
Temporal dynamics in immunological synapse: Role of thermal fluctuations in
signaling

Daniel R Bush and Amit K Chattopadhyay
Non-linearity and Complexity Research Group - Aston University, Aston Triangle, Birmingham, B4 7ET, UK

(Dated: July 1, 2015)

The article analyzes the contribution of stochastic thermal fluctuations in the attachment times
of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immuno-
logical synapse bond. The key question addressed here is the following: how does a synapse bond
remain stabilized in the presence of high frequency thermal noise that potentially equates to a strong
detaching force? Focusing on the average time persistence of an immature synapse, we show that the
high frequency nodes accompanying large fluctuations are counterbalanced by low frequency nodes
that evolve over longer time periods, eventually leading to signaling of the immunological synapse
bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive
behavior could be easily explained from the fact that the survival probability distribution is governed
by two distinct phases, corresponding to two separate time exponents, for the two different time
regimes. The relatively shorter time scales correspond to the cohesion:adhesion induced immature
bond formation whereas the larger time reciprocates the association:dissociation regime leading to
TCR:pMHC signaling. From an estimation of the bond survival probability, we show that at shorter
time scales, this probability P∆(τ) scales with time τ as an universal function of a rescaled noise

amplitude D
∆2 , such that P∆(τ) ∼ τ−( ∆√

D
+ 1

2
)
, ∆ being the distance from the mean inter-membrane

(T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer
time regime leads to an universality in the dynamics, at which point the survival probability shows
a different power-law scaling compared to the one at shorter time scales. In biological terms, such
a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate
than the longer LFA-1:ICAM-1 bond justifying its stability.

I. INTRODUCTION

Interactions between immune cells (T cells) and anti-
gen presenting cells (APCs) are fundamental to the ac-
tivation of an adaptive immune response. Cell to cell
contact enables protein complexes on the opposing mem-
branes to come in “close contact” with each other, facili-
tating bonding between them. Integrin-ligand pairs form
bonds producing conformational changes on the intracel-
lular portion of the membrane bound proteins, where-
upon signals are carried through intracellular signaling
pathways.

A necessary bond for T cell activation is the one
formed between the T cell receptor (TCR) and the major-
histocompatibility complex molecule with bound anti-
genic peptide (pMHC). During the early stages of the
T-cell lifecycle, the TCR is primed to recognise partic-
ular peptides of previously encountered antigenic mate-
rial. MHC molecules on the surface of APCs contain
bound antigenic peptides and when the affinity between
the TCR and pMHC are favourable, a bond is formed
with an approximate length of 15 nm. The intracellu-
lar conformational changes in the bound TCR facilitate
Src kinase signal transduction that ultimately lead to cell
proliferation and activation of the immune function [1–3].

Another bond formed during the initial cell to cell con-
tact is that between the intercellular adhesion molecule-1
(ICAM-1) and the leukocyte function associated-1 adhe-
sion molecule (LFA-1). The ICAM-1:LFA-1 bond length
is approximately 45 nm, significantly larger than the
TCR:pMHC bond. During the initial stages of cell con-

tact the larger bonds (ICAM-1:LFA-1) localise at the cen-
tre of the contact zone, with small patches of TCR:pMHC
bonds forming at the edge of the central zone. Fluo-
rescent tagging shows heterogenous segregation and ag-
gregation of the molecules in the contact interface, at-
tributed to the different bond length scales [4, 5], that
leads to the formation of an immunological synapse (IS).

During a TCR’s engagement with a pMHC molecule,
the Src-family protein tyrosine kinases Lck and Fyn phos-
phorylate and activate a number of complexes (ZAP-70,
SLP-76, LAT) that are recruited to the immunoreceptor
tyrosine-based activation motifs (ITAM) on the TCRζ
chain. The recruited complexes assemble to transmit the
signal through phosphorylation and activation of down-
stream signaling complexes. This leads to the activation
of transcription factors in the nucleus, initiating gene
transcription. A precursor to gene transcription is the
elevation of cytoplasmic Ca2+ concentrations measured
to peak around 12 seconds [2, 6], minutes before the ma-
ture IS forms.

Previous works [7, 8] focused on the average time per-
sistence of the bond duration, studying a range of bond
lengths consistent with the TCR:pMHC and ICAM-
1:LFA-1 bonds [8]. This current work builds on the same
membrane interaction model to investigate the role of
extremal value statistics in the temporal dynamics of
the immunological synapse process. More specifically, we
want to analyze the contribution of the extremal time dy-
namical nodes in arriving at the 2-4.5 seconds’ premature
synapse bonding time that was previously estimated [8].
In a remarkable departure from uneducated expectation,
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we show that although the larger nodes dissipate more
membrane energy through faster hydrodynamic dissipa-
tion, the overall statistics is only sparingly affected by
these contributions. Rather the persistence profile is de-
termined by perturbations with smaller amplitudes. In
order to explain this finding, we have calculated the de-
cay rate of the bond survival probability under a range of
thermal noise strengths to understand the importance of
energy dissipation and the corresponding rate of dissipa-
tion, thereby to attain a limiting parametric description
of our stochastically forced linearly stable model.

The article is organized as follows. In section II we
present a description of the stochastically forced mem-
brane model. Section III then details the numerical
analysis, including the close contact survival statistics
algorithm and its implementation. This is followed by
an analysis of the numerical results in section IV that
is subdivided into three parts, the first of which an-
alyzes the small time phase, subsection IV B analyzes
large time phase statistics and section IV C focuses on ex-
tremal value statistics, including comparisons with sub-
sections IV A and IV B. This is followed by a conclusion
and future projections.

II. THE MODEL

A. The TCR:APC Membrane Fluctuation Model

We analyze the qualitative dynamics of the cell-cell
separation distance using a linear model, derived from
a linear stability analysis of the nonlinear SA model [8,
10]. The equation of motion for the separation distance,
φ(x, t), at a given point x on the membrane surface is
given by

M
∂φ

∂t
= −B∇4φ+ γ∇2φ− λφ+ η, (1)

where B is the coefficient of the membrane rigidity, γ
is the surface tension, λ quantifies the linearized relax-
ation kinetics close to equilibrium and M is the mem-
brane damping (phenomenological) constant. As in stan-
dard membrane dynamics, the membrane rigidity term
and the surface relaxation terms create a force balance
by working against each other while the contribution
from the surrounding coreceptor molecules is encapsu-
lated in the linear −λφ term. The thermal noise η(x, t)
is assumed to be Gaussian white noise defined through
fluctuation-dissipation kinetics [7]

〈η (x, t)〉 = 0 (2a)

〈η (x, t) η (x′, t′)〉 = 2D kBTδ (x− x′) δ (t− t′) (2b)

The range of validity of this model is limited to the start
of the immunological synapse patterning and does not
describe the dynamics that lead to the self-organization
of the mature synapse [8].

B. The Single Threshold Model

There are two distinct length scales of separation
between participating membranes in the IS problem
that range from 15 nm (TCR:pMHC) to 45 nm (inte-
grin:ligand) [11]. Equation (1) describes the local fluc-
tuations about a mean separation distance between the
membranes. We introduce a single threshold value ∆,
that defines a distance from the mean separation distance
that may be used to analyze the dynamics away from the
mean separation distance. Two opposing membranes are
said to be within a close contact distance if the separa-
tion distance is less than −∆nm [7], such that if the mean
separation distance were 25nm, then ∆ = 10nm would
describe a close contact definition of 15nm. The time per-
sistence of a bond is given by the length of time the sep-
aration distance remains below this threshold value. The
solution to equation (1) is the stochastic variable φ(x, t)
that is a Gaussian Stationary Process (GSP) fluctuating
about φ = 0 [8]. Figure 1(a) shows sample simulation
results for two different values of the noise strength, D.
The results indicate that an increase in noise strength
relates to a GSP with a larger amplitude.

A schematic illustration of the method used to deter-
mine the bond time persistence instances is shown in fig-
ure 1(b). The t−−∆ regions correspond to the length of
time a bond (with length ∆ from the mean separation
distance) persists and are calculated as the time φ spends
below the −∆ threshold. φ is statistically symmetrical
about ∆ = 0, but for ∆ 6= 0 the symmetry in the φ di-
rection is broken, whereupon the statistics below −∆ are
different from the statistics above −∆. In this case, the
persistence above −∆ would indicate the time duration
where no bonding is taking place. However, in accor-
dance with the statistical symmetry of the GSP about
∆ = 0, the statistics for φ < −∆ are equivalent to the
statistics for φ > ∆. A t+∆ region is defined as any time
interval between two successive crossings of the φ = ∆
line from below, to the time taken to return below the ∆
threshold. In this case each instance of time persistence
is given by t+∆ = t2 − t1, where

φ(t1) = φ(t2) = ∆

φ(t) ≥ ∆, t1 < t < t2 (3)

The different instances of time persistence are assumed
to be statistically independent (independent interval ap-
proximation [12, 13]), then the average time persistence
is given by

< t+∆ >=
1

T

T∑
i=1

t
+(i)
∆ (4)

where t
+(i)
∆ is the ith instance of time persistence above

∆ and T is the total number of instances. In the following
analysis we drop the ‘+’ for ease of notation, where it is
assumed t∆ is the time persistence above ∆.
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FIG. 1. (Color online) Examples of simulated solutions
for the separation distance and time persistence defi-
nition. Figure 1(a) shows the simulated time dependent solu-
tion for φ using two different delta correlated noise strengths
and 1(b) shows a schematic illustration of the t−−∆ and t+∆
regions that represent persistent bonds with a bond length
∆.

A major emphasis of this study is to analyze the effect
of extremal values on the time persistence calculated us-
ing this statistical average technique as has often been
shown to be of great importance in understanding the
expected variation between the theoretical analysis pre-
sented and analogous biological experiments [7, 8]. As an
example of the latter type, quite often in the nanospec-
troscopy of flagellar (e.g. sperm [14, 15]) dynamics, en-
semble averaging is a serious issue due to the perceived
lack of ergodicity in such dynamics. Technically, what
this will imply is an understanding of the role of the
long tail in the P∆(τ) probability distribution profile, as
defined in equation (10) later. We will see that high
frequency nodes, the generator of extremal value statis-

tics, surprisingly return negligible contribution thereby
defining a “null hypothesis” of sorts. Many quantita-
tive biological experiments and conclusions are based on
singular or at best only a small number of observations.
Such lack of statistical information implies that existing
probabilistic theories, including previous immunological
synapse based models, will be inadequate in dealing with
such eventualities. A corollary of our present work is the
development of a methodology to avoid having to explic-
itly deal with statistically large datasets, since at least for
immature immunological synapse dynamics, our results
clearly indicate that large amplitude fluctuations can be
largely neglected in the statistical analysis, thereby lim-
iting the available configuration space to a much smaller
size than it would be otherwise. An even greater im-
pact of this result will be evident in the future nonlinear
modelling of the mature synapse model that has a much
larger parametric space, accompanied with large ampli-
tude fluctuations that we can neglect as a first approxi-
mation based on this present result.

III. SIMULATION METHOD

A. Time Evolution of the Langevin Equation

We solved equation (1) in discretized time and space
both for d=1+1 and d=2+1 dimensions. We simu-
late for φ(xi, tn), where xi = i∆x and tn = n∆t with
n = 0, 1, . . . , N − 1 and i = 0, 1, . . . , L − 1. Periodic
boundary conditions are used with N = 105 and L = 100.
The following description covers the d=1+1 case, but can
be easily extended to the d=2+1 case by using the ap-
propriate spatial derivatives.

We compute the solution for φi,n = φ(xi, tn) using a
forward Eulerian difference scheme

φi,n+1 = φi,n + ∆t
∂φi,n
∂t

(5)

with the spatial derivatives in the Langevin equation
given by

∇2φi,n =
φi−1,n − 2φi,n + φi+1,n

(∆x)2
(6)

∇4φi,n =
φi−2,n − 4φi−1,n + 6φi,n − 4φi+1,n + φi+2,n

(∆x)4

(7)

We used ∆x = 1 and values of ∆t = 0.1 and ∆t = 0.01
to ensure the iteration of the deterministic portion of
the Langevin equation is stable. The noise was scaled
accordingly such that the equation iterated was

φi,n+1 = φi,n −∆t
B

M
∇4φi,n + ∆t

γ

M
∇2φi,n

−∆t
λ

M
φi,n +

√
2D kBT ∆t

M
ζ(xi, tn) (8)

where ζ(xi, tn) is a Gaussian distributed random number
with zero mean and unit variance. The core structure



4

relies on a version of Stratonovich [9] calculus in order
to avoid explicit multiplicative noise in the basic model,
in conformity with most biological models [10, 11] of this
genre.

B. Close Contact Survival Statistics

The t∆ statistics were gathered using the time evolu-
tion of each point xi. If φ(xi, tn) crosses the threshold
from below then the point tn is stored and retained until
the separation distance crosses back over the threshold
at some time tn+m, then the time persistence t∆ = m∆t
is added to the statistics. The instances of t∆ are stored
and used to produce frequency distributions and the en-
semble average as defined in equation (4).

For large enough statistics, the normalized frequency
distribution is equivalent to the probability density for
t∆. Then the probability that the time persistence is
equal to or less than τ is given by P (t∆ ≤ τ), with
P (t∆ ≤ ∞) = 1. For discrete P , as is our case, the
probability density can be expressed as a sum of δ func-
tions

W∆(τ) =

∞∑
m=1

p∆
mδ(τ − τm) (9)

where τm are multiples of ∆t and p∆
m is the first pas-

sage probability to find the discrete value τm for a given
∆ value [16]. The persistence probability is then identi-
fied through the first passage statistics of the fluctuating
interface

P∆(τ) = 1−
∫ τ

0

W∆(τ ′)dτ ′ (10)

Using the system parameters described in section III A,
a single d=1+1 system generates on average 2.5 × 105

statistics for ∆ = 0. We used an ensemble comprising
105 systems, giving statistics in the order of 1010 for the
ensemble calculations. As the threshold increases the av-
erage number of statistics per system decreases as shown
in figure 2. Increasing the thermal noise strength in-
creases the range of ∆ where statistics can be found, al-
though the Gaussian profile is unchanged. We also note
the number of statistics is constant for ∆ = 0, regardless
of the noise strength.

Simulations for the d=2+1 case were performed on a
lattice of L=50× 50 and the number of statistics gener-
ated scales proportional to the number of spatial nodes.
The distribution of statistics is unaffected by the spatial
dimension used (results tested on larger sized lattices too;
conclusions remain the same), therefore we restrict our
analysis to the d=1+1 case.

IV. RESULTS

For the IS problem we use coefficients M = 4.7 ×
106 kBTµm−4, B = 11.8 kBT , γ = 5650 kBTµm−2 and
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tem run for d = 1 + 1. The number of statistics per simu-
lated system is plotted against the ∆ threshold value. Three
thermal noise strengths are plotted to show the variation in
the statistics as the noise strength changes.

λ = 6 × 105 kBTµm−4, with D just large enough to
stimulate the fluctuations, without dominating the dy-
namics [7, 8]. Figure 3 shows the log:log plot (solid line)
for the persistence probability, P∆(τ), from a numerical
simulation for the parameter value ∆ = 0 and the model
parameter values mentioned above. We observe two dis-
tinct linear regions corresponding to two different power
law decay time exponents. Using a least squares’ linear
fit in the log:log regime we find approximations for the
time persistence exponents in each regime. The transi-
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tion region separating the two different scaling regimes
has a length scale in the order of tens of seconds, with
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the crossover point τ× shown as the intersection between
the least square fitted lines. We define θS as the time
persistence exponent for the small τ regime and θL as
the exponent for the large τ regime.

P∆(τ) ∼ τ−θS τ � τ× (11)

P∆(τ) ∼ τ−θL τ � τ× (12)

As the results clearly show, the system shows two dif-
ferent relaxation time scales, one dominated by diffusion
and the other by the chemical force interacting with the
stochastic forcing. In a way, this is complementary to the
two time scale problem that was analyzed earlier [11]. In
the following subsections we analyze the small and large
τ regimes, with respect to the bond length and thermal
noise strength. And finally, we use the persistence prob-
ability density to understand the effect of high frequency
fluctuations on the average statistics.

A. The Small τ Phase: The “Thermal
Fluctuations” regime

The small τ phase represents the regime where re-
ceptor:ligand complexes are associating and dissociating
rapidly due to the impact of high frequency thermal fluc-
tuations, within a relative small time space (measured by
smaller number of time steps). The bond duration in the
small τ regime is not deemed sufficient to coincide with
the elevation in intracellular Ca2+ levels at 12 seconds [2].

However, this regime is statistically relevant due to the
impact on the average time persistence. The probability
density associated with ∆ = 0 inidicates approximately
30% of statistical cases will persist for a single time step,
whereupon they return below the threshold. Using the
notation from equation (9), the first passage probability
values are p0

1 = 0.29306, p0
2 = 0.12993 and p0

3 = 0.07751,
meaning 50% of the t∆=0 instances survive for three (or
less) discrete time lengths.

Simulations using ∆t = 0.01 and N = 106 were run
and figure 4(a) shows the log:log plot for the survival
probability against time for different ∆ in the small τ
regime. θS becomes steeper with increasing ∆, indicat-
ing the rate of decay for the survival probability (and
hence the survival probability) is dependent on ∆. The
relationship between θS and ∆ is shown in figure 4(b) for
a range of thermal fluctuation strengths. In each case a
near linear relationship exists between the time exponent
and ∆. All three values of D have the same persistence
exponent at ∆ = 0, but the rate of change of the time
exponent with ∆ is increased as D is decreased.

The linear relationship between θS and ∆ suggests the
persistence probability has a scaling relationship of

P (τ) ∼ τ−θS(∆) ∼ τ−(α∆+β) (τ � τ×) (13)

in the small τ regime, where α is the coefficient related
to the ∆ dependence, and β is the persistence exponent
when ∆ = 0. Table I shows values for α and β for a range
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FIG. 4. (Color online) The time exponent for the small
τ regime. Figure 4(a) shows the plot of the survival proba-
bility against time, in the log:log scale, for a range of ∆ and
figure 4(b) shows the time exponent θS plotted against ∆ for
three different thermal noise strengths.

δ-correlated α β

noise strength (D)

4.7× 106 0.0971 0.5030

4.7× 107 0.0315 0.5026

4.7× 108 0.0107 0.4953

4.7× 109 0.0028 0.5088

4.7× 1010 0.0008 0.5090

TABLE I. Linear fit parameters for θS. The α parameter
is dependent on the noise strength, whereas β is independent
of the noise.

of D. The value of β is constant for all D, but α is clearly
dependent on D. Plotting α against D in the log:log scale
(fig. 5) reveals a linear relationship that leads to a power
law: α ∼ Dχ. The fitted solid line in figure 5 suggests a
value of χ ≈ −0.52; in other words, α ∼ 1√

D
which when

combined with the definition of the exponent α gives us
the noise scaling of the survival probability as P (τ) ∼
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τ
−( ∆√

D
+β)

. Mathematically, this implies the existence of
a well-defined universality class that is a function of the
of the noise strength and the bond length Delta, that
also means that numerical simulations could better use
the redefined noise amplitude D

∆2 instead of D. One must
here be aware of a realistic biological constraint in that
higher noise corresponds to larger thermal fluctuations
and hence will be capped at some finite value.

The table above suggests that for ∆ = 0, the survival
probability is independent of the noise strength (since β
is noise independent always converging to the value 0.5)
as it should be for Brownian motion. However, for all
other values of ∆, there is a competition between the free
energy and noise terms that eventually determines the ef-
fective number of datapoints to be obtained numerically
(the plot for D = 4.7× 108 in Fig. 2 is instructive here).
In a way, this suggests the limit of simulation accuracy in
analyzing the probabilistic persistence data. So, increas-
ing the thermal noise leads to a greater range of statistics
for increasing ∆, but does not alter the time exponent re-
lating to ∆ = 0 nm, that corresponds to the glycocalyx
length used in the linear stability analysis. The range of
τ where the scaling relation in equation (13) holds is in
the order of seconds and the range decreases steadily as
∆ increases.

B. The Large τ Phase: The “Signaling” regime

The large τ phase represents the regime where infre-
quent longer lasting receptor:ligand bonds exist. This is
the phase characterized by large TCR:pMHC bond half
lives facilitating intra-cellular signaling required for T cell
activation. The persistence time of these bonds are in the
order of tens of seconds and therefore sufficient for signal-
ing pathways that lead to elevated levels of intracellular
Ca2+.

Analysis of the θL values for different ∆ reveals a con-

sistent decay rate of θL ∼ 16. By rescaling the different
curves for each ∆ the large τ regime can be collapsed on
to a single universal curve. Figure 6 shows the rescaling
steps taken in the log:log scale. We use the crossover time
for a given ∆, Ω∆ = ln (τ×), as a hard cut-off between the
small and large τ regimes (fig. 6(a)). Ω is plotted against
∆ in figure 7(a) for three different noise strengths, where
we find a near linear relationship for small ∆. As values
of ∆ are reached where the statistics drop off, this linear
relationship begins to be questionable, that may or may
not be answered with increased statistics but we do not
consider it here.

We fit a straight line through the sample crossover
points, Ω∆, for a given noise strength. The linear re-
lationships in figure 7(a) (solid lines) leads to the expres-
sion Ω = log(τ×) = −ω∆ + c1. Similar to the analysis
conducted for the small τ regime, the ω coefficient is de-
pendent on the noise strength, but the ∆ = 0 case is
independent of noise strength. The crossover time can
be then be expressed as the exponential

τ× ≈ e−ω(D)∆+c1 (14)

Then, rescaling the time dimension using the new time
variable u = ln(τ/τ×) ensures the phase transition occurs
at the same point in the time dimension for all values of
∆ (fig. 6(b)). Similarly, rescaling in the direction of the
survival probability as shown in figures 6(b) and 7(b),
we collapse the large τ regimes for each ∆ on to a single
curve. Again, we use a linear fit giving leading to

P (τ×) ≈ e−ψ(D)∆+c2 (15)

Equations (14) and (15) remain impervious to changes
in the noise strength for ∆ = 0, thereby indicating the
existence of an universal survival probability for ∆ = 0.
This result has a remarkably important biological conno-
tation. While all other persistence statistics are shown to
be scale dependent, the cross-over time regime is a scale
independent dynamics, suggesting that parameter values
could always be optimized to attain non-equilibrium dy-
namics.

Using the new time variable u we can map the survival
probability in the large τ regime on to the universal prob-
lem

f(u) = −θ′u (16)

that is valid for u ≥ 0 corresponding to τ ≥ τ×. Using
f(u) = ln (P (τ)/P (τ×)) in equation (16) we can rear-
range to get the survival probability scaling

P (τ) ∼ τ−θ
′

(17)

where θ′ = θL ∼ 16 and from equations (14) and (15) the
magnitude of the survival probability for a given ∆ and
noise strength is given by

P (τ×)

τ−θ
′

×
= e−(ψ(D)+ω(D)θ′)∆+c2+θ′c1 (18)
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FIG. 6. Schematic illustration of the time-dependent
rescaling used in the large τ regime. Figure 6 (a) we
rescale the time dimension to ensure the crossover point be-
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different ∆ curves. Figure 6 (c) shows the final data collapse
for the rescaled curves for τ ≥ τ×.

confirming the universal persistence probability for ∆ =
0, for all D. Finally, figure 7(c) shows the collapsed large
τ regime for the simulation results using a noise strength
of D = 4.7× 108, that is representative of the amplitude
required to stimulate dynamics on a scale required for
the TCR:pMHC and ICAM-1:LFA-1 bonds. The data
collapse suggests an universal scaling regime for the decay
rate of the persistence probability during longer bond
attachments.

C. Extremal Value Statistics

The average time persistence calculated using equa-
tion (4) is a monotonically decreasing function as the
threshold increases [8]. The fluctuations due to thermal
noise lead to rapid crossings of the threshold as the sep-
aration distance moves from a close contact phase to one
of separation and vice-versa. Here we look at the extent
to which these rapid crossings contribute to the average
time persistence for the bonds.

We term the time persistence realizations due to rapid
fluctuations as extremal values, where the bond life is ex-
tremely short. Table II shows the normalized frequency
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FIG. 7. (Color online) The rescaling functions, Ω and
Ψ, along with the rescaled large τ regime. Figure 7(a)
shows the time dimension rescaling function Ω plotted against
∆ and figure 7(b) shows the probability dimension rescaling
function Ψ plotted against ∆. Figure 7(c) shows the rescaled
simulation results, where the data collapse in the large τ
regime can be observed. The solid line shows is fitted to the
large τ portion and the gradient θ is shown.
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distribution of t∆ for a range of ∆.

First Passage Prob Time

∆ (nm) ∆t 2∆t 3∆t Total

0 0.2945 0.1315 0.0789 0.5048

5 0.3072 0.1366 0.0818 0.5257

10 0.3201 0.1417 0.0846 0.5465

15 0.3333 0.1467 0.0873 0.5672

20 0.3466 0.1515 0.0897 0.5878

25 0.3601 0.1562 0.0919 0.6082

30 0.3738 0.1607 0.0939 0.6283

TABLE II. The relative frequency for occurrences of transient
bonding. The number of bonds that have a duration of 3
discrete time step lengths or less account for 50% or more of
the statistics.
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FIG. 8. (Color online) The 〈t∆〉 time persistence against
∆. The average time persistence plotted against ∆ (solid
line), along with the average time persistence excluding the
extremal events (dotted line).

At least 50% of the statistics for each ∆ are accounted
for in the first three discrete time steps. That is, at least
50% of bonds forming will disassociate in a fraction of a
second.

From our computer simulations we calculate approxi-
mations for the ∆ dependent probability density function
W∆, equation (9), and this is used to calculate the av-
erage time persistence. To assess the contribution of the
extremal values to the total average we introduce a lower
cut-off v ≥ 0 to the first moment calculation

〈t∆〉 =

∫ ∞
v

t W∆ (t) dt (19)

which is used to exclude the extremal values from the
calculation. In our case, we set v = 3∆t to exclude the
statistics set out in table II. Figure 8 shows 〈t∆〉 against
∆ (solid line) along with the corresponding average time
persistence excluding the rapid fluctuations (dotted line),
created using a D = 4.7× 108 thermal noise strength.

For small ∆ the extremal values have very little con-
tribution to the total average calculation, however the
contribution steadily increases as ∆ increases.

V. CONCLUSIONS

The analysis presented here has the following immuno-
logical implications. First, figure 8 clearly shows that ex-
tremal value statistics do not contribute greatly to the
average time persistence in the linear stability region.
Therefore, rapidly fluctuating membrane dynamics fol-
lowing high energy dissipation has little effect on the
statistics and the survival probability profile may be well
described excluding large amplitude fluctuations. We
aim to use this result in future work to model the mature
immunological synapse (in the nonlinear regime).

Next, the survival probability distribution plotted in
figure 3 shows two distinct phases, corresponding to
two separate time exponents. The small-τ regime cor-
responds to a rapidly fluctuating membrane about the
threshold separation distance, where transient bonds are
associating and disassociating, while the large τ regime
corresponds to the bonds that persist for time periods of
the order of magnitude required for downstream signal-
ing that leads to cell activation. The small-τ regime has
a time exponent that is dependent on both the thresh-
old bond length and the noise amplitude. As shown in
figure 5, the exponent alpha scales with the noise ampli-
tude D thereby defining a “diffusive universality class”
between α and D that quantifies into the rescaling of
the noise amplitude as D

∆2 . From the perspective of a
biologist, the above result implies that if the system is
calibrated with respect to the dimensionless variable D

∆2

instead of the two variables D and ∆ independently, the
signaling domain can be directly identified from the dis-
tribution of “time patch” sizes as is shown through the
estimation of a single valued θ in figure 7(c). For a sig-
naling setup involving multiple coreceptor molecules with
varying bond lengths, the above analysis could enable the
prediction of the start of the signaling regime for a fixed
noise input based on the results presented here. Fixing
the thermal noise leads to a linear dependency between
the time exponent and the bond length. However, the
small-τ regime has a universal time exponent that is de-
fined by D

∆2 , indicating a constant dissociation rate (koff

as in [11, 17]), that appears in the parameter λ in the
base model, which can be used for the bond lengths con-
sidered (15 - 45nm) in this regime.
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