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Abstract Many of the current optical transmission techniques were developed for linear 
communication channels and are constrained by the fibre nonlinearity. This paper discusses the 
potential for radically different approaches to signal transmission and processing based on using 
inherently nonlinear techniques. 
 
Introduction 
The modern optical fibre transmission systems 
and technologies that are the largest 
contributors to global data traffic are facing 
challenges due to the nonlinear properties of 
fibre channels [1-7]. It is important to recognize 
that most of these concepts and techniques 
have been developed for linear communication 
channels, such as e.g., radio channels. While 
this provides access to a vast number of already 
developed technologies, these methods may be 
not optimal for nonlinear communication 
channels, limiting achievable transmission rates 
and spectral efficiency. The impact of 
nonlinearity on capacity of fibre channel has 
been a subject of intensive studies in recent 
years [1-15]. 
Although nonlinearity is an essential component 
in the design of advanced fibre communication 
systems, it is often shunned by engineers 
because of its intractability. However, mastering 
the nonlinear effects can translate into a 
significant increase in the capacity of 
communications systems. 
This paper will outline several new approaches 
that aim to develop a practical framework for 
coding, modulation and transmission techniques 
based on a mathematical theory of integrable 
nonlinear systems [16-25], and also aim to 
design nonlinear channels with constructive 
nonlinearity [26,27]. 

Nonlinear Fourier Transform 
The lossless nonlinear Schrödinger equation 
(NLSE) (written here in dimensionless form) is a 
principal model of the nonlinear fibre channel [5] 
(termη accounts for an effective distributed 

noise; we have omitted noise analysis below): 
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This lossless NLSE model can be derived under 
certain conditions by averaging over periodic 
gain and loss variation [20]. Moreover, recent 
demonstrations of a quasi-lossless fibre span 
[28,29] has shown that gain/loss variations can 

be compensated continuously along the fibre. 
Eq. (1) belongs to the class of the so-called 
integrable nonlinear systems [16-20].  
In simple terms, the integrability of NLSE means 
that the nonlinear field evolution described by 
Eq. (1) can be presented in a special basis (that 
is nonlinear analogue of the Fourier transform 
(FT)), within which the dynamics of individual 
“orthogonal nonlinear modes”' is effectively 
linear without any mode interactions. A powerful 
method of the inverse scattering transform - the 
nonlinear Fourier transform (NFT) method [16 - 
20] can be applied to find the solutions for Eq. 
(1). A standard FT approach to linear equation 
converts the initial field given in time into the 
frequency domain (forward FT):

( , 0) ( , 0)A t z A zω= ⇒ =% , the spectral domain 
components are non-interaction (orthogonal) 
and evolution changes can be easily found for 

each component: ( ,0) ( , )A A Lω ω⇒% % . After 
that, backward FT gives the field evolution in 

time domain: ( , ) ( , )A L A t Lω ⇒% . 
Within the NFT method as applied to Eq. (1), the 
first step (decomposition of initial signal field

( , 0) ( , 0)q t z zλ= ⇒ Ζ = into spectral data, 
forward NFT) is to solve a linear spectral 
Zakharov-Shabat problem (ZSP) [16-20]: 
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Here, iλ ξ σ= +  is a (generally complex) 

eigenvalue, and the function ( )q t is the input 
signal. The forward NFT operation corresponds 
to mapping of the initial field, ( ) ( , 0)q t q t z= = , 
onto a set of scattering data: 
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(see [16-25] for details; below, we have omitted 

discrete scattering data { , }n nCλ corresponding 



to solitons). The nonlinear spectrum ( )r ξ .is the 

nonlinear analogue of the Fourier spectrum, 
tending (after some rescaling) to the standard 
FT of q(t) in the low power limit. The evolution of 

( )r ξ is trivial:
22( , ) ( , ) .i Lr L r L e ξξ ξ= Therefore, 

the orthogonality of nonlinear normal modes is 
preserved during the signal propagation. 
 
The backward NFT maps the scattering data – 
for example at z=L, ( , )z LλΣ = – onto the field

( , )q t L . This is achieved via the Gelfand-
Levitan-Marchenko equation (GLME) for the 
unknown function K(t,t') [16-20]: 

 *

( , ') ( ')

( , ) ( ) ( ') 0
t

K t t F t t

K t y F y x F x t dydx
−∞

+ + +

+ + =∫ ∫
  

Here,
1

( ) ( , )
2

i tF t d r L e ξξ ξ
π

−= ∫ is the linear 

FT of ( )r ξ . The solution of GLME for ( , ')K t t
defines the backward NFT that recovers

( , ) 2 ( , )q t L K t t= . 
Note that the fibre nonlinear effects, such as 
self-phase modulation, cross-phase modulation 
and four-wave-mixing, are included in the NFT 
[16-24]. This means that, in a proper nonlinear 
basis, there is no any nonlinear cross-talk [16-
24] and the linear channel capacity can be 
potentially approached. 
 
This property constitutes the general idea of the 
eigenvalue communication first introduced in 
[21], the essence of which is to use invariant 
ZSP eigenvalues (orthogonal nonlinear modes 
of NLSE) to encode and transmit information. 
The application of NFT-decomposition opens 
fundamentally new possibilities for advanced 
coding and modulation, which are resistant to 
nonlinear transmission impairments. 
 
Note that, in [21], only the discrete part of the 
ZSP spectrum was considered. This discrete 
spectrum corresponds to the soliton part of the 
NLSE solution. In [23-25], the idea of NFT was 
studied in a context of non-soliton eigenvalue 
communications. The NFT digital signal 
processing is based on the encoding of 
information directly onto the continuous 
nonlinear signal spectrum that evolves linearly 
along the transmission in a nonlinear integrable 
channel–the nonlinear eigenvalue division 
multiplexing [25]. By applying the NFT 
technique, it is possible to develop a new signal 
processing routine for compensating nonlinear 
distortions [21-25]. The main challenge is to 

develop fast numerical algorithms for solving 
ZSP and GLME – analogue of fast FT [30,31]. 

Nonlinear channels with noise squeezing  
Another interesting possibility of a positive use 
of nonlinearity is to insert in-line (after some 
amplifiers) nonlinear elements with regenerative 
functions. This creates new nonlinear channels. 
The high capacity of such nonlinear channels 
can be achieved when noise is suppressed 
(squeezed) using nonlinear elements; that is, 
the regenerative function not available in linear 
systems [26,27]. 
The regenerative mapping is schematically 
illustrated by Fig. 1, in which four constellation 
points are mapped to the effective nonlinear 
potential (formed by the in-line nonlinear 
elements) that prevent noise from growing 
unrestricted (as in the corresponding linear 
channel). An important new feature introduced 
by the nonlinear mapping is the possibility of 
continuous nonlinear filtering of noise without 
requiring a hard decision. 

 
Fig.1: Schematic illustration of effective noise squeezing 
nonlinear potential created by nonlinear elements. 
Rectangular M=4 constellations after R consequent 
nonlinear tmaps interleaved with noise are shown (below) at 
the output of the R-th nonlinear filter (blue – R=1, green – 
R=5, yellow R=10 and red R=20);for details, see [27]. 
 
We should stress the difference between the 
considered nonlinear in-line processing and full 
regeneration involving receiver and re-
transmitter pairs at each regeneration node. 
Whenever the nonlinear transformation has 
multiple fixed points, the consequent 
interleaving of the accumulating noise with the 
nonlinear filter produces effective suppression of 
the noise. The effective washboard potential that 
is created quantizes the signal and improves 
transmission, with a consequent increase in 
capacity. Details can be found in [26,27]. 

Conclusions 
From a practical standpoint, the fibre 
nonlinearity greatly increases the difficulty of 
understanding system behavior. On the other 
hand, new techniques may be developed that 
cannot be realized in linear systems. Moreover, 



use of constructive nonlinearity with 
regenerative (for example, noise squeezing) 
functions can create communication channels 
that are fundamentally different from the linear 
AWGN channel.  
The introduced class of regenerative mapping 
channels has a high information capacity that is 
achieved by noise squeezing due to the 
introduced nonlinear filters that create attraction 
regions around the stable alphabet.  
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