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Abstract—In this paper, a nonlinear semi-analytical model 

(NSAM) for simulation of few-mode fiber transmission is 
proposed. The NSAM considers the mode mixing arising from the 
Kerr effect and waveguide imperfections. An analytical 
explanation of the model is presented, as well as simulation 
results for the transmission over a two mode fiber (TMF) of 
112 Gb/s using coherently detected polarization multiplexed 
quadrature phase-shift-keying modulation. The simulations show 
that by transmitting over only one of the two modes on TMFs, 
long-haul transmission can be realized without increase of 
receiver complexity. For a 6000 km transmission link, a small 
modal dispersion penalty is observed in the linear domain, while a 
significant increase of the nonlinear threshold is observed due to 
the large core of TMF. 
 

Index Terms— Nonlinear Fiber Optics, Optical Fibers, Optical 
Fiber Communication, Multimode Fibers, Few-Mode Fibers. 
 

I. INTRODUCTION 

HE exponential increase in communications traffic is 
rapidly exhausting the optical fiber bandwidth available in 

the low loss window. In order to overcome this limit, 
considerable effort has been directed towards the development 
of advanced modulation formats, in order to enhance the 
spectral efficiency using denser Quadrature Amplitude 
Modulation (QAM) constellations [1,2]. However, modulation 
formats with denser constellations require a higher optical 
signal to noise ratio (OSNR) and have a reduced nonlinear 
tolerance. As a result, the feasible transmission distance of 
these modulation formats is significantly reduced. One radical 
solution is to increase the fiber core radius. However, as the 
fiber core radius increases the fiber becomes multimode.  

Few-mode fibers (FMFs) have been proposed as a good 
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compromise between the decrease of the nonlinear coefficient 
and the introduced modal dispersion [3]. Due to the high 
mismatch of phase velocity between modes, these fibers 
present very weak mode coupling, such that long-haul single 
mode propagation has been already experimentally 
demonstrated [3]. Furthermore, FMFs have a theoretical larger 
information transport capacity, since each mode has a capacity 
which basically equals or doubles the capacity of a single 
mode fiber (SMF), depending of the mode degeneracy [4]. To 
take advantage of this additional capacity, Mode Division 
Multiplexing (MDM), has been proposed [5]. However, the 
complexity of the equalizer at the receiver is significantly 
higher than that for single mode transmission.  

In this paper, we present a nonlinear semi-analytical model 
(NSAM) for simulation of FMF transmission, taking into 
account the mode coupling resulting from waveguide 
imperfections (Section II), and the Kerr nonlinear effects 
(Section III). Section IV provides the simulation setup and 
discussion of results. Conclusions are drawn in Section V. 

II. WAVEGUIDE IMPERFECTIONS 

The waveguide imperfections [6] caused by perturbations 
introduced during the fabrication process or by mechanical 
stresses imposed on the fiber in the field were modeled by 
random fluctuations of the core center position, given by: 
εr(x,y,z) = εr0(x+δx(z),y+δy(z),z), where εr is the perturbed 
relative permittivity, εr0 is the ideal relative permittivity, δx 
and δy are the random displacement of the abscissa and 
ordinate coordinates, respectively. The proposed model 
divides the fiber in multiple sections, each with a constant 
random displacement of the core center position. Therefore, 
each section has constant coupling coefficients. In order to 
analytically describe the crosstalk arising from the waveguide 
imperfections, we used the coupled wave theory [6], 
particularly the following coupled-mode equations: 
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where Ãµ(z,ω) is the Fourier transform of the mode µ slowly 
varying field envelope Aµ, βµ(ω) is the mode µ propagation 
constant, and βlµ is the lth order coefficient of a Taylor series 
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expansion of βµ(ω) centered at the carrier frequency ω0. Cµν 
are the coupling coefficients given by the area integral of the 
dot product of the electrical fields of mode µ and mode ν, over 
the area where the permittivity difference between the ideal 
fiber (εr0) and the perturbed one (εr) is nonzero.  

Considering, the simple case of a TMF, where only the 
coupling between the LP01 mode (µ = 1) and the LP11 mode 
(µ = 2) is present, (1) can be written in a simpler form that can 
be solved analytically in each section [6]: 
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where ∆β = β1 - β2, s2 = κκ*+(∆β/2)2, and κ = C12 = C21*. 
From (3) and (4), it can be concluded that the coupling 
strength depends on the relation between |κ|2 and ∆β2.  

A uniform distribution was assumed for the random position 
(rd,θd) of the core center. In order to get a typical value for the 
maximum random displacement (rd,max), the proposed model 
was applied to high birefringence (HiBi) fibers and the results 
were compared with published experimental measurements. 
The characteristics of the FlatCladd PMF fibers shown in 
table I of [7] were considered. Their birefringence is 
B = ∆n = 2.5x10-4, and the mode coupling parameter is h = 5.9 
x10-6. The mode extinction ratio (MER) along the fiber length 
l is given as a function of h by MER = 10log10(tanh(hl)) [7], 
which is used to fit experimental results.  

Finally, the simulation results and the experimental fitted 
function were compared. For a rd,max of 1% of the core radius 
(rcore) and a 50 meter simulation step size, considering perfect 
launch coupling to one of the modes, a very good agreement of 
the evolution of the power in each of the modes along the fiber 
length was obtained. Therefore, this model was adopted for the 
transmission simulations described in section IV. 

III.  KERR NONLINEAR EFFECTS 

The Kerr effects were modeled by deriving the nonlinear 
pulse propagation equation for a multimode fiber, starting by 
writing the induced nonlinear polarization as a function of the 
electric field expansion into the two orthogonal polarization 
components of the N orthogonal modes supported by the fiber. 
Following a derivation similar to the one present in [8] for 
single mode fibers, the generalized coupled nonlinear 
Schrödinger equations can then be written as: 
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where i and j are the orthogonal states of polarization of each 
mode µ. Aµi(z,t), β1µi, β2µi and αµi are the slowly varying field 
envelope, group velocity parameter, group velocity dispersion 
parameter and attenuation parameter for the i polarization of 
the µ mode, respectively. γµνij is the nonlinear coupling 
parameter between the i polarization of mode µ and the j 
polarization of mode ν, which depends on the nonlinear 
refractive index n2 of the silica, approximately 2.6x10-26 m2/W 
[8], and on the intermodal effective area, and is given by: 
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where Eµi(x,y) is the mode field transverse distribution for the i 
polarization of mode µ. 

In (5), the first term of the right side is responsible for 
modal self-phase modulation (mSPM) of the polarization i of 
the mode µ. The second term results in modal cross-phase 
modulation (mXPM) from the same polarization (i) of 
different waveguide modes (ν ≠ µ). The third term results also 
in mXPM, but coming from the orthogonal polarization (j) of 
the same (ν = µ) or different waveguide modes (ν ≠ µ). 

Finally, considering simultaneously the nonlinear 
contribution to the permittivity and the linear perturbation of 
the permittivity due to fiber structure imperfections, a novel 
integrated model was derived. Following the reasoning used in 
(1) and (5), the result obtained after some algebra was: 
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In order to solve (5) and/or (7), in a nonlinear dispersive 
media, the split-step Fourier method was used. 

IV. SIMULATION SETUP, RESULTS AND DISCUSSION 

In this section, the weak nonlinearity of a TMF was evaluated 
through the transmission of traffic over one of the supported 
modes, LP01 or LP11. The fiber considered has a step-index 
profile with a cladding refractive index of 1.46, a relative 
index gradient at the core–cladding interface ∆ = (nco -
 ncl)/nco  = 2.5x10-3, and a core radius of 9 µm. By solving the 
Maxwell equations for these parameters, and using the weak 
guiding approximation, was obtained an effective mode index 
difference of ∆n ≈ 1.32x10-3, consequently a modal delay of 
~4 ps/m. For this fiber the average MER obtained at the end of 
75 km. using (3) and (4), is ~-20 dB, for rd,max = 0.01 x rcore. 
Table I gathers some of the TMF properties at 1550 nm, 
together with those of the SMF used as reference for 
performance comparison. 
 The simulations were performed considering the LP 
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approximate modes. The phase relation variations between the 
exact modes of the decomposition of LP11 (TM01, TE01 and 
HE21) [4], was accounted for during the simulations as 
polarization mode dispersion (PMD), as shown in Table I. 
 

 
In the transmitter/receiver in order to launch/detect 

selectively one of the TMF modes, an adiabatic taper can be 
used to launch/detect the LP01, and for the LP11 long-period 
fiber gratings (LPFG) can be used [5]. This setup introduces 
slight additional complexity, and during simulations their 
performance was considered ideal. In all transmission 
simulations performed, periodic amplification with 75 km 
spans was assumed to be realized with single stage erbium-
doped fiber amplifiers (EDFA), where only the wanted mode 
was amplified and the unused mode was removed. The 
modulation format used was 112 Gb/s coherently detected 
polarization multiplexed (CP) quadrature phase-shift-keying 
(QPSK). A single channel, centered over the 1550 nm 
wavelength was transmitted. The receiver considered was the 
blind coherent digital receiver presented in [9], using twofold 
oversampling and frequency-domain equalization to 
compensate for the bulk of accumulated chromatic dispersion. 
After this, the signal is retimed, demultiplexed, and equalized 
in a butterfly 13 taps FIR filter. Finally, the phase is recovered 
from the constellation diagram. A 45 GHz second-order 
optical Gaussian filter and a 28 GHz fifth-order electrical 
Bessel filter were considered. The bit-error-ratio (BER) after 
transmission was measured using Monte Carlo simulation, 
considering EDFAs with a spontaneous emission factor of 2 
and a gain adjusted to compensate for the total span losses. 

Fig. 1 shows log10(BER) after 6000 km as a function of the 
average input power, considering a 50 meter step size and 
rd,max = 0.01 x rcore. In the linear region, the TMF results show 
a power penalty of less than 1 dB, compared with the SMF, 
due to the linear mode coupling between LP01 and LP11 of the 
TMF. This low penalty (in the absence of nonlinear effects) 
confirms the weak coupling strength given by (3) and (4), 
since |κ| ranges from 0 to ~60, and ∆β ≈ 5000, and already 
confirmed experimentally in [3]. However, for high launch 
powers where the optical performance is dictated by nonlinear 
effects TMF clearly outperforms SMF. Compared to the 
nonlinear threshold of SMF an increase with ~4.5 dB and 
~6.5 dB of the maximum optical launched power for a 
BER = 3.8x10-3 is observed for LP01 mode and LP11 mode, 
respectively. These simulations improvements are related with 
the higher effective area of the TMF modes, compared to the 

SMF, as shown in Table I. This results demonstrate that by 
transmitting over only one of the two modes on TMF, long-
haul transmission can be realized providing a significant 
increase in nonlinear threshold compared to transmission on 
SMF without increase of receiver complexity (except for the 
necessary mode converters). These enhancements are in line 
with the experimental results presented in [3] for transmission 
over the LP01 of a similar TMF. 

 

 

V. CONCLUSION 

This paper proposes a NASM for simulation of FMF 
transmission, including the modal coupling arising from 
waveguide imperfections and from the Kerr nonlinear effects. 
Therefore, this model is a valuable tool for the development of 
future high-capacity multimode fiber systems.  

The simulation results obtained provide a validation of the 
weaker nonlinearity offered by TMFs. These fibers 
outperformed SMFs due to a much higher effective area, and a 
low modal dispersion penalty, showing that TMFs can be used 
for long-haul transmission without increase of receiver 
complexity (except for the necessary mode converters). 
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TABLE I 
FIBER PROPERTIES AT 1550 NM. 

Property Unit 
TMF 
LP01 

TMF 
LP11 

SMF 
LP01 

Dispersion ps/(nm km) 22.64 20.86 15.35 

Dispersion slope ps/(nm2 km) 0.063 0.053 0.057 

Aeff µm2 206.7 322.9 91.4 

γγγγ  - intramodal W-1/km 0.510 0.326 1.153 

γγγγ  - intermodal W-1/km 0.314 0.314 - 

PMD ps/√km 0.069 0.687 0.069 

Attenuation dB/km 0.22 0.22 0.22 
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Fig. 1. log10(BER) as function of the mode launch power. 

 


