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Abstract— Acute life threatening events such as car-
diac/respiratory arrests are often predictable in adults and
children. However critical events such as unplanned extubations
are considered as not predictable. This paper seeks to evaluate
the ability of automated prediction systems based on feature
space embedding and time series methods to predict unplanned
extubations in paediatric intensive care patients. We try to
exploit the trends in the physiological signals such as Heart
Rate, Respiratory Rate, Systolic Blood Pressure and Oxygen
saturation levels in the blood using signal processing aspects
of a frame-based approach of expanding signals using a
nonorthogonal basis derived from the data. We investigate
the significance of the trends in a computerised prediction
system. The results are compared with clinical observations
of predictability. We will conclude by investigating whether the
prediction capability of the system could be exploited to prevent
future unplanned extubations.

I. I NTRODUCTION

An Unplanned Extubation (UE) is a clinically unexpected
dislodgement or removal of the endotracheal tube (ETT)
from the trachea of an intubated patient. Tracheal intubation
in children in intensive care is widely used to support res-
piration, maintain their airway open and remove secretions.
In the study presented by Kapadia et al [1] 36 unplanned
extubations occurred during 9,289 intubated patient days.A
review presented by Lucas da Silva and de Carvalho [2]
showed that unplanned extubations occur at a rate of 0.11 to
2.27 events per 100 intubation days.

An UE is a potential acute life threatening event which
is usually not predictable or preventable. An UE could
result in respiratory failure, increased length of ICU and
hospital stay and higher probability of adverse effects of
reintubation [3], [4]. The risks associated with reintubation
include laryngeal or tracheal injury, aspiration, hypoxiaand
death [5]. It is especially frequent in neonates and small
children due to their small tracheal length and bigger impact
of head and neck movement on ETT position. As the age of
48% of paediatric intensive care population is less than 12
months [6], the incidence of UEs and the associated risks
is a significant problem. Rachman et. al. [7] found that
some of the most commonly indicated reasons for an UE in
their hospital included inadequate patient sedation and not
securing the tracheal tube to the face of the patient. Other
studies have found that the rate of unplanned extubations is
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higher in neonates and small children (less than three years
of age) compared with older children [7].

One of the UE preventive measures includes the imple-
mentation of standardised sedation practices by clinicians
using protocols based on the COMFORT scale. The COM-
FORT scale [8] derives a score of patient status based
on eight parameters. A value of one to five is assigned to
the eight parameters including alertness, calmness, agitation,
physical movement, muscle tone, facial tension, mean arterial
blood pressure, heart rate and respiratory response. A score
of eight or minimum on the COMFORT scale represents
‘deeply sedated’ and the maximum score of 40 represents
‘alert and distressed’. Large scale clinical studies have shown
that critical deterioration in patients are preceded by deterio-
rating trends in the recorded physiological parameters of the
patients. In this paper we investigate the significance of the
trends of four physiological parameters heart rate, respiratory
rate, systolic blood pressure and oxygen saturation. We will
evaluate if a computerised prediction system utilising these
four parameters will result in a successful prediction of an
UE. The results are compared with clinical observations of
predictability.

II. DATA ACQUISITION

The data used for the research was recorded in the Pae-
diatric Intensive Care Unit, Birmingham Children’s Hospital
over a 12 months period from November 2012 to October
2013. This data was collected as a part of a larger study (not
blind) which intended to evaluate the efficacy of real time
data analysis algorithms in predicting life threatening events
such as cardiac/respiratory arrests. All the patients admitted
to intensive care were screened for suitability for the trial.
Ethical approval from Medical Ethics Committees was ob-
tained for ‘opt out’ consent and parents were approached
by research or bedside nurses and informed about the study.
Patients whose parents/carers consented for their data to be
used were included in the trial.

The project involved the installation of real-time data
recording, processing and analysis software on a data server
on the BCH computer network. The software comprised
McLaren’s [9] SQLRace Application Processing Inter-
face and Microsoft SQL Server database for storing data
from individual patients, McLaren’s vTAG Server software
for running pattern processing algorithms in real-time and
McLaren’s ATLAS software. ATLAS is a software package
which is used to obtain, display and analyse data from control
systems such as those used within motorsport. The SQLRace
application interfaces between the data server and ATLAS.
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Vital physiological data were recorded from all the patients
continuously from the time they were admitted till they were
discharged. All the physiological parameters of the patient
that are being monitored are recorded in the database. The
parametric data is recorded at 5s intervals. However for the
study and the research presented in this paper only four
parameters are utilised. The four parameters are Heart Rate
(HR), Respiratory Rate (RR), Oxygen Saturation levels in
the blood (SpO2) and Systolic Blood Pressure (SBP). These
four parametric values help the clinicians to assess the car-
diopulmonary stability of the patient which is an important
objective in intensive care. Though clinical parameters such
as “work of breathing” are considered as vital in assessing
the level of respiratory distress, this parameter is not available
in the electronic database. To our knowledge there does
not exist a robust sensor which can measure this parameter
effectively.

Figure 1 shows the number of UEs listed over a 12 month
period from November 2012 to October 2013 in PICU, BCH.
The number of UEs per calendar month falls within the range
observed across multiple care centres.

Fig. 1. Number of unplanned extubations recorded in PICU, BCH

III. M ETHODOLOGY

We take a dynamical systems perspective. The complex,
coupled autonomic human system is regarded as a dynamical
system with an unobservable, latent, state vectoryt. The true
system state vector (describing the dynamical evolution of
the state of health of the individual patient)yt ∈ A evolves
on an attracting subsetA of a (low dimensional) manifold
Γ ∈ R

D but is unobservable directly.
Physiologically, the state vectory represents the phase

space evolution of the autonomic patient system, which
therefore is a combination of several component physio-
logical processes in the body, all interacting to maintain
homeostasis. An observation functionh maps the latent space
variabley to the observation space:xk(t) = hk(yt) + ηt
including some observational noiseηt, for each separate
sensork. (So,xk(t) represents actual sensor measurements).

The aim is to extract knowledge ofyt given only knowl-
edge of {xk(t)} and in particular, note when there are
significant departures ofyt away from the manifoldA. We
do this as follows.

The trajectory of delay vectors formed from the measure-
ments

xi = (xi, xi−1, . . . , xi−n+1) ∈ R
n

constitute a one-one mapping ofyi provided n is large
enough.

In principle, several different types of sensors giving
multiple time seriesxk(t) can be used to improve the insight
which is what we do in this paper to effect the data fusion
of the 4 sensors.

The delay embedding trajectory matrixXk(t) ∈ R
N×n

for sensork whose rows are the set ofN delay vectors
{xk

i }
N
i=1 therefore captures all the informative characteristics

of the patient’s state of health (including all the various noise
processes). ie thedelay embedding matrixof size N × n

obtained from a time series ofN + n data points should
include all relevant information on the original manifold,and
hence on the patient under the assumptions of the model.
However the trajectory matrix is not in a useful form to
extract and exploit this information. We now need to perform
dimensionality reduction and feature extraction of this matrix
to obtain meaningful representations of the underlying data
dynamics.

We are interested in the signal components described by
this delay embedding matrixX(t) since changes in the signal
space indicate changes in the patient’s state of health. A
decomposition ofX(t) into separate orthogonal signal and
noise subspaces is traditionally obtained using the dominant
d most significant right singular vectors ofX forming a
natural orthogonal spanning basis set for the signal subspace
and the remainingn − d singular vectors spanning the
noise subspace. In terms of the right singular vectors,any
embedding vector for sensork x̃k(t) ∈ R

n can then be
expressed in terms of its projections onto the fixed row space
basis vectorsvk

j , expanded as

xk(t) =
d∑

j=1

αk
j (t)v

k
j

where we have selected the topd vectors defining the signal
subspace.

The essential point is that the delay embedding vectors
are now described in terms of projections onto a spanning
basis set, and so the dynamics have now been transferred
into the projection coefficientsαk(t) = {αk

1(t), . . . α
k
d(t)}

since the spanning basis set is fixed. We model the dynamical
evolution of these projection coefficients as separate linear
autoregressive processes, ie for each sensork and each
projection coefficient directionj we assume models of the
form

αk
j (t) =

T∑

τ=1

βτα
k
j (t− τ) + ǫkj (t)



where the residual errorǫkj (t) is gaussian distributed:

p(ǫkj (t)) = N [αk
j (t)−

T∑

τ=1

βτα
k
j (t− τ), σk

j ]

Hereσk
j is the standard deviation of the spread of residual

errors, which will be different for each sensor, and each
signal subspace projection direction and is estimated from
the training data of ‘acceptable’ patients.

We use the same approach for each one of thek sensors.
This approach gives great simplification for the data fusion
process, since we can now assume that the joint distribution
over all sensors can be decomposed into the product of
individual distributions, and moreover, each individual distri-
bution is assumed to be a gaussian (with different diagonal
variance values) which therefore also decomposes into the
product of individual one-dimensional gaussians, ie the joint
distribution is :

p(ǫ1, ǫ2, ǫ3, ǫ4) =

4∏

k=1

p(ǫk)

and each single distribution is a simple product of 1-d
gaussians:p(ǫk) =

∏d

j=1
N [0, σk

j ].
This is an elegantly simple approach providing a prelimi-

nary baseline model to address the data fusion issue, but the
above equation does suffer from the “Veto Effect”, ie if any
one of the sensor models breaks (due to incorrectly measured
data, sensors becoming detached, or major departures from
expected norms of behavour), then due to the exponential
nature of the distributions, any (spurious) value of zero would
destroy the noise model across all sensors, and not just the
faulty one. Therefore we operate with a distance measure in
negative log probability space of the noise model, so that one
rogue sensor will not dominate the responses of the other
sensors. Note that normality for the patient is tracked by
measuring the consistency of the noise models to be jointly
gaussian. In a distance space this becomes a simple weighted
euclidean distance measure which can be checked against
an a priori determined threshold based on training data of
patients in acceptable bounds.

So our initial multivariate stochastic dynamical system is
checked using a simple single scalar measure which takes
into account all the sensors, and is patient-specific due to
the projection of the patient’s embedding vector onto the pre-
determined singular vectors spanning the signal subspace.

A. Stratification

The physiology of children varies with age. Hence paedi-
atric data analysis has to factor in the changing physiological
normality or the range of values that the physiological
parameters can assume for the child to be considered healthy.
Clinically children are separated into four groups, those less
than 1 year; two to four years of age; five to 12 years of age
and 13 to 16 years of age [10]. The physiology of children
belonging to the same age group is considered to be similar.
Hence in our study we designed four different automated
prediction systems where each system was trained on signals

recorded for 100 patients in each of the age groups. Each
training set comprised of data segments of the HR, RR, SpO2
and SBP with no anomalies. The training data was used to
obtain a patient-independent normality distribution model.
The test set included data segments which were clinically
classified as representative of UE.

The methodology implemented for all the systems being
similar, the steps involved will be explained for one age
group. LetD represent a set of parametric data recorded
for a patient.D = [D1,D2, . . . ,D100] represents the data of
100 patients in an age group. A subset ofD, X consisting
of one hour of data recording for only the four parameters
of HR, RR, SpO2 and SBP is created. Each datasetX is
manually selected to ensure that the values recorded for
the four parameters are within the range considered to be
acceptable for the age group.

Therefore the automated prediction system has four input
sensor time series and one output parameter (the anomaly
distanceI). This results in a data fusion system where
multiple parameters are recorded from different sources.

The process to outputI is given below:

1) Four training sets across 100 patients for the four
sensors are obtained.

2) A set of delay vectors representing ‘stable values’
for each parameterxHR, xRR, xSpO2 and xSBP is
obtained and concatenated into embedding matrices.

3) Spanning basis vectors are obtained which define the
signal subspace of the embedding matrix for each
sensor.

4) Density models representing ‘clinically acceptable’
characteristics for each parameter are obtained based
on uncorrelated and gaussian assumptions.

5) Vectors representing the mean and variance of each
density are calculated.

6) Delay vectors formed from each sensor are projected
onto the signal subspace to determine the patient-
specific coefficients, which are then used to com-
pare normality expectations using the joint probability
model.

7) Based on the auto regressive projection models, four-
minute forward forecasts of the trajectory of the patient
are evaluated for an early warning system.

8) An anomaly index for the test signal is calculated using
the distance of the element from the centre of the
normality region in negative log probability space.

9) If required, the posterior probability at timet, based on
the fusion of decisions made by each system separately
can be calculated.

IV. RESULTS

Figure 2 shows how the four different sensors respond
to an unplanned extubation and how the anomaly indexI
varies. As explained in section III the distance measure is
a simple weighted euclidean distance. Individual thresholds
ρk for each of thek sensors is obtained as the sum of the
variances in thed dimensions defining the signal subspace of
each sensor. The critical threshold ofI, Ic is the weighted
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Fig. 2. The effect of an unplanned extubation on the four sensor responses.

sum of the individual thresholdsρk. The value ofI(t) is
compared againstIc to evaluate the status of the patient at
time t. A value ofI(t) ≥ Ic is an indicator of the deviation
of the status from ‘stable’ to probable ‘unstable’. It can be
seen in figure 2 thatI(t) ≥ Ic a few minutes before there
are decreasing trends in the HR, SpO2 and rapid changes in
the RR which are indicative of a critical event.

Table I shows the number of predicted unplanned ex-
tubations in a one year duration for both the automated
system and by clinicians based on the age groups. All the
critical events in the PICU are systematically reported and
classified by the attending senior clinician into predictable
or preventable categories as part of routine patient safety
monitoring. The total number of UEs recorded (see Figure
1) is 60, only 24 of the UEs were analysed. The data for
the 36 events that were not included had insufficient data,
not useful data and data loss. Insufficient data refers to a
patient experiencing a critical event within the first 15 mins
of start of recording and therefore dynamic prediction was
not possible. It can be seen from the results in table I that the
trends in the data are so subtle that they can be captured by an
automated system more efficiently compared with physical
monitoring at the bedside.

Age UEs System Clinically
(months) analysed predicted predicted

≤ 12 19 11 3
≥ 13 & ≤ 48 3 2 0
≥ 49 & ≤ 144 0 0 0
≥ 145 & ≤ 216 2 2 0

TABLE I

NUMBER OF CLINICAL VERSUS SYSTEM PREDICTIONS OF UNPLANNED

EXTUBATIONS

V. CONCLUSIONS

Preliminary results obtained from the analysis of multi-
variate biomedical time series have resulted in an efficient
computer based early warning system. The prediction mech-
anism is a baseline decision support system which provides

clinicians with the information to proactively prevent possi-
ble critical events. The system designed relies on the data
recorded in the immediate past and an inference system
built on the analysis of the characteristics of data recorded
from multiple patients to predict future trends effectively
ignoring noise. The combined metrics of clinical knowledge
and experience, and a forecasted anomaly index based on
the trends in the multi-parameter data set have been tested
and have proven to be of immense help to clinicians. Future
work will include the design and implementation of more
complex data fusion models.
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