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Abstract 

We test for departures from normal and independent and identically distributed (NIID)  

returns, when returns under the alternative hypothesis are self-affine. Self-affine returns are 

either fractionally integrated and long-range dependent, or drawn randomly from an L-stable 

distribution with infinite higher-order moments. The finite sample performance of estimators 

of the two forms of self-affinity is explored in a simulation study which demonstrates that, 

unlike rescaled range analysis and other conventional estimation methods, the variant of 

fluctuation analysis that considers finite sample moments only is able to identify either form 

of self-affinity. However, when returns are self-affine and long-range dependent under the 

alternative hypothesis, rescaled range analysis has greater power than fluctuation analysis. 

The finite-sample properties of the estimators when returns exhibit either form of self-affinity 

can be exploited to determine the source of self-affinity in empirical returns data. The 

techniques are illustrated by means of an analysis of the fractal properties of the daily 

logarithmic returns for the indices of 11 stock markets. 
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SELF-AFFINITY IN FINANCIAL ASSET RETURNS 

 

1. Introduction 

Long-range dependence and stable laws in returns have been investigated in the econometrics 

literature for several decades. Long-range dependence implies a hyperbolic decay of the 

autocorrelation function in the time domain (Banerjee and Urga, 2005). Stable laws accommodate 

departures from normality and the related central-limit theorem for independent and identically 

distributed variables (Levy, 1925). Following the pioneering work of Mandelbrot (1963, 1967, 1971), 

models that accommodate long-range dependence and stable laws have been employed to describe 

stock market behaviour. These models represent an application of fractal mathematics to financial 

economics, a topic that has attracted widespread interest in recent years.
1
 

A fractal exhibits the properties of self-similarity or scale invariance. It is suggested by 

Mandelbrot (1977) that stock returns may exhibit the weaker property of self-affinity. After the 

application of a suitable rescaling transformation, which takes the form of a single non-random 

contraction dependent upon the time scale only, a self-affine returns series exhibits the property of 

self-similarity. A self-affine returns series has the same distributional properties (after rescaling) when 

returns are measured at any frequency, and is said to be unifractal or monofractal. 

Conventional finance literature assumes that logarithmic returns are normal (Gaussian), 

independent and identically distributed (NIID), and log prices follow random walks (Fama, 1970). 

Departures from the NIID assumption invalidate several asset pricing models and statistical tools 

commonly employed in finance, such as the Capital Asset Pricing Model (Sharpe, 1964; Lintner, 

1965), and Black-Scholes’ (1972, 1973) model of option pricing.  

Two classes of process, in which returns are either non-independent or non-Gaussian or both, 

embody the properties of self-affinity and unifractality (Mandelbrot, Fisher and Calvet, 1997; Cont 

and Tankov, 2004). First, if returns are fractionally integrated, the autocorrelation function measured 
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over any time scale exhibits the property of long-range dependence, and the log price series is 

characterized as Fractional Brownian Motion (FBM).
2
 The autoregressive fractionally integrated 

moving average (ARFIMA) model is the best-known member of the class of fractionally integrated 

processes. Let pt denote log price at time t, and let nttt

)n( ppp   denote the returns measured 

over the time scale n. The scaling behaviour of pt is described by the Hurst exponent (Hurst, 1951), 

denoted H. For a fractionally integrated process, the Hurst exponent is a simple function of the order 

of fractional integration. For 0.5<H<1, the local growth rate of pt is of order (t)
H 

> (t)
0.5

, because 

the positive autocorrelation in 
(1)

pt creates a tendency for pt to move further in each period than it 

does in the case H=0.5, where 
(1)

pt is NIID.  

 Second, the class of probability distributions known as Levy-stable, Pareto-Levy stable
 
 or L-

stable (Levy, 1925; Mandelbrot, 1963, 1967) includes several heavy-tailed distributions with infinite 

variance and higher-order moments. For an L-stable process, an incidence of large positive or 

negative returns measured at the highest frequency creates a tendency for pt to move further in each 

period than it does in the NIID case. As before, the local growth rate of pt is of order (t)
H 

> (t)
0.5

, 

where the Hurst exponent H is a function of the parameterization of the L-stable distribution. 
(n)

pt for 

n>1 has the same (non-Gaussian) distribution as 
(1)

pt, and is self-affine and unifractal. The infinite 

variance property renders the central-limit theorem inapplicable, and there is no convergence towards 

the Gaussian distribution as n. 

 This paper contributes to two strands of literature, on long-range dependence or fractional 

integration, and on L-stable distributions. We examine the performance of estimators of the Hurst 

exponent, in the case where there is long-range dependence (and the distribution of returns is 

Gaussian), and in the case where the distribution of returns is L-stable (and there is no long-range 

dependence). Hypothesis tests for departures from the NIID case are developed, based on the 

application of two widely-used methods for estimating the Hurst exponent, to simulated NIID returns 

data: rescaled range analysis (RRA),
3
 and fluctuation analysis (FA).

4
 Both methods are based on an 
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examination of the scaling behaviour of selected sample moments, as the time scale over which 

returns are measured varies. 

The performance of the tests under the alternative hypothesis is examined by evaluating 

power functions, using simulated self-affine series characterized as either long-range dependent, or L-

stable with infinite higher-order moments. Monte Carlo simulations are employed, because the 

asymptotic properties of the RRA and FA estimators are indeterminate (Fisher, Calvet, and 

Mandelbrot, 1997; Urga and Banerjee, 2005). In addition, we draw comparisons with the performance 

of other tests widely employed to estimate long-range dependence (Geweke and Porter-Hudak, 1983; 

Robinson, 1995), and the characteristic exponent of an L-stable distribution (Pickands, 1975; Hill, 

1975; de Haan and Resnick, 1980).  

In much of the previous literature, researchers have reported evidence concerning the fractal 

properties of financial returns series in the form of point estimates of the Hurst exponent, or graphical 

analysis of scaling behaviour.
5
 In the absence of any basis for assessing the statistical significance of 

possible departures from the NIID case, however, much of this evidence is at best suggestive of the 

possibility that models based on fractal mathematics might provide a more satisfactory representation 

of the behaviour of returns than models embodying the NIID assumption. This paper relocates several 

established but informal procedures within a conventional and formal hypothesis testing framework, 

enabling conclusions to be drawn based on the standard criteria of statistical inference. 

The principal findings are as follows. Tests for departure from the NIID case based on RRA 

and FA perform well when returns are self-affine and long-range dependent under the alternative 

hypothesis. In this case, the test based on RRA has greater power than the tests based on the three 

variants of FA that are considered. However, the test based on RRA performs poorly when returns are 

self-affine and L-stable with infinite higher-order moments under the alternative hypothesis. In this 

case, the choice of sample moments over which the FA is computed is crucial: the FA should not 

consider sample moments whose true values are infinite. As an estimator of the Hurst exponent, the 

variant of the FA that considers finite sample moments only is unique (among the estimators 
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considered in this paper) in terms of its reliability under both of the long-range dependent and L-

stable alternatives to the null hypothesis of NIID returns.  

The remainder of the paper is structured as follows. Section 2 examines several aspects of the 

technical background: the property of self-affinity; Monte Carlo simulation of self-affine series; and 

estimation methods for the Hurst exponent. Section 3 presents critical values for the statistical tests 

for departure from the NIID case. Section 4 illustrates the techniques described in the previous 

sections, using data for 11 stock market indices for the period 1987-2011. Finally, Section 5 

summarizes and concludes.             

2. Technical background 

 Section 2 describes the technical background. Section 2.1 describes the property of self-

affinity when returns are fractionally integrated, and therefore long-range dependent. Section 2.2 

describes the property of self-affinity when returns are L-stable with infinite higher-order moments, 

and independent. Section 2.3 describes the methods used in this paper for Monte Carlo simulation of 

self-affine returns series. Finally, Section 2.4 describes two methods for estimating the Hurst 

exponent: rescaled range analysis (RRA), and fluctuation analysis (FA).  

2.1 The self-affinity property: Fractional Gaussian Noise and ARFIMA 

Let )pvar( )n(

t

)n(

0   and )p,pcov( )n(

nkt

)n(

t

)n(

k   denote the autocovariance function for 

returns measured over time scale n. A returns series is described as Fractional Gaussian Noise (FGN) 

if 
)1(

0

H2)n(

0 n   for any n>1, where H is the Hurst exponent. For FGN, the autocovariance function  

])1k(k2)1k)[(2/1( H2H2H2)1(

k   is characterized by a single parameter, H. The decay of 

the autocovariance function as k follows a power law, such that )k(Lk)1(

k

 for 0<<1, and 

L(k) satisfies L(xk)/L(k)  1 as k , for any x>0. FGN exhibits the property of self-affinity.  

FGN is one member of a family of fractionally integrated processes (Granger and Joyeux, 

1980; Hosking, 1981; Geweke and Porter-Hudak, 1983), which includes ARFIMA(p,d,q)   
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(1 – L)
d


(1)
pt = ut          [1] 

In [1], L denotes the lag operator, and ut is NIID. 
(1)

pt may incorporate short-range 

dependence described by p’th order autoregressive (AR) and q’th order moving average (MA) 

components, as well as long-range dependence. The parameter d is the order of fractional integration. 

Asymptotically as k, the autocovariance function for ARFIMA(0,d,0) satisfies the conditions for 

self-affinity described above, with H=d+0.5. Accordingly, an ARFIMA(0,d,0) returns series is said to 

be asymptotically self-affine. 

2.2 The self-affinity property: L-stable processes 

The L-stable class of probability distributions is described by the characteristic function (t), 

defined as follows: 

ln[(t)] = ti)}2/tan()tsgn(i1{|t|     for 1 

  = ti|)}tln(|)/2)(tsgn(i1{|t|    for =1   [2] 

In [2],  is the characteristic exponent,  is the skewness parameter,  is the location 

parameter,  is the scale parameter, and sgn(t) = –1 if t<0, sgn(t)=0 if t=0, sgn(t)=1 if t>0. Gaussian 

returns are represented by (=2, =0); and several fat-tailed distributions with infinite variance and 

higher-order moments are represented by <2.
6
 For <2, the local growth rate of pt is of order (t)

H 
> 

(t)
0.5

, where the Hurst exponent is H = 1/. 

If 
)1(

stp   for s=0,...,n–1 are independent drawings from an L-stable distribution defined in 

accordance with [2], the log characteristic function of 





1n

0s

)1(

st

)n(

t pp is n times the log 

characteristic function of 
)1(

stp  , and can be written tin)}2/tan()tsgn(i1{|t|n   . The 

log characteristic function of 
)n(

tp  therefore has the same characteristic exponent  and the same 

skewness parameter  as the log characteristic function of 
)1(

stp   (and scale and location parameters, 
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n and n respectively, that are larger in absolute value). The correspondence of  and  between the 

log characteristic functions of 
)1(

tp  and 
)n(

tp  implies the returns series is self-affine.   

2.3 Monte Carlo simulation of self-affine returns series 

Section 2.3 describes the methods that are used to simulate self-affine returns series, for the 

two cases where returns are ARFIMA(0,d,0), and returns are L-stable with infinite higher-order 

moments. Monte Carlo techniques have been widely employed to construct tests for statistics whose 

finite-sample properties are difficult to determine analytically (Dwass, 1957; Barnard, 1963; Hope, 

1968; Birnbaum, 1974; Dufour, 2006).
7
 

Using the Wold decomposition, the moving average representation of the ARFIMA(0,d,0) 

model [1] is 

 
(1)

pt = (1 – L)
–d

ut =  





0j
jt

j

j uL        [3] 

where 0=1 and  


j

1k
j !j/)1kd(  for j1. To simulate an ARFIMA(0,d,0) series Yt for a sample 

size of T, let ut~N(0,1) for t=–4999, ..., T; and let  


4999

0s
t

s

st uLY for t=1, ... ,T. 

Chambers et al. (1976) propose a method for generating a simulated series drawn from an L-

stable distribution with characteristic function [2]. The following description is based on Weron 

(1996). Generate two independent random variables V~U(–/2, /2), and W~exp(1). Compute  

 

















 



/)1(

,

/1

,

,t
W

)]BV(Vcos[

)]V[cos(

)]BV(sin[
SX ;    Yt = Xt +  if 1 

 

































V)2/(

VcosW
lnVtanV

2

2
X t

;      Yt = Xt + (2/) ln()  if =1 
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where B, = 
–1

arctan[ tan(/2)] ;  
)2/(122

, )]2/(tan1[ 
 S   [4] 

The simulated series Yt has the characteristic function [2], with parameters , ,  and . 

2.4 Estimation of the Hurst exponent 

Section 2.4 describes two estimation methods for the Hurst exponent: rescaled range analysis 

(RRA), and fluctuation analysis (FA); and cites some alternative estimation methods for the order of 

fractional integration of a fractionally integrated series, and for the characteristic exponent (or tail 

parameter) of an L-stable process.   

Rescaled range analysis 

 Estimation of the Hurst exponent for a returns series denoted {zt} using RRA proceeds as 

follows. Starting from the first observation, subdivide the sample period T into M contiguous 

subperiods labelled m=1,...,M, each containing n observations, and compute the following:  

 



mn

1n)1m(t
t

1

m zn ;   



mn

1n)1m(t

2

mt

1

m )z(nS   for m = 1 ,... , M 

  


t

1n)1m(s
mst )z(x   for t=(m–1)n+1, ... , mn–1; xmn = 0   

 Rm = maxtm(xt) – mintm(xt)        [5] 

If Mn<T, the expressions in [5] are also calculated with the subdivision starting from the 

L+1th observation, where L = T–nM. A second set of M calculated values of Rm and Sm is obtained, 

indexed m=M+1,...,2M.
8
 The R/S statistic for time scale n is 

 



M2

1m
mm

1

n )S/R()M2()S/R(         [6] 

Equation [6] is computed over various values of n. H is estimated using the ordinary least squares 

(OLS) regression 
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 ln[(R/S)n] = ln(c) + H ln(n) + error       [7] 

Fluctuation analysis 

 Estimation of the Hurst exponent using FA proceeds as follows. As before, subdivide the 

sample period T into M contiguous subperiods of n observations, and compute the following for 

m=1...M: 

 vm = |pmn – pm(n–1)|         [8] 

where {pt} is the log price series. If Mn<T, compute a second set of M values of {vm} starting from 

the L+1th observation, indexed {vm+1...v2M}, where L is defined as before. The q’th-order partition 

function for time scale n is  

 Sq(T,n) = 



M2

1m

q

m

1 )v(2          [9] 

The FA focuses on the variation of Sq(T,n) over changes in the time scale n, for several values of q. 

The scaling behaviour of Sq(T,n) is investigated by examining the power law relationship  

 E[Sq(T,n)] = Tc(q)n
Hq

 = Tc(q)n
(q)+1

        [10] 

where c(q) is the prefactor and (q) = –1+Hq is the scaling function. The Hurst exponent is estimated 

using the fixed effects regression  

 ln[Sq(T,n)] = a(q) + [–1+Hq] ln(n) + error      [11]        

where a(q) = ln[nTc(q)].  

Other estimation methods 

 Commonly used estimators of the order of fractional integration for a fractionally integrated 

time series were developed by Geweke and Porter-Hudak (henceforth GPH) (1983) and Robinson 

(1995). The properties of these estimators are compared by Andersson (2002), and several variants of 
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the Robinson estimator are examined by Shimotsu and Phillips (2006).
9
 These estimators are based on 

the periodogram as an estimator of the spectral density function of the returns series {xt}. Let m 

denote the number of ordinates to be used in the estimation;
10

 and let 

 



T

1t
jt

1

j )tiexp(x)T2()(I  denote the periodogram at the harmonic frequencies T/j2j   

for j=1,...,m. The GPH estimator is the OLS estimator of d in the regression 

jj0j |])iexp(1|ln2[db)](Iln[         [12] 

The Robinson estimator of d is  

jjj ν)]b[ln(λa)]ln[I(λ          [13] 

where b = -2d. Kearns and Pagan (1997) identify the Pickands (1975), Hill (1975) and de 

Haan and Resnick (henceforth HR) (1980) estimators as the three most commonly used methods for 

the estimation of the characteristic exponent or tail index of an L-stable process.
11

 Let {x(t)} denote the  

returns series reordered such that x(1) > x(2) > ... > x(T); and let m denote the number of observations in 

the upper tail to be used in the estimation.
12

 The three estimators of H are 

Pickands (1975):   )]xxln()xx[ln()]2[ln( )m4()m2()m2()m(

1 
 

Hill (1975):    )xln()xln()1m( )m(

1m

1i
)i(

1 












 

HR (1980):   )]xln()x[ln()]m[ln( )m()1(

1 
     [14] 

 The corresponding estimators of the characteristic exponent are obtained using the relation 

=H
–1

.  
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3. Hypothesis tests for NIID returns against self-affine alternatives 

 Section 3 reports critical values for the statistical tests for departure from the NIID case based 

on estimation of the Hurst exponent using RRA and FA. Power functions for these tests are evaluated. 

Comparisons with alternative estimators for the order of fractional integration and for the tail index 

(see Section 2.4) are presented.  

Hypothesis tests for a null hypothesis under which returns are NIID against an alternative 

under which returns are characterized either by [1] with d>0, or by [2] with <2, are based on the 

empirical distributions of the estimators of H obtained from [7] using RRA, or from [11] using FA. In 

both cases, the null and alternative hypotheses are H0:H=0.5 and H1:H>0.5. Critical values for these 

tests are obtained from the empirical distributions of these estimators, obtained from 5,000 

replications of an NIID returns series. In all cases, the replications are generated for sample sizes 

T=1,000, 2,000, 5,000 and 10,000.
13

  

Table 1 reports means, standard deviations and critical values for one-tail tests of H0:H=0.5 

against H1:H>0.5 based on RRA and three alternative versions of FA. FA(1) is computed using 

q=(0.1,0.2, ...,1.0) in [9], [10] and [11]; FA(2) uses q=(0.3,0.6, ...,3.0); and FA(3) uses 

q=(0.5,1.0,...,5.0). The RRA produces upward-biased estimates of H. The magnitude of the bias 

decreases and the relative efficiency increases as T increases. FA(1), FA(2) and FA(3) produce 

downward-biased estimates of H. The magnitude of the bias is greatest for FA(1), followed by FA(2) 

and FA(3). In each case the magnitude of the bias decreases as T increases. The relative efficiency of 

the FA estimator is greatest for FA(3), followed by FA(2) and FA(1). In each case, the relative 

efficiency increases with T. 

   [insert Table 1 here] 

 Tables 2 and 3 report the mean values of the RRA and FA estimators of the Hurst exponent, 

when the true value of H exceeds 0.5. Each result is generated using 5,000 replications of a simulated 

self-affine returns series, based on [1] in the case where the process is ARFIMA(0,d,0), and based on 
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[2] in the case where the process is L-stable with infinite higher-order moments. In each case, the 

replications are generated for H=0.54, 0.58 and 0.62.
14

 For each estimation method, four sets of values 

for the mean estimated H are reported:  

(i) ARFIMA(0,d,0) simulated returns based on [3]; 

(ii) ARFIMA(0,d,0) simulated returns based on [3] with a random re-ordering transformation 

applied, to preserve the distributional properties while eliminating long-range dependence;
15

 

(iii) L-stable simulated returns based on [4]; 

(iv)  L-stable simulated returns based on [4] with a normalizing transformation applied, to preserve 

long-range dependence while eliminating the non-Gaussian distributional properties.
16

 

For (i), the mean estimated H are increasing with the true values of H, in a predictable 

manner. For RRA, the magnitude of the upward bias in the estimated H decreases somewhat as the 

true value of H increases; while for FA(1), FA(2) and FA(3) the magnitude of the downward bias is 

virtually unchanged as the true value of H increases.  

For (ii), the mean estimated H for the randomly re-ordered ARFIMA series are virtually 

identical to the values reported in Table 1 for H=0.5 in the case of RRA, and slightly higher than the 

corresponding values in Table 1 for FA(1), FA(2) and FA(3). In each case, it is possible to interpret a 

discrepancy (similar to those shown in Tables 2 and 3) between the estimated H for an original data 

series and a randomly re-ordered transformation of the same series as evidence that returns are self-

affine and characterized by long-range dependence.  

For (iii), the mean estimated H obtained using FA(1) are increasing with the true values of H 

in a stable and predictable manner. The downward bias in the estimated H increases slightly as the 

true H increases. For RRA, FA(2) and FA(3), however, the mean estimated H decreases as the true 

value of H increases, indicating that these methods are unsuitable in the case where returns are L-

stable with infinite higher-order moments. The source of the difficulty is that RRA, FA(2) and FA(3) 
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examine the scaling behaviour of sample estimators of moments (q=2 only in the case of RRA, <q3 

for FA(2), and <q5 for FA(3)) whose true values are infinite for an L-stable distribution with <2. 

This difficulty is avoided by FA(1), whose scope is restricted to q< for all values of  that are 

considered in Table 2.  

For (iv), the mean estimated H for the normalized L-stable series are virtually identical to the 

values reported in Table 1 for H=0.5 in the case of FA(1). It is possible to interpret a discrepancy 

(similar to those shown in Table 2) between the estimated H for an original returns series and a 

normalized transformation of the same series as evidence that returns are self-affine and L-stable with 

infinite higher-order moments.  

   [insert Tables 2 and 3 here] 

The power functions of tests of H0:H=0.5 against H1:H>0.5 at the 0.05 significance level 

based on the RRA, FA(1), FA(2) and FA(3) estimators are examined in Table 4. For the case where 

the process under the alternative hypothesis is ARFIMA(0,d,0), RRA has superior power properties to 

FA(3). FA(3) is superior to FA(2), and FA(2) is superior to FA(1). For the case where the process 

under the alternative hypothesis is L-stable with infinite higher-order moments, however, only FA(1) 

has an appropriately shaped power function. The power functions for RRA, FA(2) and FA(3) tend 

rapidly towards zero as H increases, rendering these techniques unsuitable as a basis for testing for 

departure from NIID returns. Table 5 reports the power functions for the preferred estimator FA(1), at 

the 0.10, 0.05 and 0.01 significance levels.  

   [insert Tables 4 and 5 here] 

Table 6 reports comparisons between the means and standard deviations of the GPH and 

Robinson estimators of d (see [12] and [13]) and the RRA, FA(1), FA(2) and FA(3) estimators of H,  

in the case where returns are ARFIMA(0,d,0). The GPH and Robinson estimators are both virtually 

unbiased, but Robinson is relatively more efficient than GPH. The upward-biased RRA estimator 
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offers efficiency gains on both GPH and Robinson. The three downward-biased FA estimators are 

relatively less efficient than Robinson and RRA, but relatively more efficient than GPH.  

   [insert Table 6 here] 

Table 7 reports comparisons between the means and standard deviations of the Pickands, Hill 

and HR estimators (see [14]) and the FA(1) estimator of the Hurst exponent, in the case where returns 

are L-stable with 2, H0.5. Each of the Pickands, Hill and HR estimators is downward biased. 

Pickands is relatively inefficient over all values of H considered. HR is efficient for H=0.5, but is 

relatively inefficient for H>0.5. Hill is relatively efficient over all values of H considered, and offers a 

modest efficiency gain over FA(1). The latter is also downward biased, but to a lesser degree than the 

other three estimators. Although the Hill estimator is preferred to FA(1) on the criterion of relative 

efficiency, the Hill estimator is a less reliable estimator of H than FA(1) in the case where the 

probability distribution for returns is independent, but non-Gaussian with finite higher-order 

moments. In this case, the true value of H is 0.5. The downward bias in the Hill estimator is 

diminished, creating a tendency to reject H0:H=0.5 falsely in favour of H1:H>0.5. In contrast, the 

downward bias in the FA(1) estimator is virtually unaffected. In Monte Carlo simulations for returns 

drawn from the student t-distribution with either 10 or 20 degrees of freedom and T=5,000, the 

rejection rates for the test of H0:H=0.5 in favour of H1:H>0.5 based on the Hill estimator, using a 

significance level of 0.05 and critical values based on simulated NIID returns, were 0.978 and 0.599 

respectively. The rejection rates for the test based on the FA(1) estimator were 0.05 in both cases.      

As an estimator of the order of fractional integration, the FA(1) estimator is less reliable than 

both Robinson and RRA, but more reliable than GPH. As an estimator of the characteristic exponent 

or tail index of an L-stable process, the FA(1) estimator is less reliable than Hill if returns are either 

NIID or L-stable, but more reliable than either Pickands or HR. FA(1) is considerably more reliable 

than Hill if returns are independent but non-Gaussian with finite higher-order moments. As an 

estimator of the Hurst exponent, FA(1) is unique (among the estimators considered in this section) in 
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terms of its reliability under both of the fractionally integrated and L-stable alternatives to the NIID 

null hypothesis.      

   [insert Table 7 here] 

4. Estimation of the Hurst exponent for 11 stock market indices 

Section 4 reports an application of the techniques described in this paper, using daily 

logarithmic returns data calculated from closing prices for 11 developed country stock market indices 

for the period July 1987 to May 2011 (inclusive). For convenience we assign the 11 stock markets to 

two categories by market capitalization. The three large-capitalization markets are Japan (represented 

by the Nikkei index), the UK (FTSE 100) and the US (SP500); and the eight small-capitalization 

markets are France (CAC), Finland (OMX Helsinki 25), Germany (DAX), Ireland (ISEQ), Italy 

(MIBTel), Netherlands (AMX), Spain (Madrid SE General), and Sweden (OMX Stockholm 30).
17

 In a 

cross-country analysis, Cajueiro and Tabak (2004, 2005) interpret estimated Hurst exponents for 

either stock returns or volatility as indicators of stock market efficiency. We posit an association 

between market size and market efficiency, such that returns for the large-capitalization markets 

exhibit the least evidence, and those for the small-capitalization markets exhibit the strongest 

evidence of long-range dependence. 

Table 8 reports the sample means and standard deviations, and sample skewness and kurtosis 

coefficients, for the daily logarithmic returns series. Table 9 reports the Hurst exponent estimates for 

the returns series on the 11 stock market indices obtained using the RRA, FA(1), FA(2) and FA(3) 

estimators. For comparison purposes, the Robinson (1995) estimator of d (see [13]) and the Hill 

(1975) estimator of H (see [14]) are also reported.  

It is well known that the identification of long-range dependence in the presence of short-

range dependence is challenging, owing to difficulties in disentangling the short-range and long-range 

dependence components (Smith et al., 1997). In some previous studies, estimators of H are applied to 

the residuals of a fitted autoregressive model for the returns series, to eliminate short-range 
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dependence by filtering before testing for long-range dependence (Jacobsen, 1996; Opong et al., 

1999). In the present study we apply the long-range dependence estimators to the returns series both 

with and without filtering. We compare the estimated H for filtered returns with critical values 

constructed using NIID Monte Carlo simulations; and we compare the estimated H for unfiltered 

returns with critical values constructed using recursive Monte Carlo simulations, in which the 

simulated series have a short-range dependence structure that corresponds to a fitted autoregressive 

model for the actual returns series for each index.  

Since filtering tends to eliminate a portion of the long-range dependence when the latter is 

present, an estimated H exponent that is significantly different from H=0.5 (for a pre-filtered returns 

series using NIID critical values) should constitute strong evidence of long-range dependence. 

Estimation of H using an unfiltered returns series leaves open the possibility of conflating short-range 

and long-range dependence. Critical values based on simulated series with a short-range dependence 

structure imposed, based on the coefficients obtained by fitting a (short-range) autoregressive model 

to the original series, will tend to be inflated, because the estimated short-range autoregressive 

coefficients are overstated if long-range dependence is present. Accordingly, an estimated H for an 

unfiltered series that is significantly different from H=0.5 when compared with critical values derived 

from simulated series with short-range dependence imposed should also constitute strong evidence of 

long-range dependence. 

In view of the results reported in Section 3 of this paper, the FA(1) estimator is considered the 

best equipped to distinguish between the cases H>0.5 and H=0.5, if the process in the case H>0.5 is 

unknown and could be either ARFIMA(0,d,0) or L-stable with infinite higher-order moments. In the 

ARFIMA(0,d,0) case, however, the RRA, FA(2) and FA(3) estimators are more powerful than the 

FA(1) estimator. Therefore all four sets of Hurst exponent estimates are of interest, and all four sets 

are reported in Table 9. 

 Using a significance level of 0.05, the FA(1) Hurst exponent estimates based on unfiltered 

returns support the rejection of H0:H=0.5 in favour of H1:H>0.5 for one of the three large-
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capitalization markets, and for five of the eight small-capitalization markets. The corresponding 

estimates based on filtered returns support the rejection of the same null for none of the large-

capitalization markets, and for four of the small-capitalization markets. On the basis of rejection of 

this null in the tests based on both sets of FA(1) estimates, we infer that there is strong evidence of 

self-affine scaling behaviour for Finland, Germany, Ireland and Sweden. On the basis of rejection in 

the tests based on FA(1) estimates using unfiltered returns only, we infer that there is weak evidence 

of self-affine scaling behaviour for the US and the Netherlands.   

For Finland, Germany, Ireland and Sweden, the tests based on the RRA estimator using both 

unfiltered and filtered returns also reject the null hypothesis of H=0.5 in every case. The tests based 

on the FA(2) estimator using unfiltered returns reject this null for Finland, Ireland and Sweden, and 

the tests based on the FA(2) estimator using filtered returns reject for Finland and Ireland. The tests 

based on the FA(3) estimator fail to reject, however, in every case. These patterns suggest that the 

evidence of self-affine scaling behaviour might be attributable to long-range dependence, rather than 

with returns having been drawn from an L-stable distribution with infinite higher-order moments. In 

the latter case we should expect all of the tests based on the RRA, FA(2) and FA(3) estimators to fail 

to reject the null hypothesis of H=0.5.
18

 

For the US and the Netherlands, the tests based on the RRA, FA(2) and FA(3) estimators 

using unfiltered returns fail to reject the null hypothesis of H=0.5. These patterns suggest that the 

finding of self-affine scaling behaviour in the test based on the FA(1) estimator might be attributable 

to returns having been drawn from an L-stable distribution with infinite higher-order moments, rather 

than long-range dependence. For the US in particular, this interpretation seems consistent with an 

extremely large sample kurtosis coefficient reported in Table 8. The evidence that there is long-range 

dependence for four of the eight small-capitalization markets, and none of the three large-

capitalization markets, seems consistent with the posited link between market size and market 

efficiency. 
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Finally, the Robinson estimator fails to reject the null hypothesis H0:d=0 in favour of H1:d>0  

for any of the estimations. The Hill estimator rejects the null hypothesis H0:H=0 in favour of H1:H>0 

consistently throughout the entire sample period. In view of the evidence that Hill is unreliable in 

distinguishing between different forms of non-Gaussian behaviour, however, it is possible to infer 

from the results from the Hill estimator only that returns are non-Gaussian, but not that returns are L-

stable.  

 [insert Table 9 here] 

5. Conclusion 

 This paper develops hypothesis tests for departures from null hypothesis of NIID logarithmic 

returns for the case where returns are self-affine under the alternative hypothesis. In this case the 

distributions of returns measured over different time scales (daily, monthly, yearly, and so on) are 

identical, except for a single non-random contraction that depends on the time scale only. The scaling 

properties of a returns series are conveniently summarized by the Hurst exponent. A self-affine  

returns series might be either fractionally integrated, in which case returns exhibit long-range 

dependence; or L-stable, in which case returns are characterized by random drawings from a 

distribution with infinite variance and higher-order moments.  

 Tests for the null hypothesis of NIID returns against alternatives in which returns are self-

affine are based on the application of two methods for the identification of scaling behaviour that have 

been used widely in the previous literature: rescaled range analysis (RRA), and fluctuation analysis 

(FA). Previously, researchers have reported evidence in the form of point estimates of the Hurst 

exponent, or graphical analysis of returns data, without having any basis for the evaluation of the 

statistical significance of departures from the NIID case. This paper addresses this deficiency in the 

empirical literature. 

The principal findings are as follows. The performance of tests for departure from the NIID 

case based on RRA and FA is satisfactory when returns are self-affine and characterized by long-range 
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dependence. In this case, the test based on RRA has greater power than tests based on FA. However, 

the test based on RRA performs poorly when returns are self-affine and characterized as L-stable with 

infinite higher-order moments. In this case, the choice of sample moments over which the FA is 

computed is crucial: the FA should not consider moments whose true values are infinite. The use of 

RRA is inappropriate in this case because RRA is based on an examination of the sample scaling 

behaviour of the second moment, whose true value is infinite. As an estimator of the Hurst exponent, 

the variant of the FA that considers finite sample moments only is uniquely reliable (among the 

estimators considered in this paper) under both of the fractionally integrated and L-stable alternatives 

to the NIID null hypothesis. These finite-sample properties of the estimators when returns exhibit 

either form of self-affinity can be exploited to determine the source of self-affinity in empirical 

returns data. 

The techniques are illustrated by means of an analysis of the fractal properties of the daily 

logarithmic returns for the indices of 11 stock markets, three of which are classified as large in terms 

of market capitalization, and eight as small. We find strong evidence of self-affine scaling behaviour 

for four markets, Finland, Germany, Ireland and Sweden. In all four cases, long-range dependence 

appears to be the source of the self-affine scaling behaviour. We find weak evidence of self-affine 

scaling behaviour in two further cases, the US and the Netherlands, for which the results are 

consistent with returns having been drawn from an L-stable distribution with infinite higher-order 

moments, rather than long-range dependence.  
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Notes 

1
 This literature reports empirical evidence on the fractal properties of stock market and individual 

company returns (Barkoulas and Baum, 1996; Di Matteo, Aste, and Dacorogna, 2005), commodity 

prices (Alvarez-Ramirez et al., 2002), inflation rates (Lee, 2005), and currency exchange rates (Fisher, 

Calvet, and Mandelbrot, 1997; Batten and Ellis, 2001; Calvet and Fisher 2002).    

2
 FBM is a generalization of Brownian Motion, the continuous-time analogue of the random walk. 

FBM has increments that are long-range dependent and therefore non-random (Mandelbrot and van 

Ness, 1968). 

3
 RRA was introduced by Hurst (1951). Refinements are suggested by Mandelbrot and Wallis (1968, 

1969a,b,c), Mandelbrot (1972, 1975), Mandelbrot and Taqqu (1979), and Lo (1991).  

4
 This study uses the variant of FA employed by Mandelbrot, Fisher and Calvet (1997). Recent 

methodological contributions for the estimation of the long-range dependence parameter using FA 

include Fillol and Tripier (2004) and Fillol (2007).  

5
 See Greene and Fielitz (1977), Peters (1991), McKenzie (2001), Alvarez-Ramirez et al. (2002), 

Costa and Vasconcelos (2003), Kim and Yoon (2004) and Norouzzadeh and Jafari (2005).  

6
 The Cauchy distribution has (=1, =0); and the Levy distribution, also known as the Pareto-Levy 

distribution, has (=0.5, =1) or (=0.5, =–1). 

7  
Recent applications of Monte Carlo techniques in analysing long-range dependence or L-stable 

processes include Baillie and Kapetanios (2007), Ndongo et al. (2009), Dufour and Kurz-Kim (2010), 

Barounik and Kristoufek (2010) and Iacone (2010). 

8
 If Mn = N,  Rm+M = Rm and Sm+M = Sm for m = 1,...,M. 

9
 See also Beran (1992), Cheung and Diebold (1994), Crato and Ray (1996), Dalhaus (1989), Fox and 

Taqqu (1986), Hiemstra and Jones (1997), Richards (2000) and Sowell (1992). 

10
 All results reported in this paper are based on m=T

0.5
 for the GPH estimator, and m=T

0.9
 for the 

Robinson estimator. 

11
 See also Dekkers and de Haan (1989), DuMouchel (1983), Hols and De Vries (1991), Hsu, Miller 

and Wichern (1974) and Pagan (1996). 
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12
 All results for the Pickands, Hill and HR estimators reported in this paper are based on m=0.05T.  

13
 The time scales for which [6] and [9] are computed are such that ln(n) increases from nMIN to nMAX 

in steps of 0.15, where ln(nMIN)=1.6 and ln(nMAX)=0.15int[{ln(0.1T)}/0.15], where int[ ] is the next-

lowest integer. 

14
 These values correspond to d=0.04, 0.08 and 0.12 respectively in [1], and =1.85, 1.72 and 1.61 in 

[2]. 

15
 Using a random-number generator, create t ~ U(0,1) for t=1,...,T. Let r(t) denote the rank of t 

among {1,..., t). The randomly re-ordered transformation of the original returns series {yt} is 

)t(r

*

t yy  . 

16
 Let (t) denote the rank of yt among {y1,...,yT}. The normalized transformation of {yt} is 

))1T/()t((y 1**

t  
, where 

–1
( ) is the inverse of the standard normal distribution function. 

17
 The data for the closing daily prices of the stock market indices are obtained from Thomson One 

Banker. End-of-year market capitalization data (in USD million) for the associated stock markets are 

as follows. US: 13,394,082 (NYSE-Euronext US, 2010); Japan: 3,827,774 (2010); the UK: 1,868,153 

(2008); France: 1,489,520 (2008); Germany: 1,429,719 (2010); Italy: 655,848 (2009); Spain: 

1,171,625 (2010); Finland: 118,167 (2003); Ireland: 60,368 (2010); Netherlands: 393,238 (2008); 

Sweden: 170,283 (2003). Data sources: World Stock Exchanges website (http://www.world-

exchanges.org/statistics/time-series/market-capitalization) and stock exchanges websites. 

18
 Informal comparisons (not reported in Table 9) between the FA(1) Hurst exponent estimates, and 

the FA(1) estimates obtained from randomly re-ordered and normalized transformations of the 

original returns series, support this interpretation. In most cases there are large differences between 

the estimated H for the original series and for a randomly re-ordered transformation; and small 

differences between the estimated H for the original series and for a normalized transformation. 

 

 

http://www.world-exchanges.org/statistics/time-series/market-capitalization
http://www.world-exchanges.org/statistics/time-series/market-capitalization
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Table 1  Means, standard deviations and critical values (90th, 95th and 99th percentiles) for  

estimated Hurst exponents under the null hypothesis of NIID returns (H=0.5)   
 

Sample, T Mean Standard 

deviation 

Critical values for significance levels: 

0.10 0.05 0.01 

Rescaled range analysis, RRA 
1000 .613 .020 .639 .646 .659 

2000 .595 .016 .616 .621 .632 

5000 .578 .012 .594 .598 .606 

10000 .568 .010 .580 .584 .590 

Fluctuation analysis, q=(0.1,0.2,...,1.0), FA(1) 

1000 .454 .062 .532 .555 .594 

2000 .477 .050 .540 .557 .588 
5000 .480 .037 .528 .541 .562 

10000 .481 .031 .522 .533 .554 

Fluctuation analysis, q=(0.3,0.6,...,3.0), FA(2) 

1000 .480 .058 .552 .572 .608 
2000 .488 .048 .548 .565 .594 

5000 .491 .036 .536 .548 .570 

10000 .491 .030 .530 .541 .557 

Fluctuation analysis, q=(0.5,1.0,...,5.0), FA(3) 
1000 .476 .060 .552 .572 .613 

2000 .483 .049 .546 .563 .591 

5000 .488 .037 .535 .548 .573 
10000 .489 .031 .529 .540 .558 

 

Notes 

 
Each result is based on 5,000 replications of a simulated NIID returns series. The RRA is described by equations 

[5] to [7]. The FA is described by [8] to [11]. 
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Table 2  Mean estimated Hurst exponents, RRA and FA(1) 

 

 Rescaled range analysis, RRA Fluctuation analysis, q=(.1,.2,...,1.0), FA(1) 

Sample, 

T 

ARFIMA ARFIMA 

re-order 

L-

stable 

L-stable 

normalize 

ARFIMA ARFIMA 

re-order 

L-

stable 

L-stable 

normalize 

H=0.54         
1000 .634 .612 .607 .613 .494 .461 .493 .456 

2000 .619 .595 .589 .595 .516 .484 .513 .476 

5000 .605 .578 .573 .578 .519 .486 .517 .480 

10000 .596 .568 .563 .568 .521 .487 .519 .480 

H=0.58         

1000 .656 .612 .602 .613 .534 .473 .530 .456 

2000 .643 .595 .584 .595 .556 .495 .550 .476 
5000 .631 .578 .569 .578 .559 .496 .554 .480 

10000 .624 .568 .559 .568 .560 .496 .556 .480 

H=0.62         

1000 .678 .612 .597 .613 .574 .491 .565 .456 
2000 .667 .595 .580 .595 .596 .513 .586 .476 

5000 .658 .578 .565 .578 .599 .513 .591 .480 

10000 .652 .568 .555 .568 .600 .511 .594 .480 

 
Notes 

 

Each result is based on 5,000 replications of a simulated self-affine returns series. The RRA is described by 

equations [5] to [7]. The FA is described by [8] to [11]. 
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Table 3  Mean estimated Hurst exponents, FA(2) and FA(3) 

 

 Fluctuation analysis, q=(.1,.2,...,1.0), FA(2) Fluctuation analysis, q=(.1,.2,...,1.0), FA(3) 

Sample, 

T 

ARFIMA ARFIMA 

re-order 

L-

stable 

L-stable 

normalize 

ARFIMA ARFIMA 

re-order 

L-

stable 

L-stable 

normalize 

H=0.54         

1000 .519 .487 .464 .482 .515 .483 .399 .479 

2000 .527 .495 .467 .488 .522 .491 .392 .483 

5000 .530 .496 .466 .491 .527 .493 .379 .488 
10000 .531 .496 .462 .490 .528 .494 .368 .488 

H=0.58         

1000 .558 .498 .454 .482 .554 .494 .358 .479 

2000 .567 .506 .456 .488 .561 .501 .351 .483 
5000 .569 .506 .454 .491 .566 .502 .339 .488 

10000 .570 .505 .451 .490 .567 .502 .330 .488 

H=0.62         
1000 .598 .513 .447 .482 .593 .508 .334 .479 

2000 .606 .521 .450 .488 .600 .515 .329 .483 

5000 .609 .520 .448 .491 .605 .516 .319 .488 

10000 .609 .518 .445 .490 .606 .514 .313 .488 

 
Notes 

 

See notes to Table 2. 
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Table 4  Power of one-tail tests of H0:H=0.5 against H1:H>0.5, significance level = 0.05, all 

  estimation methods  
 

 ARFIMA under alternative hypothesis L-stable under alternative hypothesis 

Sample, 

T 

RRA FA(1) FA(2) FA(3) RRA FA(1) FA(2) FA(3) 

H=0.54         

1000 .290 .162 .186 .172 .025 .180 .032 .013 

2000 .448 .214 .225 .214 .020 .205 .021 .006 

5000 .717 .297 .312 .295 .017 .280 .014 .001 
10000 .876 .348 .373 .362 .014 .331 .010 .000 

H=0.58         

1000 .685 .378 .425 .392 .010 .357 .020 .004 
2000 .912 .496 .523 .496 .007 .423 .011 .001 

5000 .996 .675 .707 .678 .004 .592 .004 .000 

10000 1.000 .790 .815 .797 .002 .687 .003 .000 

H=0.62         
1000 .931 .617 .672 .641 .005 .538 .015 .001 

2000 .996 .762 .787 .757 .003 .644 .009 .000 

5000 1.000 .918 .936 .922 .001 .819 .002 .000 
10000 1.000 .968 .976 .972 .000 .899 .001 .000 

 
Notes 

 

See notes to Table 2. 
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Table 5  Power of one-tail tests of H0:H=0.5 against H1:H>0.5, various significance levels, 

Fluctuation analysis, q=(0.1,0.2,...,1.0), FA(1) 
 

 ARFIMA under alternative hypothesis L-stable under alternative hypothesis 

 Significance level: Significance level: 

Sample, T 0.10 0.05 0.01 0.10 0.05 0.01 

H=0.54       
1000 .274 .162 .053 .275 .180 .071 

2000 .328 .214 .080 .303 .205 .092 

5000 .414 .297 .138 .378 .280 .138 
10000 .499 .348 .159 .451 .331 .165 

H=0.58       

1000 .525 .378 .170 .482 .357 .189 

2000 .630 .496 .280 .545 .423 .250 
5000 .775 .675 .476 .685 .592 .413 

10000 .871 .790 .588 .779 .687 .494 

H=0.62       
1000 .739 .617 .385 .647 .538 .345 

2000 .845 .762 .565 .740 .644 .454 

5000 .956 .918 .810 .880 .819 .679 

10000 .985 .968 .902 .941 .899 .778 

 
Notes 

 

See notes to Table 2. 
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Table 6  Mean and standard deviation of various estimators of the order of fractional  

integration or Hurst exponent, fractionally integrated process 
 

Estimator Mean Standard deviation 

         
Parameter d=0.00 d=0.04 d=0.08 d=0.12 d=0.00 d=0.04 d=0.08 d=0.12 

values H=0.50 H=0.54 H=0.58 H=0.62 H=0.50 H=0.54 H=0.58 H=0.62 

        

Sample, T=2000        

         

GPH, d -.000 .040 .080 .121 .111 .112 .112 .112 

Robinson, d .000 .037 .073 .110 .022 .022 .022 .022 
RRA, H .595 .619 .643 .667 .016 .016 .017 .017 

FA(1), H .477 .516 .556 .595 .050 .051 .053 .055 

FA(2), H .488 .527 .567 .606 .048 .049 .050 .051 

FA(3), H .483 .522 .561 .600 .049 .050 .051 .053 

         

Parameter  d=0.00 d=0.04 d=0.08 d=0.12 d=0.00 d=0.04 d=0.08 d=0.12 

values H=0.50 H=0.54 H=0.58 H=0.62 H=0.50 H=0.54 H=0.58 H=0.62 

         
Sample, T=5000        

         

GPH, d .000 .040 .081 .122 .085 .085 .085 .085 
Robinson, d .000 .038 .075 .112 .014 .014 .014 .014 

RRA, H .578 .605 .631 .658 .012 .012 .013 .013 

FA(1), H .480 .519 .559 .599 .037 .039 .040 .042 

FA(2), H .491 .530 .569 .609 .036 .037 .038 .040 
FA(3), H .488 .527 .566 .605 .037 .038 .039 .041 

 
Notes 

 

Each result is based on 5,000 replications of a simulated NIID or self-affine returns series. The RRA is described 

by equations [5] to [7]. The FA is described by [8] to [11]. The GPH and Robinson estimators are described by 
[12] and [13], respectively. 
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Table 7  Mean and standard deviation of various estimators of the Hurst exponent, L-stable  

process 

 
Estimator Mean Standard deviation 

         
Parameter =2 =1.85 =1.72 =1.61 =2 =1.85 =1.72 =1.61 

values H=0.50 H=0.54 H=0.58 H=0.62 H=0.50 H=0.54 H=0.58 H=0.62 

        

Sample, T=2000        

         

Pickands, H -.279 -.157 -.029 .109 .176 .178 .184 .187 
Hill, H .212 .318 .412 .498 .018 .036 .046 .055 

HR, H .199 .455 .556 .634 .021 .147 .158 .172 

FA(1), H .477 .514 .550 .586 .050 .058 .066 .075 

         
Parameter  =2 =1.85 =1.72 =1.61 =2 =1.85 =1.72 =1.61 
values H=0.50 H=0.54 H=0.58 H=0.62 H=0.50 H=0.54 H=0.58 H=0.62 

         

Sample, T=5000        

 
 

       

Pickands, H -.275 -.162 -.033 .106 .110 .113 .112 .116 

Hill, H .212 .318 .413 .498 .011 .023 .030 .034 
HR, H .145 .467 .561 .630 .015 .123 .132 .144 

FA(1), H .479 .516 .554 .591 .037 .046 .055 .061 

 
Notes 

 
Each result is based on 5,000 replications of a simulated NIID or self-affine returns series. The FA is described 

by equations [8] to [11]. The Pickands, Hill and HR estimators are described by [14]. 
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Table 8  Summary descriptive statistics: daily logarithmic returns for 11 stock market  

indices 

 
 Mean Standard 

deviation 
Skewness Kurtosis 

  Nikkei -.00014 .0149 -0.28 11.42 

  FTSE .00015 .0114 -0.52 13.56 
  SP500 .00024 .0119 -1.37 33.23 

  OMX Helsinki .00027 .0169 -0.39 11.88 

  CAC .00016 .0139 -0.14 8.92 

  DAX .00015 .0125 -0.31 9.62 
  ISEQ .00011 .0126 -0.83 14.66 

  MIBTel .00008 .0121 -0.48 7.47 

  AEX .00016 .0140 -0.26 11.85 
  Madrid SE .00022 .0128 -0.11 11.10 

  OMX Stockholm .00033 .0134 -0.00 8.87 

 
. 

 



 35 

Table 9  Estimation results: 11 stock market indices 

 
Method RRA FA(1) FA(2) FA(3) Robinson Hill 

Parameter H H H H d H 

Unfiltered       

Nikkei .569
*
 .543

*
 .506 .460 -.036 .327 

FTSE .560 .532 .473 .396 .003 .345 
SP500 .543 .564

***
 .505 .429 -.042 .383 

OMX Helsinki .619
***

 .608
***

 .580
***

 .547
*
 .029 .345 

CAC .561 .547
*
 .518 .476 -.015 .346 

DAX .596
**

 .588
***

 .537 .484 .016 .347 
ISEQ .614

**
 .594

***
 .575

**
 .542 .066 .390 

MIBTel .617
**

 .557
*
 .542 .516 .082 .301 

AEX .584 .584
**

 .537 .482 .006 .404 
Madrid SE .603

**
 .558

*
 .524 .474 .019 .343 

OMX Stockholm .597
***

 .615
***

 .559
**

 .497 .029 .372 

Filtered       
Nikkei .582 .546 .506 .456 -.008 .330 

FTSE .575 .506 .472 .404 .013 .342 

SP500 .568 .522 .505 .448 .013 .364 
OMX Helsinki .615

***
 .592

***
 .573

**
 .538 .014 .351 

CAC .579 .545 .525 .490 -.009 .342 

DAX .592
**

 .576
**

 .533 .486 .008 .336 

ISEQ .595
***

 .574
**

 .563
**

 .534 .020 .402 
MIBTel .590

**
 .547 .530 .505 .004 .311 

AEX .577 .553
*
 .518 .473 -.003 .400 

Madrid SE .588
**

 .541 .509 .461 -.013 .348 
OMX Stockholm .601

***
 .595

***
 .554

*
 .500 .017 .370 

 
Notes to Table 9  

 

For the tests of H0:H=0.5 (or d=0) against H1:H>0.5 (or d>0) based on the RRA, FA and Robinson estimators, 
*** denotes rejection of H0 in favour of H1 at the 0.01 significance level. ** and * denote rejection at the 0.05 and 

0.1 levels, respectively. For the test based on the Hill estimator, H0:H=0.5 would be rejected at the 0.01 

significance level in every case.  

 
 

 
 

 

 


