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Abstract: Since the development of large scale power grid interconnections and power 

markets, research on available transfer capability (ATC) has attracted great attention.  

The challenges for accurate assessment of ATC originate from the numerous uncertainties 

in electricity generation, transmission, distribution and utilization sectors. Power system 

uncertainties can be mainly described as two types: randomness and fuzziness. However, 

the traditional transmission reliability margin (TRM) approach only considers randomness. 

Based on credibility theory, this paper firstly built models of generators, transmission lines 

and loads according to their features of both randomness and fuzziness. Then a random 

fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in 

which both randomness and fuzziness are considered. The bootstrap method and  

multi-core parallel computing technique are introduced to enhance the processing speed. 

By implementing simulation for the IEEE-30-bus system and a real-life system located in 

Northwest China, the viability of the models and the proposed method is verified. 

Keywords: available transfer capability; credibility theory; random fuzzy simulation; 

bootstrap method 
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1. Introduction 

Available transfer capability (ATC) expresses a measure of transfer capability remaining in a physical 

transmission network for further commercial activity over and above already committed uses [1]. It is 

not only an important technical index for measuring the stability margin of the power grid, but also a 

useful tool for guiding transactions and market planning in the power market. Therefore it is very 

important to correctly assess ATC between different areas. The modern power system is a large scale 

dynamic system. As power systems have grown, their operation has become more complex with the 

introduction of more outside interferences. As a result, uncertainty factors are becoming prevalent in 

the assessment of ATC. Moreover, power industry reforms necessarily lead to an increasing number of 

market participants, which greatly changes the trade mode and operation control. These also produce 

more uncertainties in the ATC assessment. Hence how to correctly describe and fully consider 

uncertainties is the key issue of ATC assessment [2]. 

The uncertainty represents the unknown state of the future. The power system uncertainties mainly 

come from equipment outages, load changes, operation modes and so on. The concept of transmission 

reliability margin (TRM) was introduced by the North American Electric Reliability Council (NERC) 

in 1996 to consider the impacts of these uncertainties on ATC. It represents the amount of transmission 

transfer capability needed to ensure that the interconnected transmission network is secure under a 

reasonable range of uncertainties under the system conditions. Currently two approaches are usually 

used to deal with TRM [3,4]: (1) take a fixed percentage of the total transfer capability (TTC), such as 

4% of TTC or reduce the limit of equipment parameters by a certain percent. This approach is easy to 

carry out but it is difficult to choose a reasonable percentage, and a rough result is achieved; (2) use 

stochastic methods [5,6] whereby according to the random distributions of the uncertainties, the ATC 

calculations are repeated using different uncertainty parameters, then the ATC distribution can be 

obtained, and TRM is the difference between the maximum value and the expected value of this ATC 

distribution. This type of approach only considers the power system randomness. However, power 

systems actually contain two types of uncertainties—randomness and fuzziness—and there a lot of 

uncertainties in power systems with both random and fuzzy features. For example, the failure of a 

generator is random, while its available output is fuzzy; similarly a transmission line failure is a 

random event, and its failure rate which is affected by many factors that embody fuzziness;  

the probability distribution of a load is random, but its distribution variance is fuzzy. Both  

randomness and fuzziness are important characteristics of the uncertainties in power systems, and each 

has great effects. Therefore, how to comprehensively describe these uncertainty features is an 

important potential difficulty in ATC assessment, but with little achievement reported in the  

state-of-the-art literature. 

Although research on comprehensive evaluations that consider both randomness and fuzziness 

simultaneously has been constantly tried, a series of problems that cannot be easily overcome have 

made progress in this field very slow. The biggest obstacle is that there was no complete theory to 

support it in the field of basic mathematics until the credibility measure was proposed by Liu in 2002 

and then the credibility theory was established [7–11]. The theory puts forward the concept of the 

opportunity space and mixed variables, allowing a comprehensive evaluation method for randomness 

and fuzziness to be set up. 
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Now the credibility theory has been applied to power systems [12–14]. According to the two-fold 

uncertainty combining randomness and fuzziness in power system operations, a novel operation risk 

assessment method based on credibility theory is presented; the expected value and the average chance 

measure of random fuzzy variables was used to build on index of operation risk in [12]. Considering 

both the randomness of force outage rates and the fuzziness of hydro energy, a comprehensive model 

of hydro-thermal generator maintenance scheduling based on credibility theory was established in [13]. 

In [14] a new methodological framework with chance-constrained random fuzzy programming, which 

evaluated the randomness of the forecasted load, the fuzziness of rivals’ biddings strategies and  

price-demand elasticity, was developed for building optimal bidding strategies for generation 

companies with uncertainty theory-based risk management taken into account was presented and a 

hybrid intelligent algorithm with combined random fuzzy simulation, artificial neural network and 

genetic algorithm was proposed to solve the random fuzzy programming problem. 

However, very limited work has considered both the randomness and fuzziness that actually coexist 

in the assessment of ATC. A chance-constrained random fuzzy programming method to consider TRM 

was introduced in [15], but it still treated the important factors which affected the reliable of 

transmission as random variables or ones that obeyed a normal distribution. Comprehensive research 

which considers both randomness and fuzziness at the same time has not been done. This paper builds 

for the first time comprehensive models of generators, transmission lines and loads according to their 

randomness and fuzziness features. No stochastic or possibilistic programming can single-handedly 

deal with these complex uncertainty models, therefore a random fuzzy simulation is also introduced 

for the first time to the assessment of ATC. A novel assessment method is proposed based on 

credibility theory. The bootstrap method and multi-core parallel computing technique are used to 

enhance the speed of processing. As the main contribution of this paper, the concept and approach 

have been tested on the IEEE-30-bus system and a real-life system. 

The paper is organized as follows: the basic concepts of credibility theory with some application 

examples concerning power systems are introduced in Section 2, which includes four axioms, 

credibility measure, random fuzzy variables and their expected values and variances In Section 3. 

some subjects such as random fuzzy modeling of the main uncertainty factors, the ATC calculation 

model and the assessment indices, bootstrap method and multi-core parallel computing technique, and 

the ATC assessment of random fuzzy simulation are presented. A numerical simulation with the IEEE 

30 bus system and an actual Chinese system aregiven to demonstrate the feasibility of the proposed 

models and methods in Section 4, followed by our conclusions in Section 5. 

2. Credibility Theory 

There are a large amount of uncertainties in the real world. They could be in results, categories, or 

their combinations. The result uncertainties are represented by probability methods. The corresponding 

theory and methods have already been well developed, whereas some other uncertainties affected by 

the weather, the environment and operational conditions are changing from time to time under  

real-time conditions. In other words, they may vary significantly under different conditions, so it is 

difficult to simply quantify the co-relationship among these uncertainties by randomness. Fortunately, 

they can be described using fuzzy words based on experienced operators’ judgment (such as  
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“most adverse”, “fairly adverse” or “less adverse”, etc.), which can be modeled using a fuzzy 

membership function [9,16–19]. Fuzzy theory and its methods have been popular yet challenging for 

many years. In 1975 Kaufmann proposed the concept of fuzzy variables for the first time [20]. Then in 

1978 Zadeh put forward the possibility theory which depicted the possibility of occurrence of fuzzy 

events [21], and laid an important foundation for the development of fuzzy theory, although at that time 

incompatible counter-examples in fuzzy theory still existed, and fuzzy theory had not been verified 

axiomatically. The axiomatic system of fuzzy theory was finally verified by the Chinese mathematician 

Baoding Liu in the 21st century. Since then credibility theory was developed and now offers a strict 

theoretical foundation for modeling and solving problems with randomness and fuzziness. 

2.1. Basic Concept 

The following four axioms are the base of fuzzy theory. Let  be a non-empty set and  an empty 

set. P() is the power set of ,  is the minimum operator and sup is the supremum operator.  

The possibility measure of the event A is defined as Pos{A}: 

Axiom 1:   1osP . 

Axiom 2:   0osP . 

Axiom 3: for any set {Ai} in P(). 
  }{sup iosii ios APAP  . 

Axiom 4: if I is a non-empty set, Posi{}, i=1,2,…,n meets the first three axioms, and 
=1×2×…×n, for any set AP(), 

1 2

1 1 2 2
( , , , )

{ } sup { } { } { }
n

os os os osn n
A

P A P P P
   

      


 . 

Definition 1: if POS meets the first three axioms, POS is defined as the possibility measure. (, P(), 

POS) is a possibility space. If Ac is the complement of A, the necessity measure Nec is defined as 

Nec{A}=1 − Pos{Ac}. Obviously, POS and Nec are one pair of dual measures, so the credibility measure 

is defined as follows: 

}){}{(
2

1
}{ ANAPAC ecosr   (1)

When the possibility measure of a fuzzy event is 1, the event may not exist, but when the necessity 

measure of a fuzzy event is 0, this event may still exist. However, the fuzzy event must exist if its 

credibility is 1, otherwise it does not exist if its credibility is 0. The basis of credibility theory is the 

definition of a credibility measure, whose position equals one of the probability measures in 

probability theory. 

Definition 2: A fuzzy variable  is a function from the possibility space (, P(), POS) to the real 

line R. The triangle fuzzy variable and the trapezoidal fuzzy variable are commonly used ones. 

Definition 3: Let  be a fuzzy variable in a possibility space (, P(), POS), the membership 

function of  is:  

( ) { | ( ) },osx P x x R        (2)
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Through the above definition the following inversion formula can be proved: for any set B of real 

numbers, we have: 

{ } (sup ( ) 1 sup ( )) / 2
c

r
x B x B

C B x x
 

       (3)

Example 1: The available output of a generator has an uncertain feature. Especially when green 

energy forms, such as hydropower, wind power, solar power and so on are vigorously developed, its 

unreliable forecasting characteristics and the weather dependency will increase the uncertainties. It is 

very difficult to get the exact output of a generator, but we can roughly use a triangle fuzzy variable G 

to represent its available output. Suppose the available output G = (35, 50, 55) MW, we have the 

credibility measure of G: 

1, 35

65
, 35 50

30{ }
55

, 50 55
10

0, 55
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r
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Definition 4: Let  be a fuzzy variable. The expected value of  is defined as: 

0

0
[ ] { } { }fuz r rE C r dr C r dr




         (4)

To avoid possible occurrence of ∞–∞, at least one of the two integrals is limited in the above 

Equation (4). 

Example 2: The expected value of a triangle fuzzy variable (a, b, c) can be obtained:  

[ ] ( 2 ) / 4fuzE a b c     

The expected value of a trapezoidal variable (a, b, c, d) is: 

[ ] ( ) / 4fuzE a b c d      

2.2. Random Fuzzy Variable 

Definition 5: A random fuzzy variable  is a function from the possibility space (, P(), POS) to 

the set of random variables. 

Example 3: There are two states of a generator: on state, and off fault state. They are random, while 

its available output is fuzzy, so the state of a generator can be represented using a two-point 

distribution random fuzzy variable . For instance, it can be represented as Ppro,G( = G) = 0.99, 

Ppro,G( = 0) = 0.01. G is a triangle fuzzy variable as defined in Example 1. 

Definition 6: Let  be a random fuzzy variable, the expected value of  is defined as: 

0

0

[ ] { | [ ( )] }

{ | [ ( )] }

pro fuz r

r

E C E r dr

C E r dr







     

    




 (5)
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Also to avoid the situation of ∞–∞, at least one of the two integrals is limited in Equation (5). 

Definition 7: Let  be a random fuzzy variable and it has a limited expected value. The variance of  
is defined as: 

V[] = E[( − E[])2] (6)

Example 4: The random fuzzy variable () defined in Example 3 is a two-point distribution random 

variable for each , where  is a sample from a possibility space. The expected value of () is: 

[ ( )] 0.99 ( )pro GE       

According to Definition 4, the expected value of a two-point distribution random fuzzy variable  is:  

( ) 0.99 [ ]

0.99 ((35 2 50 55) / 4) 47.025

pro fuz fuz GE E   

     
 

3. Credibility Theory-Based ATC Assessment Approach 

3.1. Modeling Uncertainties in ATC Calculation 

The assessment to ATC involves many uncertain factors, such as those in generation scheduling, in 

load forecasting and so on. Compared with previous methods, this paper comprehensively considers 

three main uncertain factors: random fuzzy models of generators, transmission lines and loads  

(to consider faults and fluctuations). It is worth noting that other uncertainty factors included in ATC 

calculation can also be treated in a similar way using credibility theory, and are potentially applicable 

to enrich and make the ATC calculation flexible by considering more factors. The corresponding 

random fuzzy models are built up as follows: 

(1) For generators under the combined effects of the internal and external factors, there are two 

common states that are on-state and off-state. They are subject to a two-point random distribution 

according to the forced outage rate which comes from the statistics. When the generator is on-state,  

its output is greatly affected by many factors such as coal quality, reserve requirements, weather 

conditions and so on, so for a specific generator, its output is not an exact value and may vary 

significantly under different conditions. Although the equivalent forced outage rate [22] considers the 

conditions of outage and output reduction, it could not involve the conditions of overload operation, 

and since it depends on the statistics of a large number of historical data and the complex calculations, 

its value is hard to get for each generator in practical systems, especially for a newly installed 

generator, while through the simple fuzzy membership function of generator available output, which 

needs few parameters, the complex conditions can be described well by fuzzy variables, thus,  

the states of generators are suitable for being represented as discrete random fuzzy variables G with  

two-point distribution: 
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 (7)

where Ppro,G is the state occurrence probability of the generator; G = G refers to the normal on-state, 

and G = 0 is the off-state; the triangle fuzzy variable G is used to represents the fuzzy available 

output of a generator, and Ffuz,G represents its membership function; aG,L, aG,M, aG,H are the minimum 

possible value, the most likely possible value and the maximum possible value of G, respectively.  

In this paper triangle fuzzy variables are used to represent the fuzzy states of the generator, 

transmission line and load, but other types of fuzzy variables such as trapezoidal fuzzy variables,  

can also be used according to specific conditions. 

(2) The state of transmission line also obeys a two-point random distribution according to its failure 

rate. Conventionally, the longer the transmission line, the higher the failure rate in the same area and 

for the same voltage level, but practical experience indicates that the occurrence of faults in outdoor 

transmission lines is affected by many factors, including the weather conditions. Therefore the failure 

rate is a fuzzy value for a specific transmission line, which changes with the weather conditions and 

the area considered [23]. The method presented in [24] where the failure rate can be modified through 

probability statistics is hard to apply in practical systems, so in order to comprehensively describe 

randomness and fuzziness on the whole, it is proper to representthe states of transmission lines as 

random fuzzy variables B as follows: 

,
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 (8)

where Ppro,B is the state occurrence probability of the transmission line; B = 1 expresses the normal  

on-state, and B = 0 is the off-state; the triangle fuzzy variable B is used to represents the fuzzy failure 

rate of the transmission line, and Ffuz,B represents its membership function; aB,L, aB,M, aB,H are  

the minimum possible value, the most likely possible value and the maximum possible value  

of B, respectively. 
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(3) As a main uncertainty factor in ATC assessment, the fluctuation of nodal load is considered to 

obey a normal distribution N(βL, L) in traditional methods. Here the parameter βL is the expected 

value of the distribution, which usually takes the predicted value of the nodal load. The parameter L is 

the variance of the distribution, which shows the degree of deviation between the real value of the load 

and the forecasted one, and is usually determined according to the operator’s experience. Actually, L 

is not a fixed value, but a fuzzy one, so the fluctuation of nodal load has both randomness and 

fuzziness features, so the random fuzzy load L is represented as follows: 

,
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, ,

,
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ε ~ (β ,ξ )
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 (9)

where the triangle fuzzy variable L is used to represents the fuzzy variance of a nodal load, and Ffuz,L 

represents its membership function; aL,L, aL,M, aL,H are the minimum possible value, the most likely 

possible value and the maximum possible value of L, respectively. 

3.2. ATC Calculation Model 

An improved repeated power flow method is adopted to calculate the ATC for each simulation state 

in this paper. The method starts from an initial operation point, then increases the load powers in the 

receiving area according to their proportion of the initial power, at the same time increases the 

generators’ power outputs in the sending area according to their generation cost, until a certain 

constraint hits its limit, such as the node voltage exceeding its operating limit, or the transmission line 

being overloaded and so on. The net increase on the researched interface is the ATC of this simulation 

state. Such a conventional repeated power flow method only pays attention to system safety, but neglects 

the economics, so this paper introduces the optimal power flow [25,26] as shown in Equation (10) into 

every power flow computation of the repeated power flow method to comprehensively consider both 

safety and economy; it can get a more accurate results and better meet the real application needs in the 

power market: 

min max

min max

min max
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where the first two equality constraints are the active and reactive power balance equations and the 

remaining are the inequality constraints of generator output, node voltage and apparent power of the 

transmission lines. 

3.3. ATC Assessment Indices 

In order to accurately assess ATC and make a comparison with different methods, three assessment 

indices are proposed as follows: 

(a) The expected value of random fuzzy ATC—EATC—it comprehensively reflects the ATC of a 

power system. 

ATC ATC0

0

ATC

{θ | [ε (θ)] }

{θ | [ε (θ)] }

pro- fuzz, r

r

E C E r dr

C E r dr





  

  




 (11)

(b) The variance of random fuzzy ATC—VATC—it expresses the fluctuation of ATC and reflects 

the impacts of uncertainties on ATC: 
2

,ATC ATC ATC[(ε ) ]pro- fuzV E E   (12)

(c) Calculation time t: it reflects the efficiency of different ATC calculation approaches under the 

same initial conditions. 

3.4. Parallel Algorithm with Bootstrap Method 

The bootstrap method is a statistical analysis method adopted in numerical computation, which was 

for the first time put forward by Efron at Stanford University [27,28]. It makes full use of the 

information of samples and can provide an approximate distribution of the unknown parameters in an 

unknown system directly through (repeated) re-sampling in a small sample set. The bootstrap method 

is adopted in the random simulation in this paper, and as a result the sample size can be  

decreased remarkably and the processing speed is enhanced. ATC calculation for each simulation state 

is a complex nonlinear optimization problem. The primal-dual interior-point algorithm in 

Matpower4.0b4 [29] is applied to solve the problem, which makes full use of multi-core and  

multi-threading CPUs by parallel computing. 

3.5. Random Fuzzy Simulation Based ATC Assessment 

According to the above random fuzzy models of generators, transmission lines and loads, how to 

simulate these random and fuzzy uncertain factors is the key issue in ATC assessment. Obviously the 

conventional probability methods are invalid, and these models cannot be directly changed to 

deterministic equivalence problems, so the random fuzzy simulation is proposed to solve the ATC 

assessment with randomness and fuzziness. Firstly, according to the above models the fuzzy 

parameters are sampled, based on each fuzzy sample Monte Carlo random sampling is done for every 

random parameter, and as a result the possible states are simulated with the comprehensive 

consideration of both randomness and fuzziness.  
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Figure 1. The flowchart of ATC assessment. 
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Then the value of ATC for each simulation state is calculated by the improved repeated power flow 

method. The bootstrap method helps find the random distribution of ATC with fewer calculation 

results and enhances the processing speed. Lastly the comprehensive assessment indices can be 

obtained according to the random fuzzy computational framework. Figure 1 illustrates the procedure 

for assessing ATC. Detailed steps are described as follows: 

(1) Read the initial parameters of generators, transmission lines and loads, build basic system 

information and set e = 0, i = 1. 

(2) From the set  extract a k which meets POS{k} ≥  ( is a permissible small value making the 

sample space be bounded), get the variables of generators, transmission lines and loads, and 
produce a set of fuzzy sampling vectors: , , ,, ,i G i B i Lξ ξ ξ . 

(3) According to , , ,, ,i G i B i Lξ ξ ξ  and the corresponding equipment random parameters, get the system 

state vectors: , , ,( ), ( ), ( )G i G B i B L i Lε ξ ε ξ ε ξ , change the random fuzzy models of generators, 

transmission lines and loads to the random ones, then the fuzziness is eliminated. Then the 

Monte Carlo random simulation is applied M times, and the value of ATC can be calculated by 

the improved repeated power flow method for each simulation state. 

(4) By the bootstrap method re-sample in the above obtained ATC values, and calculate their 

expected value of ATC. Figure 2 illustrates the bootstrap method procedure. 

(5) Set sample counter i = i + 1, and repeat (2) to (4) for N times. 

(6) Set a = min1≤i≤NEpro[i,ATC], b = max1≤i≤NEpro[i,ATC], and loop control variable w = 1. 
(7) From the interval [a, b] randomly generate rw and calculate ,ATC{ | [ ] }r pro i we e C E r     . 

(8) Set w = w + 1, and repeat (7) for N times. 

(9) Lastly calculate the expected value and variance of ATC as follows:  

,ATC ATC[ε ] 0 0 ( ) /pro- fuz pro fuzE E a b e b a N        , 2
,ATC i,ATC ATC[(ε ) ]pro- fuzV E E  . 
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Figure 2. The flowchart of the bootstrap method. 
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4. Numerical Example 

The simulation uses a Lenovo T400 (CPU: Core2 Duo 2.26 G; RAM: 3 G) laptop as the calculation 

platform. Matpower4.0b4 which provides the power flow calculation program is adopted as the 

simulation software under Matlab R2008a. The IEEE-30-bus system and an actual power system of two 

regions in Northwest China are used to demonstrate applications of the proposed models and algorithm. 

4.1. IEEE-30-bus System 

The single line diagram of the IEEE-30-bus system (the base capacity is 100 MVA) is shown in 

Figure 3. The system has 30 load nodes and 41 transmission lines, divided into three areas. The 

equipment parameters are given in [30]. This paper focuses on the ATC assessment from Area 1 to 

Area 2. The parameters of the random fuzzy simulation are set as follows: N = 3000, M = 80, W = 10. 

The proposed ATC assessment method based on credibility theory is verified in several scenarios.  

In Part 1, Part 2 and Part 3 only a single random fuzzy factor, such as random fuzzy generators or 

random fuzzy transmission lines or random fuzzy loads, is considered in each case to reflect its effect 

on ATC. In Part 4 all the above random fuzzy factors are considered simultaneously to compare the 

processing efficiency of each one. 
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Figure 3. IEEE-30-bus system. 

Part 1: Compatibility analysis between the proposed approach and the conventional Monte Carlo 

random simulation. 

For Case A to Case F, the parameters of generators, transmission lines and loads are shown in Table 1, 

and the corresponding assessment results are listed in Tables 2–4. When the random fuzzy variables 

degenerate to random ones, the random fuzzy simulation becomes the Monte Carlo random simulation. 

In order to investigate the compatibility between the random fuzzy simulation and the Monte Carlo 

random simulation, the fuzziness of random fuzzy variables is set in a very small fluctuation range.  

As a result the random fuzzy variables can be approximately considered as random ones. As the results 

in Tables 2–4, the expected values and the variance of ATC given by the proposed method are nearly 
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the same as the ones obtained by the Monte Carlo random simulation, and their maximum error is less than 

12%, we can conclude that the proposed method is compatible with the Monte Carlo random simulation. 

Table 1. The parameters of generators, transmission lines and loads for Cases A–F. 

Method Case 
Generators Transmission Lines Loads 

G G B L 

Monte Carlo random 

simulation  

(10,000 times) 

A 0.01 1 None None 

B None None 0.02 None 

C None None None 0.02 

Random fuzzy 

simulation 

D 0.01 (0.9999, 1, 1.0001) None None 

E None None (0.0199, 0.0200, 0.0201) None 

F None None None (0.0199, 0.0200, 0.02001) 

“None” means there is no fault or fluctuation. 

Table 2. The results of Case A and Case D. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

A 8.5883 3.8085 
D 8.4657 3.6602 

Error (%) −1.4275 −3.8939 

Table 3. The results of Case B and Case E. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

B 9.7541 121.4598 
E 10.8670 123.5610 

Error (%) 11.4096 1.7300 

Table 4. The results of Case C and Case F. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 
C 11.3496  117.2293  
F 11.7530 117.3173 

Error (%) 3.5543 0.0751 

Part 2: The comparison between the proposed assessment method and the traditional Monte Carlo 

simulation approach. 

For Case J to Case I, the parameters of generators, transmission lines and loads are shown in Table 5. 

Tables 6–8 give the corresponding results. It can be seen from the results in Tables 6–8 that when both 

randomness and fuzziness factors of the uncertainty are considered, the variance index which reflects 

the fluctuation of ATC is changing. However, the fuzziness of generators has little effect on the 

variance (the error is only 0.5908%). In other words, it has little impact on ATC (the error is 1.9457%) 

and can be ignored, while the variance is greatly affected by the fuzziness of transmission lines and 

loads (the corresponding errors are 38.9011% and 123.2521%, respectively), so this fuzziness should 

be considered in the practical assessment in order to get a more accurate ATC. 
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Table 5. The parameters of generators, transmission lines and loads for Cases J–I. 

Case 
Generators Transmission Lines Loads 

G G B L 

J 0.01 (0.700, 1.0000, 1.100) None None 
H None None (0.0100, 0.0200, 0.0600) None 
I None None None (0.0100, 0.0200, 0.0600) 

“None” means there is no fault or fluctuation. 

Table 6. The results of Case A and Case J. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

A 8.5883 3.8085 
J 8.4212 3.8310 

Error (%) 1.9457 0.5908 

Table 7. The results of Case B and Case H. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

B 9.7541 121.4598 
H 10.6504 168.7090 

Error (%) 9.1890 38.9011 

Table 8. The results of Case C and Case I. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

C 11.3496  117.2293  
I 14.3061 261.7169 

Error (%) 26.0494 123.2521 

Part 3: The sensitivity analysis to the fuzzy influencing factors of ATC. 

The above case studies show that the fuzziness of generators has little impact on ATC, so the 

following will mainly explore the impacts of the fuzziness of transmission lines and loads on ATC.  

In Case J all the parameters are the same as Case H except for the transmission line ones.  

The differences are that the states of some transmission lines (Lines 3, 6, 9, 10, 12, 13, 14, 15, 17, 18, 

21, 25, 26, 31, 32, 35, 36, 37, 40, 41) are treated as random fuzzy variables (B = (0.01,0.02,0.06)) and 

the others are simulated only as random variables by the failure rate B = 0.02. 

Case K differs from Case I in the load parameters. Case K sets some loads (4, 7, 8, 12, 18, 19, 20, 

21, 23, 30) the random fuzzy variables (L = (0.01, 0.02, 0.06)) and the others the random variables 

with feature (L = 0.02), while on the basis of Case I, Case L reduces the fuzzy range of the load 

variance (L = (0.01, 0.02, 0.04)). 

The corresponding assessment results are listed in Tables 9 and 10. From the results, it is indicated 

that: (a) by eliminating the fuzziness of some uncertainty factors, the variance of ATC is reduced, 

which means that the fluctuation of ATC is reduced, such as in Case J and Case K; (b) by reducing the 

fuzzy range of uncertainty factors, the variance and the fluctuation of ATC are changed, such as in 

Case L, so the fluctuation of ATC can be reduced by decreasing the fuzzy factors and the fuzzy range. 
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Table 9. The results of Case H and Case J. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

H 10.6504 168.709 
J 10.5893 141.8906 

Table 10. The results of Case I, Case K and Case L. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 

I 14.3061 261.7169 
K 14.3047 261.6058 
L 13.0457 170.9183 

Part 4: The comparison about the processing efficiency. 

The processing efficiencies of different methods are compared here. In this simulation, all the 

uncertainty factors are considered, including the generators, the transmission lines and the loads. Table 11 

gives the adopted methods for Case M to Case P, where the number of simulations is set as N = 100. 

The calculation time for each case is shown in Figure 4. 

Table 11. The adopted methods of Case M, Case N, Case O and Case P. 

Case Bootstrap Method Dual-core Parallel Computing Technique 

M   
N   
O   
P   

“” means the method is adopted and “” means the method is not adopted. If the bootstrap method is used, 
set M = 80, W = 10; otherwise set M = 800, W = 0. 

Case P

Case O

Case N

Case M

0.0000 0.5000 1.0000 1.5000 2.0000

Calculation Time (hour)  

Figure 4. The comparison of calculation times. 

From Figure 4, the calculation time of Case M is only about one tenth that of Case N, and about 

seven tenths that of Case O. Therefore, the bootstrap method can greatly improve the processing 

speed, while the multi-core parallel computing technique can reduce the calculation time to some 

extent. Despite the help of the bootstrap method and the multi-core parallel computing technique, due 

to the restrictions of the calculation platform, the calculation time of the proposed method is still 



Energies 2015, 8 6074 

 

 

considerable. This is due to the time-consuming optimal power flow. Therefore to improve the optimal 

power flow and further optimize the efficiency of the multi-core parallel computing will be an 

important future task. 

4.2. An Actual Power System in Northwest China 

The proposed ATC assessment approach is next applied in an actual power system of two regions in 

Northwest China. This is a 750 kV planning network for 2020 (the base capacity is 1000 MVA), 

whose single line diagram is shown in Figure 5. The total active power generation and load are  

18,079 MW and 9857 MW, respectively. This paper focuses on the ATC assessment from Area 1 to 

Area 2. Case Q and Case R are studied. In Case Q a Monte Carlo random simulation (10,000 times) is 

applied. The proposed approach is used in Case R, and all the uncertainty factors are considered, 

including the generators, the transmission lines and the loads. The parameters of Case Q and Case R 

are shown in Table 12, which are based on the historical data in the two regions and the experience of 

dispatchers. The parameters of random fuzzy simulation are set as follows: N = 3000, M = 80, W = 10. 

 

Figure 5. 750 kV planning network of two regions in Northwest China. 

The corresponding assessment results are listed in Table 13. When both randomness and fuzziness 

of generators, transmission lines and loads are considered, the system uncertainty grows significantly. 

In Case Q and Case R, the variance index increases by about 11%, and the expected value of ATC is 

reduced by 272 MW, or about 6%. The results calculated using the proposed approach are consistent 

with current empirical judgments of Transmission Network Operators (TNOs), which for China TNOs, 

is that the maximum ATC does not exceed 4200 MW. The reduction value is large for the network, 

and if the fuzziness is not taken into consideration together with randomness, the system maybe 

becomes unstable in the peak period. Therefore the proposed ATC assessment approach can more 

comprehensively consider assessment risk, and supply accurate information. 
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Table 12. The parameters of generators, transmission lines and loads for Case Q and Case R. 

Method Case 
Generators Transmission Lines Loads 

G G B L 

Monte Carlo random 

simulation  

(10,000 times) 

Q 0.01 1 0.02 0.02 

Random fuzzy simulation R 0.01 (0.9400, 1, 1.1400) (0.0100, 0.0190, 0.0400) (0.0100, 0.0190, 0.0400) 

Table 13. The results of Case Q and Case R. 

Case Epro-fuzz,ATC (MW) Vpro-fuzz,ATC (MW2) 
Q 4417 4,702,842 
R 4145 5,241,506 

Error (%) −6.1591 11.4540 

5. Conclusions 

To consider the two-fold uncertainties in the ATC assessment, this paper proposes a novel ATC 

assessment approach based on credibility theory, whereby according to the features of both 

randomness and fuzziness, the corresponding credibility models of generators, transmission lines and 

loads are comprehensively built up for the first time; then the random fuzzy simulation is applied in 

the ATC assessment; the bootstrap method and the multi-core parallel computing technique are 

adopted to enhance the computation speed. By testing on the IEEE-30 bus system and an actual system 

in China, the viability of the proposed models and algorithm is verified. Preliminary research is done 

on the sensitivity analysis to the fuzzy influencing factors of ATC and as a result, it gives a way to 

reduce the fluctuation of ATC. 

Randomness and fuzziness are two general features in power systems. Compared with the 

traditional Monte Carlo random simulation, which only considers the randomness, the proposed 

method can coherently consider both uncertainties. Random variables that can perhaps adopt different 

values with certain probabilities can get the same results of the ATC assessment, but this modeling is 

not sensible. For example, for a generator it means to improve its forced outage rate. However, when 

the generator is in an on-state, its available output is greatly affected by many external factors, and not 

a fixed value, so it cannot be described by improving the forced outage rate, and a random variable is 

not appropriate, while our proposed random fuzzy variable can more suitably describe both the random 

forced outage rate and the fuzzy available output of a generator at the same time. The proposed method 

can effectively reduce the assessment risk, and supply accurate information for the mid- and long-term 

planning of power systems. This will have a better potential of development and application in power 

source and grid planning and operation. However, the proposed method can only be used with detailed 

parameters which refer to both randomness and fuzziness. For multiple area power systems, different 

TSOs share limited information. Therefore to deal with this case, we have carried out some 

exploratory research on building clustering models of generators, transmission lines and loads, using a 

multi-agent approach. This will be reported in future publications. 
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Nomenclature 

 Nonempty set. 
 Empty set. 
P() Power set of . 
 Minimum operator. 
 Maximum operator. 
Pos Possibility measure of fuzzy event. 
Nec Necessity measure of fuzzy event. 
Cr Credibility measure of fuzzy event. 
 Membership function of fuzzy variable. 
B Borel set. 
sup Supremum. 
Efuz Expected value of fuzzy variable. 
Epro Expected value of random variable. 
Epro-fuz Expected value of random fuzzy variable. 
R Set of real numbers. 
(,P(),POS) Possiblity space. 
Ppro,G State occurrence probability of generator. 
Ppro,B State occurrence probability of transmission line. 
G Random fuzzy state of generator. 
B Random fuzzy state of transmission line. 
L Random fuzzy nodal load. 
G Forced outage rate of generator. 
G Fuzzy available output of generator. 
B Fuzzy failure rate of transmission line. 
L Fuzzy variance of a nodal load. 
Ffuz,G Membership function of G. 
Ffuz,B Membership function of B. 
Ffuz,L Membership function of L. 
a*,L Minimum possible value. 
a*,M Most likely possible value. 
a*,H Maximum possible value. 
βL Load forecasting value. 
f Electricity purchase cost. 
Pg Active power output of the generator g. 
Pg

max, Pg
min Upper and lower limits of Pg. 

Qg Reactive power output of the generator g. 
Qg

max, Qg
min Upper and lower limits of Qg. 

Pd Active load of the node d. 
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Qd Reactive load of the node d. 
Vz Voltage of the node z. 
Vz

max, Vz
min Upper and lower limits of Vz. 

Sl Apparent power of the transmission line l. 
Sl

max Maximum value of Sl. 
Gxy Conductance of the branch from node x to y. 
Bxy Susceptance of the branch from node x to y. 
xy Voltage phase angle difference of the branch from node x to y. 
ATC Random fuzzy value of ATC. 
Epro-fuz,ATC Expected value of random fuzzy ATC. 
Vpro-fuz,ATC Variance of random fuzzy ATC. 
t Calculation time. 
N, M, W Sampling times. 
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