the
line graph. Moreover, for our DQMK kernel, we set the largest time T as 25. This
is because when T > 20 the probabilities of discrete-time quantum walks visiting
vertices on directed line graphs (i.e., edges in original graphs) tend to be stable.
Finally, note that, some kernels (i.e., the WLSK kernel and the SPGK kernel)
can accommodate vertex labels, we use the degree of a vertex as the label of the
vertex. For each kernel, we compute the kernel matrix on each graph dataset. We
perform 10-fold cross-validation using the C-Support Vector Machine (C-SVM)
Classification to compute the classification accuracy, using LIBSVM [23]. We use
nine samples for training and one for testing. All the C-SVMs were performed
along with their parameters optimized on each dataset. We report the average
classification accuracy (± standard error) and the runtime for each kernel in Ta-
ble 1 and Table 2, respectively. The runtime is measured under Matlab R2011a
running on a 2.5GHz Intel 2-Core processor (i.e. i5-3210m).

Table 1. Classification Accuracy (In % ± Standard Error) Using C-SVM.

Datasets DQMK DBMK WLSK SPGK GCGK UQJS JSGK

BAR31 67.93 ± .57 69.40 ± .56 58.53 ± .53 55.73 ± .44 23.40 ± .60 30.80 ± .61 24.10 ± .86

BSPHERE31 58.16 ± .67 56.43 ± .69 42.10 ± .68 48.20 ± .76 18.80 ± .50 24.80 ± .61 21.76 ± .53

GEOD31 41.76 ± .47 42.83 ± .50 38.20 ± .68 38.40 ± .65 22.36 ± .55 23.73 ± .66 18.93 ± .50

Shock 47.00 ± .55 30.80 ± .93 36.40 ± .99 37.88 ± .93 27.06 ± .99 40.60 ± .92 21.73 ± .76



Table 2. Runtime of Computing the Kernel Matrix.

Datasets DQMK DBMK WLSK SPGK GCGK UQJS JSGK

BAR31 198” 682” 30” 11” 1” 630” 1”

BSPHERE31 171” 720” 25” 14” 1” 828” 1”

GEOD31 97” 649” 15” 11” 1” 519” 1”

Shock 8” 7” 3” 1” 1” 14” 1”

Experimental Results: In terms of the classification accuracy from the C-
SVM, we observe that our DQMK kernel can easily outperform all the alter-
native graph kernels excluding the DBMK kernel, on any dataset. The reasons
for the effectiveness are threefold. First, the QDMK kernel can be seen as a
vertex matching kernel through discrete-time quantum walks on directed line
graphs transformed from original graphs. By contrast, other kernels are defined
on original graphs. As we have stated in Section 2.1, the directed line graph
transformed from an original graph can reflect richer characteristics than the
original graph. As a result, the DQMK kernel defined on line graphs can encap-
sulate more information than other kernels defined on original graphs. Second,
compared to the WLSK, SPGK and GCGK kernels that require decomposing
graphs into substructures, our DQMK kernel can establish the substructure lo-
cation correspondences in directed line graphs transformed from original graphs.
By contrast, the WLSK, SPGK and GCGK kernels do not consider the location
correspondence between pairwise substructures in the original graphs. Third,
compared to the JSGK and UQJS kernels that rely on the similarity measure
between original global graphs in terms of the classical or quantum JSD, our
DQMK kernel can identify the correspondence information between both the
vertices and the substructures of directed line graphs, and can thus reflect richer
interior topological characteristics. By contrast, the JSGK and QJSK kernels
only reflect the global graph similarity information of original graphs.

Finally, our DQMK kernel outperforms the DBMK kernel on the Shock and
BSPHERE31 datasets. Especially, the classification accuracy of our new DQMK
kernel on the Shock dataset is much more better than that of the DBMK kernel.
On the GEOD31 and BAR31 datasets, the classification accuracies of our DQMK
kernel are a little lower than those of the DBMK kernel. Overall, our DQMK
kernel outperforms or is competitive to the DBMK kernel. The effectiveness for
this is that the DQMK kernel defined through discrete-time quantum walks on
directed line graphs can reflect richer characteristics and quantum information
than the DBMK kernel defined on original graphs.

5 Conclusion

In this paper, we develop a new edge-based matching kernel for graphs through
discrete-time quantum walks on directed line graphs. Experiments demonstrate
the effectiveness of the new kernel.
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