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Duality in multi-channel Luttinger Liquid with local scatterer

Igor V. Yurkevich
Nonlinearity and Complexity Research Group, Aston University, Birmingham B4 7ET, United Kingdom

We have devised a general scheme that provides exact results for the scaling dimensions of all
allowed in multi-channel Luttinger Liquids local perturbations. The technique developed provides
universal description and establishes relations between scaling dimensions of perturbations in differ-
ent phases of Luttinger Liquid. These multiple relations between scaling dimensions are universal.
They are valid for all Luttinger Liquids with arbitrary current-current and density-density interac-
tions. We have also established duality transformation between different subsets of Luttinger Liquid
phases known for single-channel liquid as duality between weak link and weak scatterer limits.

PACS numbers: 71.10.Pm, 73.63.-b, 73.63.Nm

Solid state systems like Fractional Quantum Hall
systems[1], Quantum Spin Quantum Hall or topological
insulators [2, 3], carbon nanotubes [4] and quantum
wires are now routinely described in terms of few (chiral
or not) channels with intra- and inter-channel interac-
tions. Similar description is also applied to cold atoms
mixtures [5], ballistic quasi-one-dimensional waveg-
uides [6], hollow-core fibers [7] and one-dimensional
electron-phonon systems [8, 9]. The intra-channel
interactions being taking into account lead to formation
of Luttinger Liquid [10] for each individual channel.
The perturbations that scatter or tunnel particles
within the same channel are either irrelevant (scaling
dimension is higher than physical dimension which is
unity for a local perturbation) or relevant (the scaling
dimension is lower than one) in terms of renormal-
ization group analysis [11]. It means that a single
channel is to be found in one of two states (depending on
material parameters): perfectly conducting or insulating.

The inter-channel interactions make scaling dimen-
sions of all perturbation inter-dependent. A new and rich
phase diagram emerges as the result. Since interaction
in a single channel makes it either perfectly conducting
or completely insulating the best starting point to
examine effect of local scatterer is to assume that the
state of N -channel liquid has n insulating and (N − n)
conducting channels. Each particular realization of such
configuration is called a phase. This is natural general-
ization of phases observed in two-channel problems (like
spin and charge channels). The phase is stable if all
allowed perturbations are irrelevant. The condition that
all scaling dimensions of local perturbations are higher
than one (irrelevant perturbations) defines a region of
physical parameters where this particular phase can be
observed. Intersections of different regions correspond
to unstable fixed points meaning that there is no unique
phase for those system parameters and which phase
is realized depends on bare values of perturbations
(multiple attraction basins). On the other hand if the
union of all those regions does not cover the whole space
it means that there is a range of system parameters

where none of bare phases is stable, there must be a
new stable fixed point corresponding to a new phase
of matter. Such situation is known to occur for one
dimensional electrons with spin but without SU(2)
symmetry [11] or in topological insulators at strong
interactions [2]. It occurs that when two-particle local
scattering is taken into account all bare phases become
unstable in some region of material parameters.

The scaling dimensions of two operators defining
instability of two phases of a single-channel Luttinger
Liquid are known to be inversely proportional to each
other [11]. This relation between scaling dimensions is
consequence of the duality between weak and strong
scatterer limits. Recently it was also observed in [8]
that coupling of interacting electrons (the Luttinger
Liquid) to acoustic phonons did not change the duality.
The fact that scaling dimensions of the operators de-
termining instability of fermionic channel were changed
essentially but stayed inversely proportional to each
other came as surprise. The scaling dimensions were
derived explicitly as the result of lengthy calculations
and the reason behind duality was unclear. It will be
shown in this Letter that the duality observed in [8]
is just one particular example of universal property
which is a generalized duality relation valid for arbitrary
multi-channel Luttinger Liquid.

We develop a generic scheme of calculation of scaling
dimensions of all symmetry allowed local perturbations
not just because it gives a machinery of dealing with
multi-component phases. We do it to reveal hidden sym-
metries reflected in relations between scaling dimensions
of perturbations in different phases. We will show be-
low that the matrix ∆̂ which has scaling dimensions of
different perturbations as entries is given by

∆̂ = ∆̂I ⊕ ∆̂C (1)

for each phase characterized by a set of insulating
and the complimentary set of conducting states. The
introduction of two sectors for multi-channel Luttinger
Liquid is natural generalization of accepted now in
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two-channel problems nomenclature: II or CC stand
for both channels being insulating or conducting, CI
and IC for one conducting and one insulating channel.
The matrices ∆̂I and ∆̂C are defined on two orthogonal
subspaces of insulating (I) and conducting (C) channels.
Their matrix elements are not independent though. To
construct them one has to find matrix ∆̂θ of scaling
dimensions in ideally conducting phase. The projection
of this matrix onto I-subspace and inverting the projec-
tion gives ∆̂I. The projection of the inverse matrix ∆̂−1

θ

and following inversion of the projection gives ∆̂C. The
common source for both matrices ∆̂I and ∆̂C implies
relations between scaling dimensions in conducting and
insulating sectors. These relations impose restrictions
on inter-phase boundaries in material parameter space
and can be used to predict (without system dependent
calculations) whether a new phase is expected or not on
quite generic basis.

Multi-channel Luttinger Liquid is a set of N inter-
acting individual liquids. Each channel is labeled with
an index i = 1, ..., N and described in terms of density,
ni = ∂xθi/π, and current, ji = ∂xφi/π, fields. Each
channel is characterized by its own velocity vi and the
Luttinger parameter Ki reflecting strength and statistics
of underlying particles. The Lagrangian written in terms
of bosonic fields θi(x, t) and φi(x, t),

L =
1

π
θi∂t∂xφi −H [θ, φ] , (2)

contains Hamiltonian part which is (neglecting backscat-
tering) is a sum of two quadratic forms for density-density
and current-current interactions:

H [θ, φ] =
1

2π
∂xθi

(

vi
Ki

δij + gθij

)

∂xθj

+
1

2π
∂xφi

(

vi Ki δij + gφij

)

∂xφj . (3)

The diagonal terms describe individual channels while
inter-channel interactions are included into interaction
matrices ĝθ and ĝφ. There are two complementary rep-
resentations either in terms of density, θT = (θ1, ..., θN ),
and current, φT = (φ1, ..., φN ), vector fields or in terms
of chiral right-moving, θR = φ + θ, and left-moving,
θL = φ−θ, fields. We will be switching between these two
representations because they both have advantages when
performing different tasks. The first step will be the re-
duction of the Lagrangian to a diagonal form and it is
much easier in (θ , φ) representation because we have the
Hamiltonian part which is sum of two quadratic forms in
this representation. The transformation matrices

θ = M̂θ θ̃, φ = M̂φ φ̃ (4)

must diagonalize Hamiltonian part of the action and also
preserve the structure of the first term in Eq. (2) (which

is the same as the preservation of the commutation rela-
tions in the operator formulation). The later requirement
is imposing connection between those transformations:

M̂T
θ M̂φ = 1 . (5)

These transformations always exist and can be con-
structed as four-steps procedure with each step preserv-
ing the scalar product θTφ = θ̃T φ̃. First, one can apply
unitary transformation to diagonalize the quadratic form
in φ and simultaneously apply the same unitary transfor-
mation to θ-vector. Second, one rescales each component
of the new φ-field to absorb the eigenvalues and turn the
quadratic form into a scalar product while θ-vector is
subject to inverse rescaling. Now we may again apply
identical unitary transformations to both vectors choos-
ing it to diagonalize the quadratic form in the new θ-fields
(the kernel stays real and symmetric during all transfor-
mations). Finally, we can rescale each component of θ-
and inversely rescale φ-vectors in such way that the coef-
ficients in front of either i-th component are the same, ui

(they will be new velocities). The resulting Lagrangian
in terms of new fields is given by the expression:

L =
1

π
θ̃i∂t∂xφ̃i −

ui

2π

[

(

∂xθ̃i

)2

+
(

∂xφ̃i

)2
]

. (6)

In a translational invariant system the transforma-
tions (4) relate the Green functions of interacting Lut-
tinger Liquids and the Green functions of uncoupled
liquids. Since the latter is well known one can eas-
ily find, for example, local Green functions iGij

θ (t; t
′) =

〈θi(x, t) θj(x, t′)〉 and iGij
φ (t; t

′) = 〈φi(x, t)φj(x, t
′)〉. In

matrix form the retarded components can be written as

ĜR
θ (ω) = − iπ

2

∆̂θ

ω + i0
, ĜR

φ (ω) = − iπ

2

∆̂φ

ω + i0
, (7)

with matrices

∆̂θ = M̂θ M̂
T
θ , ∆̂φ = M̂φ M̂

T
φ (8)

being inversely proportional to each other

∆̂θ ∆̂φ = 1 . (9)

In the presence of a scatterer at the origin x = 0 the
transformation (4) should be performed on the left and
on the right of the scatterer separately because the fields
are no longer continuous across the origin. To take into
account boundary conditions that relate those fields it is
now convenient to switch to right- and left-movers com-
bining them into incoming (in) and outgoing (out) fields:

Θout =

(

θR(+0, t)
θL(−0, t)

)

, Θin =

(

θL(+0, t)
θR(−0, t)

)

. (10)

The same definition is used to construct new transformed
fields Θ̃in and Θ̃out. The boundary conditions for the
original and new fields can be written using S-matrix

Θout = ŜΘin , Θ̃out =
ˆ̃S Θ̃in . (11)
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While the scattering matrix for the new fields has yet
to be found the scattering matrix for the original fields
is known and it depends on the bare phase of Luttinger
Liquid whose stability against scattering we would like to
try. The phase under investigation can be presented by a
set of reflection coefficients Ri , i = 1, ..., N where Ri =
0 if the i-th channel is ideally transparent (conducting)
or Ri = 1 if it is fully blocked (insulating). Then the
scattering matrix can be written as

Ŝ =

(

R̂ T̂

T̂ R̂

)

, R̂ = diag(R1, ..., RN ) . (12)

The current conservation
∑

i Θ
i
in =

∑

iΘ
i
out requires

that R̂ + T̂ = 1. It is important to stress that the scat-
tering matrix we use is the one for current/density fields
and cannot be used to describe an arbitrary scattering
of real particles whose excitations are described in terms
of the Luttinger Liquids. The matrices R̂ and T̂ are
nothing but projectors on the subspaces of insulating
(I) and conducting (C) channels.

Our task now is to derive correspondence between orig-
inal and new scattering states given the transformation
Eq.(4). The derivation is straightforward and leads to
the following relations

Θout =
[

M̂+
ˆ̃S + M̂−

]

Θ̃in , (13)

Θin =
[

M̂−
ˆ̃S + M̂+

]

Θ̃in ,

whose consistency defines the new scattering matrix in
terms of the original one:

ˆ̃S =
[

M̂+ − ŜM̂−

]−1

Ŝ
[

M̂+ − ŜM̂−

]

. (14)

Here the extended (2N × 2N) block diagonal matrices
contain identical blocks M̂± = diag(M̂±, M̂±) which
are linear combinations of the transformation matrices,

M̂± =
[

M̂φ ± M̂θ

]

/2.

The expression (14) for the scattering matrix can
be simplified noticing that the transformation in the
right/left-movers space

Θ̂in → L̂Θ̂in , L̂ =
1√
2

(

1 1
−1 1

)

(15)

makes Ŝ and, therefore, ˆ̃S block diagonal

L̂−1ŜL̂ =

(

R̂− T̂ 0
0 1

)

, L̂−1 ˆ̃SL̂ =

(

ŝ 0
0 1

)

, (16)

with the only nontrivial block entry

ŝ = K̂−1(R̂− T̂ ) K̂ , K̂ = R̂M̂θ + T̂ M̂φ . (17)

The rotation with the matrix L̂ is equivalent to the
redefinition of right- and left-moving incoming fields in
terms of new uncorrelated fields θ±in = θR in ± θL in.

To find scaling dimensions of perturbations it is suffi-
cient to know the correlation functions of incoming fields
(the rest can be restored using the scattering matrix, if
necessary). The Green function of new incoming fields is
essentially trivial because the scatterer is located ’down-
stream’ for incoming fields and there is no interaction
between incoming and outgoing fields. The Green func-

tion i ˆ̃Gin = 〈Θ̃in Θ̃
T
in〉 is simply given by the expression

valid in translational invariant problem

ˆ̃G
R

in(ω) = − 2π i

ω + i0
1̂ . (18)

The Green functions of incoming original, Ĝin, and new,
ˆ̃Gin, fields are related to each other (Eq. (13)):

L̂−1ĜR
in(ω)L̂ = − 2πi

ω + i0

(

∆̂ 0

0 ∆̂φ

)

. (19)

Here the matrix ∆̂ is a direct sum of two matrices, each
being projected onto I or C subspaces:

∆̂ = R̂ δ̂−1 R̂+ T̂ δ̂−1 T̂ . (20)

The matrix δ̂ has similar structure of a direct sum of
projected matrices:

δ̂ = R̂ ∆̂θ R̂+ T̂ ∆̂φ T̂ . (21)

The inverse matrix is also direct sum with elements de-
fined in two orthogonal to each other subspaces I of in-
sulating channels (with the projector R̂) and C of con-
ducting channels (with the projector T̂ ):

∆̂ = ∆̂I ⊕ ∆̂C (22)

These matrices are defined as follows. To construct ∆̂I

one has to project ∆̂θ onto subspace I of insulating
channels or, in other words, consider all non-zero
matrix elements of the matrix R̂ ∆̂θ R̂ because R̂ is
the projector onto that subspace. The inversion of
the projected matrix also belongs to the I-subspace of
insulating channels and is called ∆̂I. Analogously, to
construct ∆̂C one has to project ∆̂φ onto C-subspace
of conducting channels or, in other words, consider all
non-zero matrix elements of the matrix T̂ ∆̂φ T̂ because

T̂ is the projector onto that subspace. The inversion of
the projected matrix also belongs to the subspace C of
conducting channels and is called ∆̂C.

There is obvious duality: interchanging R̂ ↔ T̂ and
θ ↔ φ equivalent to interchange

∆̂C ↔ ∆̂I . (23)
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This is the generalization of the well-known in single-
channel problem duality between weak link (insulating
phase) and weak scatterer (conducting phase). In a
generic situation of multi-channel Luttinger Liquid the
generalized duality relates two phases: one of them has
n insulating and N − n conducting channels, another
(’partner’) phase has N − n insulating and n conducting
channels. The simplest example is perfectly conducting
phase (all channels are conductors) with ∆̂cond = ∆̂θ

against perfectly insulating phase (all channels are
insulators) with ∆̂ins = ∆̂φ = ∆̂−1

cond
.

This duality connects some ’partner’ phases but does
not relate scaling dimensions of similar perturbations
in seemingly unrelated phases. Nevertheless, as we will
show below there are intimate relations between scaling
dimensions beyond the one discussed above. We will
leave general analysis for future investigations. In this
Letter we will focus on two-channel liquid to reveal
universality of the relation between scaling dimensions
which was observed in [8].

To analyze stability of a phase, first of all, we have
to parameterize perturbations in terms of the incoming
fields. It is easy since we provide description of stabil-
ity of the phases where each channel is either perfectly
conducting or insulating and all inter- and intra-channel
particle transfers can be written in terms of incoming
fields only. An arbitrary process of simultaneous transfer
of few particles with nij being the number of particles
transferred from channel i to channel j is described by
the perturbation

T = v cos





∑

ij

nij

(

θ−ij + θ+ij
)



 , (24)

where θ+ij = θ+i − θ+j and θ−ij = ±θ−i ± (Rj − Tj)θ
−

j .
The scaling dimension of this perturbation is given
by the sum of two dimensions since θ−ij and θ+ij are
independent of each other. According to Eq. (19) the
scaling dimension related to θ+in is the same for all phases

while the other one is governed by the matrix ∆̂ and
depends on the phase which is uniquely defined by the
reflection matrix R̂.

For a particular problem of two-channel Luttinger Liq-
uid with no particle transfers between channels due to
distinct nature of the particles (fermions and phonons
in the paper [8]) the only perturbations allowed are
intra-channel ones. The most generic perturbation intra-
channel transfer T ∼ cos

[

n1θ
1
in + n2θ

2
in

]

has the scaling
dimension

Dn1 n2
(R1, R2) = n2

1 ∆11 + n2
2 ∆22 + 2n1n2 ∆12 (25)

that depends on the phase which is tried for stability.
The phase is uniquely described by the diagonal matrix

elements of the matrix R̂ = diag(R1, R2). The scaling di-
mension of the phase where both channels are conducting
(CC-phase corresponding to R1 = R2 = 0) is given by

Dn1 n2
(0, 0) = n2

1 ∆
11
θ + n2

2 ∆
22
θ + 2n1n2 ∆

12
θ . (26)

The II-phase (R1 = R2 = 1) is restored by the duality

Dn1 n2
(1, 1) = n2

1 ∆
11
φ + n2

2 ∆
22
φ + 2n1n2 ∆

12
φ . (27)

For IC- (R1 = 1, R2 = 0) and by duality for CI-phases
(R1 = 0, R2 = 1) we get

Dn1 n2
(1, 0) =

n2
1

∆11
θ

+
n2
2

∆22
φ

, Dn1 n2
(0, 1) =

n2
1

∆11
φ

+
n2
2

∆22
θ

.

(28)

In the paper [8] only one-particle perturbations in
fermion channel (n1 = 1, n2 = 0) were considered. The
second channel did not contained renormalizable per-
turbation since phonon scattering is given by a local
quadratic perturbation which at low energy leads to ei-
ther R2 = 0 (local mass distortion) or R2 = 1 (local
pinning). The weak scatterer and weak link scaling di-
mensions were defined as

∆ws(R2) = D10(0, R2) , ∆wl(R2) = D10(1, R2) . (29)

One can see from Eqs. (26-28) that

∆ws(R2)∆wl(R2) = 1 (30)

and the duality observed in [8] is just one particular case
of general relations Eqs. (26-28).

In conclusion, we have devised new approach to cal-
culation of scaling dimensions of the most generic local
perturbations in multi-channel Luttinger Liquids. We
have derived explicit expression for the matrix of scaling
dimensions for all phases parameterized by the number
of conducting and insulating channels. We have demon-
strated symmetry with respect to simultaneous inter-
change of the current and density fields and subspaces
of insulating and conducting channels (known as duality
in one-channel case). We have also explained on general
grounds (without even specifying inter- and intra-channel
interactions) the duality between scaling dimensions of
one-particle perturbations in two-channel liquids mak-
ing obvious the result observed in [8]. The knowledge
of perturbations scaling dimensions allows to construct
complete phase diagram. Although analysis of numerous
practically important realizations was beyond the scope
of this Letter we believe that the scheme will prove very
useful and will be used to determine existence of new
stable phases of multi-channel Luttinger Liquids.
I would like to thank I. V. Lerner and O. M. Yev-

tushenko for stimulating and fruitful discussions and V.
E. Kravtsov for critical reading of the manuscript.
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