
On the theory of autosoliton propagation in optical fibers
guided by in-line nonlinear devices

Sonia Boscolo,a Stanislav A. Derevyanko,a Sergei K. Turitsyn,a
Alexander S. Kovalev,b and Mikhail M. Bogdan

aphotonics Research Group, School of Engineering and Applied Science,
Aston University, Birmingham B4 7ET, United Kingdom;

bB I. Verkin Institute for Low Temperature Physics and Technology,
47 Lenin Aye, 61103 Kharkov, Ukraine

ABSTRACT
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission
systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable
autosoliton solutions are obtained for a particular application of the general theory.
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1. INTRODUCTION
Efficient growth of the capacity of digital communication systems can be achieved by increase of the channel
bit rate — the speed at which information symbols are transmitted. Current commercial optical fiber systems,
responsible for the major part of the total world data traffic, operate at channel rates up to 10 Gbit/s, while
40 Gbit/s lines are already ready for installation and 160 Gbit/s links are a subject of intensive laboratory
research. Increasing the channel rate assumes the utilization of shorter time slots allocated for each information
bit and, consequently, of shorter carrier pulses. The propagation of ultra-short pulses is strongly affected by the
fiber dispersion, which results in large temporal broadening of the carrier pulses. The accumulated line dispersion
is typically compensated periodically or at the edges of the link, thus, in the main linear approximation, the
pulse width is almost recovered at the end of the transmission line. Because of the temporal broadening during
propagation, the carrier pulse power spreads over many time slots and, consequently, the accumulated effect
of the instantaneous fiber nonlinearity tends to get averaged out. Signal transmission using very short optical
pulses is often referred to as the quasi-linear regime.' This regime is, in some sense, opposite to soliton2 or
dispersion-managed (DM) soliton3 transmission, where fiber nonlinearity plays an important role in preserving
the pulse shapes during propagation. Note that in the quasi-linear regime, the in-line Kerr nonlinearity is almost
a "negative" factor contributing to the destabilization and distortion of carrier pulses. Therefore, a certain
amount of "constructive" nonlinearity is required to stabilize ultra-short pulse propagation and, thus, to improve
the system performance. Recently, the periodic in-line deployment of nonlinear optical devices (NODs), such
as nonlinear optical loop mirrors (NOLMs) , semiconductor saturable absorbers, and semiconductor amplifier-
based devices, has been demonstrated to be an effective technique of all-optical signal regeneration,46 which
may achieve stable pulse propagation and virtually unlimited transmission distances in high-speed, strongly DM
optical fiber communication systems.5 It has numerically been shown in Refs. 4, 5 that, under certain conditions,
the interplay between fiber dispersion, the lumped nonlinearity provided by in-line NOLMs, and the action of
linear control elements, such as optical filters, leads to the formation of autosolitons, which are periodically
reproduced at the output of each segment of the transmission line. The term 'autosolitons' here means robust
localized pulses with the parameters prescribed by properties of the system, which occur in models combining
conservative and dissipative dispersive and nonlinear terms.79
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The use of ultra-short optical pulses in fiber-optics communication leads to new interesting physical regimes
and novel mathematical models should be introduced to adequately describe such transmission systems. Note
that further increase of the channel bit rate will lead to even shorter carrier pulses and more pronounced quasi-
linear propagation regimes in the fiber parts of communication systems. In this paper, a theory is developed
to describe the optical signal transmission in DM fiber transmission systems in the quasi-linear regime, with
periodically in-line placed point NODs. We present a fundamental discrete mapping equation governing the
carrier pulse propagation in a unit cell of the transmission line. As a particular sample approach to the solution
of this basic model, we apply a variational method to determine the steady state pulse characteristics. Without
loss of generality, as a specific practical application of the general theory, we consider a system with in-line
NOLMs.

2. THEORETICAL MODEL
The optical pulse propagation in a cascaded transmission system with periodic variations of dispersion and
nonlinearity, frequency filtering, and NOD management can be described by

DE 1 2E 2 2

i- — fl2(Z) + cr(z)IEI E = zG(z, IEI )E, (1)

where E(z, t) is the slowly varying pulse envelope in the comoving system of coordinates, fi2(z) represents the
variation in the group-velocity dispersion due to dispersion compensation, and is assumed to be a periodic
function of z with the period L, /32(z) = /32(Z + L), and a is the fiber nonlinear coefficient. It is customary
to express /32 in terms of the associated dispersion coefficient D via fl2 =—A2D/(2irco), where A is the carrier
wavelength, c0 is the speed of light, and D is measured in ps/(nm km). Function G(z, El2) accounts for the
signal attenuation due to fiber loss, the signal amplification by optical amplifiers, the action of filters, and the
nonlinear gain at the NODs, and can be presented as

I 1kZa
G(z,1E12) Z)+ö(ZkZa) exp / dzy(z) —1

k I J(k1)Za
(2)

+ >6(z — kZf)[h(t) * —1] + ö(z — kZo)[f(1E12) —
11.

In Eq. (2), we have assumed that amplifiers, filters, and NODs are placed periodically in the system with
the respective periods Za , Zf , and Z0 . 'y = 0.05 ln(1O)c is the fiber loss coefficient that accounts for the signal

attenuation along the fiber span before the kth amplifier, c is given in dB/km, and exp [f;)ZdZ y(z)] —i is the
amplification coefficient after the fiber span between the (k —1)th and kth amplifiers. h(t) is the inverse Fourier
transform of the filter transfer function, and * represents the Fourier convolution. The NODs are specified by
their power-dependent transfer function f(P). Hereafter, we will focus on loss (gain)-unbalanced fiber NOLMs.
The transfer function for such devices can be written in the form

f(P) = asin(bP) exp(icP), (3)

with a, b, c E some given constants.

To simplify the full model given by system (1), we make some justified physical assumptions. Here, we analyze
the case of linear propagation in fiber, when we can neglect the nonlinear term in (1) . Such a propagation regime
corresponds to the case when the nonlinear length LNL = (aPo)1 (Po is the signal peak power) in the fiber
is much larger than the local dispersion length LD = T2/I/321 (T is the pulse width). The transformation of a
pulse after propagation in one segment of the transmission line can be considered as the mapping of the input
pulse into the output one. If we consider an element of the transmission line that includes a NOD given by (3),
a piece of linear fiber of length Z0, and m filters, the mapping of the signal, defined up to a phase factor ,a, can
be presented as

+00
eUi(t) = f dt' K(t — t'; Zo)f(IU(t')I2)U(t'), n = 0,1,... (4)
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The derived equation is one of the central results of the paper. This mapping problem plays a fundamental role in
the description of fiber communication systems at high bit rates. To obtain Eq. (4) ,we have assumed that each
NOD is placed immediately after an amplifier, and we have applied the transformation U(z, t) =Q'(z)E(z,t),
where Q(z) = exp [— f(l)ZadZ' 'y(z')] for (k — 1)Za < Z < kZa, and Q(z) = 1 for z = kZ. In Eq. (4), the
signal is taken at the input point nZ to the NOD after any device prior to the NOD ,and the kernel K describes
the signal propagation in the unit cell Z0,

1 r+°°
K(t — t'; Z0) = — / dt" H(t — t' — t")F(t"; Z0), (5)2ir j_

where H(t) represents the action of the filters,

H(t) = Jr_1[jm(W)], (6)

and F(t; Z0) is the linear propagator of the uniform equation corresponding to Eq. (1),

.
•t2 (n+1)Zo

F(t; Zo) = exp (—k) ' B0 =
fnZ0

dzfi2(z). (7)

In (7), B0 is the total accumulated dispersion. Note that H(t) -+ s/ô(t) when m — 0 (no filtering), and
F(t; Zo) —+ i/ô(t) when B0 —+ 0 (full dispersion compensation). In the case when Gaussian filters are used, it
is easy to verify that K takes the form

K(t — t'; Z0) = i
exp — i(t — t')2

(8)

N
2r (Bo + im/1) 2 (B0 + imicl•)

where = irôiii/,/h:i the filter bandwidth (ôv denotes the full-width at half-maximum (FWHM) band-
width) , and the excess gain G accounts for compensation of the signal energy losses introduced by the NODs
and filters in the system.

From the transmission point of view it is desirable to find (if exists) a steady state propagation regime in
which an optical pulse propagating along the transmission line reproduces periodically at the output of each
element of the line. That corresponds to determining a fixed point of mapping (4). Therefore, in order to find
the steady state pulse shape U(t), one has to solve a nonlinear integral equation, which stems from (4) if we put
U1(t) = U(t) = U(t). If the steady state pulse is stable, then any initial signal within the basin of attraction
of the fixed point will gradually evolve towards it after some maps.

3. AUTOSOLITONS°>°NOLM PDF NDF NDF PDF
L112 L212 OA L212 L112 QA OA OF

' L=L1+L2 -
Z0pL

Figure 1. One element of the periodic transmission system.

In this section, we demonstrate the feasibility of stable autosoliton propagation guided by in-line NOLMs,
by direct numerical simulations of the basic propagation model (Eq. (1)). The sample transmission scheme
used in the numerical integration of Eq. (1) is depicted in Fig. 1. The transmission line is composed of an
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In this section, we demonstrate the feasibility of stable autosoliton propagation guided by in-line NOLMs,
by direct numerical simulations of the basic propagation model (Eq. (1)). The sample transmission scheme
used in the numerical integration of Eq. (1) is depicted in Fig. 1. The transmission line is composed of an
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equal number of positive (anomalous) dispersion fiber (PDF) segments and negative (normal) dispersion fiber
(NDF) segments. The dispersion map consists of an alternation of a PDF—NDF block and a mirror NDF—PDF
block. Fiber parameters of practical importance (D1 = 15ps/(nm km), oi = 1.84 (W km)' , ci = 0.22dB/km;
D2 71.2ps/(nmkm), 2 4.28(Wkm)', 2 O.65dB/km) are used for the PDF and the NDF.5 We note
that fiber nonlinearity is included in the calculations. An optical amplifier (OA), which compensates for the
fiber loss, follows each of the two blocks. The high values of the local dispersion of the fibers together with the
short pulse widths that are typically used to operate the system at high data transmission rates result in large
broadening of the pulses during propagation. These regimes are beyond the range where stable propagation of
DM solitons has been observed.'0 A NOLM is placed into the transmission line every an integer number p of
dispersion map periods, Zo = pL. We note that in this case B0 = (/32)Zo = —A2(D)Zo/(2irco) ((•) denotes the
average over the dispersion compensating period L) . In the sample configuration considered here, Zo =391 km,
and p = 5. A single (m = 1) Gaussian optical filter (OF) is placed after the amplifier prior to the NOLM location.
The loss-unbalanced NOLM configuration is employed as an example, and preamplification of the input pulses
to the NOLM is used (see Ref. 5 for details). Parameters a, b, and c in transfer function (3) have the respective
values: 0.06373, 1.823W1, and 1.839 W'. The NOLM acts as a saturable absorber and, hence, filters out low-
intensity radiation from the higher-power pulses. This allows for restoration of the pulse amplitude and
Following Ref. 5, the system is operated such that the peak power of the steady state pulses (if any exist) is in
the region slightly past the first peak of the continuous-wave power characteristic of the NOLM. In this region
the NOLM provides a negative feedback control of the amplitude of pulses, which may enable stabilization of
the pulse amplitude fluctuations.5 Of course, such a consideration does not guarantee stable pulse propagation
in the system, and is used here only to reduce the space of system parameters where the steady state pulses are
searched for.

Figure 2. Stroboscopic pulse evolution as viewed at the NOLM input. Left, evolution of the intensity proffle; right,
acqusition of the steady state in the space of pulse parameters.

Figure 2 shows an example of pulse evolution in the system, measured stroboscopically at the NOLM input
point. In this example, an unchirped Gaussian pulse is launched into the system, with the peak power Po =
1.15W (corresponding to 3.5 mW at the starting point ofthe transmission) and the FWHM pulse width TFWHM =
5ps. The system parameters are: (D) = 0.009ps/(nm km), v1 = 0.1 THz, and G = 627.0

(28.0 dB). The pulse chirp parameter is calculated as C =Tmfdt U2(Ufl2/ fdt IUI4 One may see from
Fig. 2 that the pulse settles to a steady state after a short initial transition distance. This result demonstrates
the feasibility of stable pulse propagation in the system, and indicates that the use of in-line NOLMs converts
the quasi-linear transmission regime into an autosoliton transmission regime, which is strictly nonlinear.5 We
note that the same stroboscopic picture as that in Fig. 2 can be obtained by simply iterating mapping equation
(4). Figure 3 shows the basin of attraction of the steady state solution of Fig. 2 in the plane (TFWHM, C). To
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Figure 2 shows an example of pulse evolution in the system, measured stroboscopically at the NOLM input
point. In this example, an unchirped Gaussian pulse is launched into the system, with the peak power Po =
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Fig. 2 that the pulse settles to a steady state after a short initial transition distance. This result demonstrates
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the quasi-linear transmission regime into an autosoliton transmission regime, which is strictly nonlinear.5 We
note that the same stroboscopic picture as that in Fig. 2 can be obtained by simply iterating mapping equation
(4). Figure 3 shows the basin of attraction of the steady state solution of Fig. 2 in the plane (TFWHM, C). To
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HM pulse width, TFWHM (ps)

Figure 3. Basin of attraction of the steady state solution of Fig. 2 in the plane FWHM pulse width—chirp parameter.

calculate Fig. 3, the initial pulse peak power has been set to its steady state value. It is seen that there is a
large tolerance to the initial pulse width and chirp, which indicates a high degree of stability of the steady state
solution. We have also defined the tolerable limits of the stable pulse propagation to the filter bandwidth and
the path-averaged dispersion of the line. The results are shown in Fig. 4, where öVfand (D) are varied within
a practical range of values. In Fig. 4, the excess gain G is chosen such that the stationary pulse peak power is
approximately 1.15 W at the NOLM input.
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Figure 4. Limits of stable pulse propagation in the plane filter bandwidth—average dispersion.

4. VARIATIONAL APPROACH
As we pointed out previously, in order to find a steady state pulse propagation regime, one has to solve mapping
integral equation (4) for the fixed points. While this can be done numerically, for massive optimization of the
system parameters it is very useful to have a simplified approximate method to find solutions of the basic model.
Therefore, here we apply a simple variational approach. We noticed from full numerics that the steady state
pulse shape at the NOLM input point can always be fitted well by a Gaussian profile. Thus, we choose a trial
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•1
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Figure 4. Limits of stable pulse propagation in the plane filter bandwidth—average dispersion.

4. VARIATIONAL APPROACH
As we pointed out previously, in order to find a steady state pulse propagation regime, one has to solve mapping
integral equation (4) for the fixed points. While this can be done numerically, for massive optimization of the
system parameters it is very useful to have a simplified approximate method to find solutions of the basic model.
Therefore, here we apply a simple variational approach. We noticed from full numerics that the steady state
pulse shape at the NOLM input point can always be fitted well by a Gaussian profile. Thus, we choose a trial
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input pulse U(t) for the map as a Gaussian-shaped pulse with (yet unknown) peak power Fo, root-mean-square
(RMS) width TRMS , and RMS chirp parameter CRMS,

Un(t)=exP(_42 +iCRMSt2). (9)
RMS

The output of the map U1 (t) given by Eq. (4) will be non-Gaussian in general, but will have a close shape and
will depend on the parameters of the input signal, U1 = U1 (t; Po ,TRMS , CRMS). Let us now demand that
the peak power, pulse width, and chirp of the output signal coincide with those of the input Gaussian signal.
This provides a system of transcendental equations for the sought parameters Po, TRMS, and CRMS,
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If the solution of system (10) exists, then it provides a variational approximation for the parameters of the steady
state pulse. In particular, one may use the Gaussian ansatz with the found vaues of F0, TRMS, and CRMS as an
approximation of the steady state pulse shape.
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Figure 5. Steady state pulse peak power (left), RMS pulse width and RMS chirp parameter (right) at the NOLM input
versus filter bandwidth.

The predictions form the variational model (Eqs. (9), (10)) and the iterative numerical integration of mapping
equation (4) have been compared with the results of full numerical simulations. The steady state pulse peak
power, RMS width, and RMS chirp parameter are plotted in Fig. 5 as a function of the filter bandwidth, for
(D) = 0.009ps/(nm km), and the same values of G as used in Fig. 4. The results agree well, especially for the
pulse width and the chirp parameter. As for the pulse amplitude, the discrepancies between the solutions of
Eq. (4) and full numerics occurring for small values of 6Vf (of the order of 6% at maximum) can be attributed
to the fact that for small filter bandwidths the effect of the nonlinearity in the transmission fibers, which is
neglected in model (4), becomes more important. For larger 6V1, the deviation of model (4) from full numerics
does not exceed 0.6%, which fully justifies the linear assumption underlying Eq. (4) in this filter bandwidth
range. The deviation of the variational model from either full numerics or model (4) does not exceed 2% in the
bandwidth range where the linear assumption is entirely justified.
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will depend on the parameters of the input signal, U41 = Ui (t; Po ,TRMS, CRMS). Let us now demand that
the peak power, pulse width, and chirp of the output signal coincide with those of the input Gaussian signal.
This provides a system of transcendental equations for the sought parameters F0, TRMS, and CRMS,
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If the solution of system (10) exists, then it provides a variational approximation for the parameters of the steady
state pulse. In particular, one may use the Gaussian ansatz with the found vaues of F0, TRMS, and CRMS as an
approximation of the steady state pulse shape.
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Figure 5. Steady state pulse peak power (left), RMS pulse width and RMS chirp parameter (right) at the NOLM input
versus filter bandwidth.

The predictions form the variational model (Eqs. (9), (10)) and the iterative numerical integration of mapping
equation (4) have been compared with the results of full numerical simulations. The steady state pulse peak
power, RMS width, and RMS chirp parameter are plotted in Fig. 5 as a function of the filter bandwidth, for
(D) = 0.009 ps/(nm km), and the same values of G as used in Fig. 4. The results agree well, especially for the
pulse width and the chirp parameter. As for the pulse amplitude, the discrepancies between the solutions of
Eq. (4) and full numerics occurring for small values of 6v1 (of the order of 6% at maximum) can be attributed
to the fact that for small filter bandwidths the effect of the nonlinearity in the transmission fibers, which is
neglected in model (4), becomes more important. For larger óv,e, the deviation of model (4) from full numerics
does not exceed 0.6%, which fully justifies the linear assumption underlying Eq. (4) in this filter bandwidth
range. The deviation of the variational model from either full numerics or model (4) does not exceed 2% in the
bandwidth range where the linear assumption is entirely justified.
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5. CONCLUSION
We have developed a theoretical model to describe the ultra-short pulse propagation in fiber transmission systems
in the quasi-linear regime, with periodic in-line deployment of NODs. In the particular application with NOLMs,
we have numerically demonstrated that formation of autosolitons can be observed in such systems, as a result
of a balance between the effects of dispersion in the transmission fibers, linear control by optical filters, and
nonlinear focusing in the NOLMs. A variational principle has been applied to determine the steady state pulse
characteristics, and the theoretical analysis has been shown to accurately reproduce the results of full numerical
simulations.
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