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Correlates of depression in bipolar
disorder
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We analyse time series from 100 patients with bipolar disorder for correlates of

depression symptoms. As the sampling interval is non-uniform, we quantify

the extent of missing and irregular data using new measures of compliance
and continuity. We find that uniformity of response is negatively correlated

with the standard deviation of sleep ratings (r ¼ –0.26, p ¼ 0.01). To investi-

gate the correlation structure of the time series themselves, we apply the

Edelson–Krolik method for correlation estimation. We examine the correlation

between depression symptoms for a subset of patients and find that self-

reported measures of sleep and appetite/weight show a lower average correlation

than other symptoms. Using surrogate time series as a reference dataset, we

find no evidence that depression is correlated between patients, though

we note a possible loss of information from sparse sampling.

provided by Aston Publication
1. Introduction
Health telemonitoring can benefit both patients and healthcare providers. A sys-

tematic review by Polisena et al. [1] found that home telehealth saved costs in 20

out of 22 studies, though it did note the poor quality of most of the economic

evaluations. Another review by Paré et al. [2] examined 65 empirical studies of tel-

emonitoring over four types of chronic illnesses: pulmonary conditions, diabetes,

hypertension and cardiovascular diseases. They drew no conclusion about econ-

omic viability, but only because this was the subject of few studies, most of which

had no detailed analysis. However, they suggested that telemonitoring might

have a positive effect on the patients’ condition and that this would be a promis-

ing avenue for research. A more recent BMJ review [3] found evidence of fewer

hospital admissions and lower mortality among patients allocated to receive tele-

health interventions, though again there was no evidence of cost savings.

However, there are other benefits from both the patient’s and clinician’s point

of view. The patients are monitored in their own environment, avoiding ‘white

coat syndrome’, and they may have the freedom to manage their own reporting.

Most obvious from the researcher’s point of view is the automated acquisition

of data for analysis, sampled more often than an outpatient appointment would

allow. Here, though, the freedom afforded to the patient has a potential disadvan-

tage for time-series analysis. If data can be returned at any time, then the analyst

cannot assume a regular reporting interval. As most time-series methods require

uniform sampling, a common approach is to interpolate the data as a preprocessing

step. In this study, we apply methods that may be used directly on non-uniform

data and introduce two new measures for quantifying non-uniformity. The struc-

ture of the paper is as follows. In §2, we introduce time-series analysis and the

Edelson–Krolik method for estimating correlation. In §3, we describe measures

for quantifying non-uniformity in time series, and in §4 show their application

to telemonitored data. In §5 we describe several different applications of the

Edelson–Krolik correlation and correlation between time series using surrogate

data. Finally, §6 summarizes the findings of this study.
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2. Time series
Time-series analysis involves the description, explanation

and prediction of observations taken sequentially in time [4].

Description implies the use of numerical and graphical

descriptive statistics such as time plots and the correlogram.

Correlograms can reveal seasonality, which is the tendency to

repeat a pattern of a certain periodicity, such as a yearly

cycle, and trend, or long-term variation up or down. Whereas

description provides information about a given time series,

inference induces a general form based on a finite number of

observations. An example is time-series regression, which

attempts to model an underlying relationship between depen-

dent variables and time. Regression is often applied in the

context of time-series prediction because of its many practical

applications. Linear approaches are popular because they are

readily interpretable and convenient [5]. Stationary, linear

time-invariant Gaussian systems introduce several symmetries

that have many conveniences, including statistical stability,

sufficiency of first- and second-order moments, and convex

and analytic inference procedures [6]. Nonlinear models can

represent regime switching behaviour, and parsimonious non-

linear models have been shown to outperform linear methods

in economic forecasting [7].
(a) Correlation estimation
The autocorrelation function is an important measure

of serial dependence in a time series and is defined for a

stationary random process Y(t) as

rðsÞ ¼ gðsÞ
gð0Þ ; ð2:1Þ

where s is the time lag and g(s) is the autocovariance function,

defined as the covariance between Y(t) and Y(t – s). An infor-

mative way of representing the serial dependence in a time

series is by a graph of autocorrelation coefficients r(k) against

the integer lag k. This sequence represents a sample autocor-

relation function and is called the correlogram [8]. As natural

time series often have missing or irregular data, it is often

the applied sciences that have derived methods for their

analysis. In astrophysics, Edelson & Krolik [9] derived the

discrete correlation function (DCF) for correlation estimation

in non-uniform time series. It is defined for two discrete,

centred time series ai and bj, first as a set of unbinned discrete

correlation values

UDCFij ¼
aibjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2
a � e2

aÞðs2
b � e2

bÞ
q ð2:2Þ

for a measured pair of observations (ai, bj) whose time differ-

ence is Dtij. Here, ai and bj are a concise notation for a(ti) and

b(tj), respectively, sa and sb are the respective standard devi-

ations, and ea and eb are estimates of the measurement noise

in each time series. The DCF is derived by averaging the set

of M unbinned values

DCFðtÞ ¼ 1

M

X
jDtij�tj,Dt=2

UDCFij; ð2:3Þ

where t is the bin centre and Dt is the bin width. The

standard error is given by

sDCFðtÞ ¼
1

M00
X
ðUDCFij �DCFðtÞÞ2

� �1=2
ð2:4Þ
recalling that UDCFij is a set and DCF(t) is a scalar for given

t. The summation is over jDtij � tj , Dt/2 as before and

the normalizing constant M00 ¼ ((M – 1)(M0 – 1))2 with M0

the number of unique measurement times for the series ai.

The Edelson–Krolik method is closely related to the

variogram, an approach that is well known in geostatistics,

where it is used to model spatial correlations [10]. It was until

recently rarely mentioned in texts on time series or in the statisti-

cal literature as a whole [11], with the exception of Chatfield [4]

and Diggle [8], who defines the variogram as

VðkÞ ¼ 1
2E½fYðtÞ � Yðt� kÞg2� ð2:5Þ

¼ gð0Þð1� rðkÞÞ; ð2:6Þ

where terms are defined as before. A plot of the quantities

vij ¼ 1/2fyðtiÞ � yðtjÞg2 for all delays kij ¼ ti2tj is called the

sample variogram. As with the DCF, random scatter in

the plot may arise from small sample sizes used in calculating

vij. This scatter can be reduced by averaging vij over binned

time values to give �vðkÞ.
The binned variogram and DCF are examples of a slotting

approach that uses a rectangular kernel to bin pairs of obser-

vations. They belong to one of four categories identified by

Broerson et al. [12] for handling non-uniform data. The other

categories are direct transform approaches, such as the

Lomb–Scargle (LS) periodogram [13], model-based estimators

(which presuppose a knowledge of the time-series dynamics)

and resampling through interpolation. The LS approach,

kernel methods (though not slotting) and linear interpolation

are compared by Rehfeld et al. [14]. As the data analysed in

this study have high relative noise and large gaps in the time

indexes, we apply the Edelson–Krolik slotting approach. It pro-

vides a sample correlogram directly and avoids the assumptions

necessary for interpolation or model-based estimators.
3. Measures of non-uniformity
We next introduce two measures for quantifying missing and

non-uniform responses in time series. The first, which we call

compliance, measures the proportion of real observations in a

time series that contains imputed values. The second measure,

called continuity, quantifies the sampling regularity among

those real observations. Both measures are easily derived from

a uniformly sampled series with missing data, but here we start

from an irregular series and assume that a response is valid for

an interval rather than a single point in time. This condition

would apply, for example, to the answer from a questionnaire

where the relevant interval is the week prior to the response.

We begin by considering the process of resampling the time

series into a homogenized equivalent with uniform intervals.
(a) Compliance
Figure 1 illustrates the resampling process assuming that

sampling is approximately once per week and that responses

are valid for the previous week. The optimal weekday w for

the resampled time series is chosen to minimize the total

deviation of the original responses from their corresponding

resampled position on the x-axis or ‘comb’ of weekdays.

The deviation in this case is the elapsed time to the first

response within 7 days.

The comb is then populated from the original series as fol-

lows. Starting from weekday w at the start, or the last instance

http://rspb.royalsocietypublishing.org/
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Figure 1. Illustration of resampling. Diamond markers represent the original,
non-uniform time series and the horizontal lines to the left of each marker
show the period over which the response is valid. Square markers represent
the resampled series and those with a square central dot are imputed values.
The x-axis or ‘comb’ shows the optimal weekday, which, when aligned with
the original series, gives the minimum total distance (deviation) of the sample
time from the response time. (Online version in colour.)
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of w before the start, of the time series, we record any

response within 7 days. We repeat the search from weekday

w in the following week and continue until the last response

of the time series is reached. If no response is found within

7 days, a missing value is imputed by random selection

from the previous four responses. The imputed value itself

is chosen for the purposes of illustration and does not affect

the non-uniformity measures.

Figure 2 shows the effect of resampling on two example

series. Most of the original responses are not shifted, while

some are moved to an earlier time point and where this

cannot be accomplished, an imputation is made.

We define compliance as the proportion of non-imputed

values in the resampled time series. Imputations occur

when a response is later than the sample period t which in

this application is equal to 7 days. Formally,

Cm ¼
1

N

XN�1

k¼0

Q
XN0
i¼1

1½kt � ti , ðk þ 1Þt�
" #

; ð3:1Þ

where Cm is compliance, t is the uniform sample period and ti

is the ith element of the time vector for the original series,

which has N0 points. N is the number of points in the

resampled series and is equal to the number of weeks

spanned by the original time series, allowing for the period

of validity. The function Q is equal to 0 if its argument is 0,

otherwise it is equal to 1, and the indicator operator 1 has

value 1 for a boolean argument of true and 0 for false.

The value of Cm lies between 0 and 1.

As long as the original series covers all the new sample

time points, there will be no imputations and the compliance

is 100%. For example, if responses are returned more often

than every week, a uniform series may be derived by discard-

ing some responses and without loss of compliance. A non-

uniform series may also exhibit full compliance as long as

no response is more than six (more generally, t – 1) days

late. However, longer gaps result in an imputed value

being added to the uniform series and compliance being

reduced. The measure thus penalizes missing data but not

additions or late returns.
(b) Continuity
A low compliance implies that there is a large proportion of

imputed points in the resampled series but gives no infor-

mation about their distribution throughout the observed

responses. A second measure, which we call continuity,

measures the connectedness of non-imputed responses in
the resampled time series. To develop the measure, we exam-

ine the sequence of points in the resampled series and label

them with a state indicator of P for imputed and R for not

imputed. The number of sequential state changes R! P is

a count of the discontinuity, and we use the ratio of this

count to Nr– 1, where Nr is the number of R states. A

simple example is the sequence RRR PPP R PPP R. Here,

there are two sequential changes of state from R to P out of

a total of five R states, giving a continuity of 2/4. The

sequence RRRRR then has a continuity of 1, and the sequence

RPRPR has a continuity of 0. In general, we then have

Ct ¼ 1� 1

Nr � 1

XN�1

k¼1

1½ðwk;wkþ1Þ ¼ ðR;PÞ�
 !

; ð3:2Þ

where Ct is continuity, N is the length of the resampled series

and wk [ fR,Pg is the state of the kth data point. The mini-

mum possible continuity occurs when the P states are

distributed throughout the time series. In this case,

CtðminÞ ¼ 1�
Np

N �Np � 1
; ð3:3Þ

�
2Cm � 1

Cm
if Cm � 0:5

0 otherwise

8<
: ð3:4Þ

for N � 1, where Np is the number of P states. It can be ident-

ified from (3.4) that as the compliance approaches 1, the

minimum possible continuity approaches the compliance.

So compliance is the proportion of non-imputed responses

and continuity is the proportion of correct intervals among

them. Continuity summarizes the interval distribution using

the probability density located only at the desired interval.

The location of the remaining mass, corresponding to the

distribution shape, does not influence its value.

This approach gives an advantage over standard dis-

persion measures (of either the raw or the homogenized

series) because all intervals longer than the sampling period

are classed together. Long gaps in the time series, when the

patient fails to respond for a period, do not greatly influence

the continuity value, although they are reflected in the compli-

ance. The property is also relevant to the autocorrelation

calculation because time series with high continuity can be

treated as uniform for this purpose. Both compliance and con-

tinuity can be useful in both selection of near-uniform series

for the application of standard methods and for exploring

non-uniformity as an informative property in itself.
4. Application of measures
We apply the measures to time series from 153 patients with

bipolar disorder who were monitored between 2006 and

2011. Data were collected as part of the OXTEXT programme

funded by the National Institute for Health Research, which

investigates the potential benefits of self monitoring of

mood for people with bipolar disorder. The sub-sample of

participants in this study was selected from the OXTEXT

cohort and includes those patients who had used mood

monitoring prior to recruitment into OXTEXT and who had

given consent for the use of anonymized retrospective data

for exploratory time-series analysis.

The mood data are returned approximately each week

and comprise answers to standard self-rating questionnaires

for both depression and mania. The rating scale used for

http://rspb.royalsocietypublishing.org/
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Figure 2. Effect of resampling on high- and low-compliance time series. The original responses are denoted by small diamond markers and the resampled series by
the larger square border. Imputed values are shown with a central square dot. Plot (a) represents an approximately uniform original time series in which resampling
preserves the time stamps of the original responses: most diamond markers are centred in the squares. Plot (b) illustrates a non-uniform series where many
responses are late and some are missing. The late responses are shown by a diamond marker located to the right of centre of the square border. (Online version
in colour.)

initial set
(n = 153)

set A (n = 93)
minimum length

set G (n = 40)
all Bipolar I

equal genders

set D (n = 32)
all female

equal diagnoses

Figure 3. Flow chart for data selection. From the initial dataset, set A (n ¼ 93)
of time series having a minimum length of 25 data points is selected. Two
further subsets are then selected from set A. Set G (n ¼ 40) has equal numbers
of each gender, all with a diagnosis of Bipolar I disorder. Set D (n ¼ 32) has
equal numbers of patients having Bipolar I and Bipolar II diagnoses, all of whom
are female. The selection algorithm matches patients by time-series length.
Where no patient of matching length can be found, the range is progressively
widened until one or more matches is found. (Online version in colour.)
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depression is the Quick Inventory of Depressive Symptomatol-

ogy-Self Report (QIDS-SR16) [15], which has 16 questions

covering nine symptom domains for depression according to

the Diagnostic and Statistical Manual of Mental Disorders, 4th edn

[16]. This self-rated instrument has highly acceptable psycho-

metric properties, including high validity [17]. Each domain

can contribute up to three points, giving a total possible score

of 27 on the scale. The severity of mania is quantified using the

Altman Self-Rating Mania Scale [18], which has five questions,

each of which can contribute up to four points, giving a total

possible score of 20.
(a) Data selection
The initial set of 153 patients is first cleaned by removing

repeated response values (i.e. those which share the same time

stamp). These repeats arise when a patient resubmits a rating

score either by mistake or in order to correct an earlier response.

Assuming that earlier values are being corrected, we remove

repeated responses by taking the most recent in the sequence.

We then create set A (n ¼ 93) with members whose time series

have at least 25 data points, or approximately six months dur-

ation. Figure 3 illustrates the data selection process.
Two further subsets are then created from set A, one having

equal numbers of male and female patients, and a second with

equal numbers of Bipolar I (BPI) and Bipolar II (BPII) diag-

noses. The first subset is labelled as set G (n ¼ 40) and

contains patients of whom all have a diagnosis of BPI disorder.

It is created by selecting all the patients with BPI from set A and

removing the female patient with the shortest time-series

length. The second subset, labelled set D (n ¼ 32), has equal

numbers of patients diagnosed with BPI and BPII disorder,

all of whom are female. Set D is created by retaining the 16

female BPII patients from set A and selecting 16 BPI female

patients to match for time-series length. The selection algor-

ithm attempts to match the length for each individual patient

by progressively widening the search range until a suitable

match is found. Descriptive statistics of the subsets are given

in the electronic supplementary material, §I.
(b) Non-uniformity
Using the subset of data labelled set A, we derive the compli-

ance and continuity measures for each patient. A scatter plot

is shown in figure 4. From (3.4), we see that the minimum con-

tinuity tends towards the compliance as the compliance

approaches 1. For lower compliance, where there is a higher

proportion of imputations, the continuity may be lower.

For the next analysis, we assume that any text message

latency is small in comparison with the patient’s delay in

responding to a prompt from the monitoring system. We

do not know when the prompt message is received by the

patient, so we cannot distinguish total network latency

from the patient’s response delay. However, as the prompt

messages are dispatched at weekly intervals, we can judge

the scale of the overall delays by examining the time between

prompt and receipt. The analysis is provided in electronic

supplementary material, §5 and shows that most patients

have a mean delay of half a day or more. This result is

expected because the questionnaire relates to a weekly

period rather than an instant in time: patients do not have

to reply to the prompt immediately. However, the network

delay remains unknown and a quantitative study of the

http://rspb.royalsocietypublishing.org/
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patient are plotted against the continuity score for that patient. In (b), the
mean of the absolute difference between sequential resampled values, again
ignoring imputed points, is used. For both cases, patients with lower conti-
nuity show a higher variability in sleep responses on average. The linear
least-squares fit is marked as a line. (Online version in colour.)

Table 1. Rank correlation ( p-values) between depression symptoms and
continuity for set A.

variability measure

domain mean s.d.
mean abs.
diff.

sleep þ0.14 (0.18) 20.26 (0.01) 20.25 (0.02)
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monitoring infrastructure would be valuable in determining

the scale and nature of network latency.

feeling sad 20.13 (0.21) 20.17 (0.10) 20.09 (0.39)

appetite/

weight

20.06 (0.59) 20.04 (0.75) 20.02 (0.88)

concentration 20.12 (0.24) þ0.01 (0.94) 20.00 (0.96)

self-view 20.13 (0.22) 20.15 (0.14) 20.13 (0.23)

death/suicide 20.11 (0.27) 20.15 (0.16) 20.19 (0.06)

general

interest

20.11 (0.29) 20.16 (0.12) 20.19 (0.07)

energy level 20.08 (0.43) 20.14 (0.19) 20.05 (0.61)

slowed down 20.09 (0.39) 20.08 (0.45) 20.01 (0.91)
(c) Demographic and mood data
We examine the correlation between continuity and both

demographic and mood data over the set of patients using

set G (n ¼ 40), which has equal numbers of male and female

patients, and set D (n ¼ 32), with equal numbers of BPI and

BPII diagnoses. No pattern emerges in either case, and a two-

sample Kolmogorov–Smirnov test does not distinguish the

distribution of male versus female or BPI versus BPII non-uni-

formity measures. Further details can be found in the electronic

supplementary material, §IV.

Next, we look for correlates of non-uniformity with

mood. There are nine variables for depression corresponding

to symptoms of sleep, appetite, etc., and five variables for

mania, which we summarize for each patient by mean, stan-

dard deviation and mean absolute difference. We take the

rank correlation for each symptom with continuity over the

set of 93 patients in set A. The results are shown in table 1.

No correlations were found between mean symptom levels

and continuity. For the dispersion statistics, only sleep in

the depression questionnaire was found to have a correlation

significant at the 1% level.

Variability of sleep correlates negatively with continuity

when measured by standard deviation (r ¼ –0.26, p ¼ 0.01)

and mean absolute difference between sequential values

(r ¼ –0.25, p ¼ 0.02). A similar result was found when

using compliance as the non-uniformity measure. The scatter

plots for both statistics are shown in figure 5.

We note that there will be a sampling distribution for both

the mean and variability measures arising from the limited

sample sizes, which would manifest in figure 5 as a range

for each point.
For some symptoms, any correlation with non-uniformity

might be hidden by this effect. However, as the same sampl-

ing limits apply to all symptoms we can distinguish sleep

variability as having a relatively strong association with

non-uniformity of response.

The relationship of non-uniformity of response with sleep

variability is an important finding from this analysis. The associ-

ation is also interesting if response uniformity is taken as an

indicator of general functioning. We would expect that delays

in responding are caused by holidays, work commitments,

physical illness, forgetting to reply, a low priority for replying

or chaotic behaviour. Psychological factors may have an influ-

ence, and several of the symptoms explicitly measured on the

QIDS scale are relevant, in particular severe lassitude or lack

of energy, lack of interest, poor concentration and thoughts of

death/suicide. As pointed out, it is quite possible that corre-

lations with these variables exist, but that they are below the

noise threshold. The relatively stronger effect of sleep points to

a number of possibilities. First, a strong association between

http://rspb.royalsocietypublishing.org/
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Figure 6. Correlograms for the depression time series from four patients. In
each plot, the dark line is the correlogram estimated using the Edelson –
Krolik method with a bin width of two weeks and showing two standard
errors each side as a filled region. The lighter line is the autocorrelation cal-
culated under the assumption of a uniform series. Imputed points are not
used in either calculation. In the time plot third from the top, there is
clear evidence of yearly seasonality of depression. The continuity values for
the time series are, from top to bottom: 0.99, 0.92, 0.87 and 0.30. Vertical
lines are year markers corresponding to 52 and 104 weeks. Note that corre-
lograms are defined only at integer lags or bin centres, but are shown as
continuous lines for clarity. (Online version in colour.)
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Figure 7. Lomb periodogram for a patient exhibiting seasonality of
depression. The corresponding correlogram in figure 6 is third from the
top. The spectral power is normalized by the peak power and the periodicity
of 365 days is marked as a vertical line. The peak is at a period of 370 days
and a second much smaller peak occurs at 196 days. In general, the
depression time series do not show such clear evidence of yearly periodicity,
although some patients have a peak at or near this period. (Online version
in colour.)

set A
(n = 93)

time series
made uniform

or ‘homogenized’

set E (n = 23)
min length 100,

symptoms pairwise
correlate positively

Figure 8. Flow chart for data selection. From set A (n ¼ 93), a homogen-
ized set of time series is created, and from this set E (n ¼ 23) is selected. It
has at least 100 data points in the homogenized time series, and all the
symptom time series for a patient have positive pairwise correlations.
(Online version in colour.)
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sleep and mental illness is well established, if not well under-

stood [19]. So one possibility is that sleep is simply the

strongest indicator of an underlying disorder, which causes irre-

gularity through the behavioural issues listed above. The

causation might be more direct; for example, sleep causing pro-

blems with memory or other functioning, leading to lost or

delayed ratings. However, it is a high variability of sleep ratings

rather than a high mean rating that predicts non-uniformity of

response. It may be that there is some adaptation to poor

sleep, whereas inconsistent sleep leads to inconsistent behav-

iour. The data are too noisy and do not provide a strong

enough effect to distinguish these scenarios.
5. Application of methods
We now apply the Edelson–Krolik method to calculate autocor-

relation and correlation using the time series for depression. We

first examine evidence of seasonality from the correlogram for

individual patients, then look at the correlation between symp-

toms of depression, and finally apply a surrogate data method

to detect correlations among the set of time series themselves.

(a) Seasonality
We examine the autocorrelation function of the depression time

series using the Edelson–Krolik method to determine the auto-

correlation at successive lags. Four examples of correlograms

are shown in figure 6, in comparison with a standard correlo-

gram (lighter line) that has not been adjusted for non-uniform

response times. The third plot from the top shows a yearly

seasonality for both the Edelson–Krolik method and the unad-

justed correlogram, with the latter having a peak correlation at

less than 50 weeks and less seasonal variation.
Figure 7 is the LS periodogram corresponding to this time

plot. It shows a peak of spectral power at 370 days, indicating

a yearly seasonality. The depression time series do not in gen-

eral show clear evidence of yearly periodicity, though some

have a peak at or near this period. Most exhibit a rapid

decrease in correlation with lag and some show evidence of

a trend, indicated by the correlogram not tending to zero as

the lag increases.
(b) Correlation between depression symptoms
The correlation between depression symptoms is examined

for patients who have at least 100 data points in their hom-

ogenized time series. The first 100 responses are taken, the

imputed values removed and the means subtracted from

the individual domain scores. Correlation between domains

is then calculated using the Edelson–Krolik method (2.3)

and the scores averaged over the set of patients. In order

to provide a comparison between symptoms, only those

patients with non-zero symptom series and positive corre-

lations are selected. There are six patients showing some

pairs of negative correlations, but these did not show any

common relationship. The subset of patients fulfilling these

criteria is denoted set E and its statistical properties are sum-

marized in the electronic supplementary material, §2, with

further details about the selection. The selection of set E is

illustrated in figure 8.

A heat map showing the relationship between symptom

domains is shown in figure 9. On average, the symptom domains

sleep and appetite/weight correlate less than other domains. By

http://rspb.royalsocietypublishing.org/
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Figure 9. Matrix of mean correlation between pairs of depression symptoms. For each patient in a set of 23, we find the correlation between pairs of symptoms and
present the average over whole set. Only positive correlations greater than two standard errors from zero are used and patients with negative correlations or non-
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Figure 10. Autocorrelation for symptom time series. The chart represents the
mean first-order autocorrelation of a set of 23 patients, with error bars show-
ing the standard error. The symptoms sleep and appetite/weight have a lower
autocorrelation than the rest, implying a low relative correlation with symp-
toms that have a different autocorrelation structure. (Online version in colour.)
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contrast, feeling sad correlates strongly with other domains, while

slowed down/restless shows less correlation with others.

An analysis of the autocorrelation structure for symptom

time series explains why the symptoms of sleep and appetite/
weight tend to correlate less when paired with other domains.

We take the 23 time series used above and find the autocorrela-

tion at using the Edelson–Krolik method on the homogenized

time series with imputed points removed. The results are

shown in figure 10. The symptoms sleep and appetite/weight
have a lower autocorrelation than the other symptoms, which

explains their relatively low pairwise correlation in figure 9.

Although sleep and appetite/weight have a similar first-order

autocorrelation, figure 9 shows that they do not themselves cor-

relate as a pair, the reason being that their autocorrelation

structure is somewhat different: the autocorrelation for sleep
remains higher than appetite/weight as the lag increases. Auto-

correlation coefficients up to a lag of four are shown in the

electronic supplementary material, §III.

We note that these two symptoms are the most amenable

to objective measurement out of the nine symptoms in the

QIDS rating scale, and that slowed down/restless, which

might also fall into this category, also correlates less than

the others. It may be that the other symptoms (feeling sad, con-
centration, self-view, thoughts of death/suicide, interest and energy
level) have a common factor that influences them more than it

does the other three symptoms. This finding is similar to that

of Rush et al. [20], who identified three factors in the IDS

instrument: cognitive/mood, anxiety/arousal and sleep (or

sleep/appetite for the self-rated instrument).
(c) Time-series correlation
In this section, we look for similar mood changes in patients

by examining pairwise correlations between their time series

of depression ratings. We take a set of 28 patients who have

complete depression series during the years 2009 and 2010,

which we denote as set F.

The selection process is illustrated in figure 11 and

descriptive statistics are given in the electronic supplemen-

tary material, §II. We create a reference set of surrogate

time series by shuffling the time order of existing series

while maintaining their mean, variance and autocorrelation

http://rspb.royalsocietypublishing.org/
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Figure 11. Flow chart for data selection. From set A (n ¼ 93), a homogen-
ized set of time series is created and from this set F (n ¼ 28) is selected. It
comprises time series that span the years 2009 – 2010 and have fewer than
20% of imputed points over that period. (Online version in colour.)
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Figure 12. Kernel density estimate of pairwise correlations between
time series. The dark line is the density estimate for the original set
of time series and the light line for the surrogate data. Each surrogate
time series is derived from its original counterpart by taking the Fourier
transform and randomizing the phases to obtain a time series with the
same power spectrum. The method removes any correlation between pairs
of time series that arises from a common source rather than by chance.
The similarity of the distributions shows that in general there is no correlation
present among pairs of the original time series.
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function. The algorithm used for this process is described by

Kantz & Schreiber [21] and is implemented using the TISEAN
function surrogates [22]. The distribution of the pairwise

correlations for both the original and surrogate datasets is

shown in figure 12.

The correlations between time series for original and sur-

rogate datasets appear to have the same distribution, and a

two-sample Kolmogorov–Smirnov test returns a value of

p ¼ 0.53. Although external factors do not appear to have a

strong influence on depression over the set of patients, this

does not preclude the possibility that there may be strong

environmental effects in individual cases.
6. Conclusion
We have addressed the problem of describing and modelling

time series with missing or irregularly spaced values. Two

new measures for quantifying missing and non-uniform

data were introduced and applied to a database of telemoni-

tored mood data. The quantification of non-uniformity can be

useful in (i) investigation of non-uniformity as a correlate of

other variables; (ii) selecting subsets of data where uniformity

is a requirement; and (iii) use as supplementary information

for a clinician. We found that time-series uniformity does not

correlate with either gender or diagnostic subtype. However,

variability of sleep correlates with continuity. This finding

has implications for selecting time series according to their

uniformity as it may exclude patients with more variable

sleep ratings.

The Edelson–Krolik method uses relative distances rather

than fixed lags to determine time-series correlation, and so

it is robust to non-uniform sampling intervals. We used the

method to generate correlograms of depression ratings and

showed that one patient exhibited mood with yearly
seasonality. Most patients do not show evidence of seasonal-

ity, but rather a short-term autocorrelation structure.

We examined correlations between depression symptoms

and found that sleep and appetite/weight show a lower average

correlation than other symptoms. We found evidence that the

autocorrelation structure for these domains is different from

that of the others. Finally, we examined correlations between

patients’ depression time series but found no evidence of cor-

relation in general. We note that for some patients, the weekly

sampling will be below the Nyquist frequency for depression,

so information will be lost. A study identifying the range of

frequencies in depression in bipolar disorder would therefore

help in choosing an optimal sample rate, consistent with

practical considerations.
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