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ABSTRACT

Chalcogenide suspended core fibers are a valuable solution to obtain supercontinuum generation of light in the
mid-infrared, thanks to glass high transparency, high index contrast, small core diameter and widely-tunable
dispersion. In this work the dispersion and nonlinear properties of several chalcogenide suspended core mi-
crostructured fibers are numerically evaluated, and the effects of all the structural parameters are investigated.
Optimization of the design is carried out to provide a fiber suitable for wide-band supercontinuum generation in
the mid-infrared.

Keywords: Microstructured fibers, Dispersion engineering, Supercontinuum generation, Nonlinear fibers, Chalco-
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1. INTRODUCTION

Recently, chalcogenide glass based optical devices have attracted great attention because of their potential ap-
plications in telecom such as signal regeneration,1 wavelength conversion in the infrared using Raman shifting2, 3

and mid-IR supercontinuum generation.4–6 Chalcogenide glasses are based on a mixture of chalcogen elements:
sulphur, selenium, or tellurium and other elements such as arsenic, germanium, antimony, or gallium. Compared
to silica glasses, they offer extraordinary nonlinear characteristics, i.e. their nonlinear refractive index can be
800 times higher than that of silica fiber,1 low two-photon absorption,7 and excellent transmission window that
extends far into the infrared (IR) spectral region, up to 10 μm, 12 μm, and 20 μm for S, Se, and Te based
glasses, respectively. However, higher refractive index of chalcogenide glasses compared to silica leads to longer
material Zero Dispersion Wavelength (ZDW) of about 4.5 μm.6 This feature is harmful for the applications in
mid-infrared non-linear optics, e.g., the large normal GVD at telecom wavelengths distorts ultra-short optical
pulses,8 and the long ZDW does not allow an anomalous dispersion pumping for broad band SuperContinuum
(SC) generation. To harness the useful features of chalcogenide glasses, control of chromatic dispersion while
keeping high nonlinear coefficient must be addressed.
Suspended-Core Fiber (SCF) is an excellent candidate for further enhancing of nonlinear properties and tuning
of dispersion.9, 10 The small core and high NA of SCF ensure tight confinement of light and high nonlinearity.
Besides, low loss, high air-filling fraction, and ultra low mode field diameter have attracted designers to exploit
the SCFs for different nonlinear applications. The most important applications of chalcogenide SCFs at present
are wavelength conversion11–13 and SC generation.14, 15 Wavelength conversion from 2 μm to 4.5 μm has been
observed in As2S5 SCF with ZDW at 2 μm by degenerate four-wave mixing.11 Soliton self-frequency shift and
third-harmonic generation has been observed in a four-hole tapered As2S5 SCF with ZDW at 1.61 μm pumped
by 1.55 μm pulsed laser.12 Fourth order cascaded Raman wavelength shifting from 2092 nm to 2450 nm was
demonstrated in a low loss As38Se62 SCF with ZDW of 3.15 μm pumped by 1995 nm Tm-doped gain switched
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Figure 1. Cross-section of the considered chalcogenide SCF with (a) 3 bridges, (b) 5 bridges and (c) 6 bridges.

Figure 2. Magnetic field modulus distribution of the fundamental mode, calculated at λ = 2000 nm, for the SCF with (a)
3 bridges, (b) 5 bridges and (c) 6 bridges.

laser.13 A mid-IR SC spanning from 1 to 4 μm has been experimentally demonstrated in As2S3 SCF with ZDW
of 1660 nm pumped by an OPO laser with tunable wavelength from 1.7 μm to 2.6 μm.14 Then, a mid-IR SC
spanning from 1.5 μm to 4.5 μm was also achieved in As2S3 SCF with ZDW of 2.52 μm pumped by an OPO
laser with tunable wavelength from 2.2 μm to 2.6 μm.15

It is observed from the above literature that different chromatic dispersion and nonlinear characteristics are
required for different pump wavelengths and applications. Several publications have already addressed the en-
gineering of SCFs,10, 16–18 but a comprehensive study devoted to a thorough analysis of the effects of all the
cross-section parameters on the fiber properties has not been presented yet. The aim of this paper is to pro-
vide useful guidelines for designing SCFs for mid-IR applications. The dispersion and nonlinear properties of
chalcogenide SCFs have been numerically studied by taking into account all the main design parameters, that
is, besides the core radius, the thickness and number of the glass bridges that intersect to create the core. The
results have shown that all these parameters can be combined to shape the SCF dispersion properties to match
the specific requirements of any application.

2. MODELING OF CHALCOGENIDE SCF

The cross-section of the chalcogenide SCFs that have been considered, that is with 3, 5 and 6 air-holes in the
cladding, separated by the same number of thin glass bridges, are shown in Fig. 1(a)-(c). The fiber core is
created by the intersection of the glass bridges, which are linked by parabolic-shaped connectors. The cross-
section has a Cn symmetry, being n the number of bridges. The guiding properties of these fibers are determined
by four main parameters, that are the core radius rc, which is the radius of the largest circumference inscribed
into the core, the strut number and thickness t, and the glass composition, which influences material dispersion
and nonlinearity. Values of rc in the range of 0.5 μm–1.5 μm and t between 0.15 μm and 0.45 μm have been
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Figure 3. Dispersion parameter versus wavelength of the SCFs with 3 bridges and core radius of (a) 0.5 μm, (b) 0.6 μm,
(c) 0.7 μm, (d) 0.8 μm, (e) 0.9 μm and different values of bridge thickness. (f) Dispersion parameter versus wavelength
of the SCFs with 3 bridges and core radius from 1.1 μm to 1.5 μm, with t = 0.45 nm.

considered, which are appropriate for technologically-feasible chalcogenide fibers or, at least, can be reached
by tapering over lengths of several centimeters.14, 18, 19 The length of the struts is about 20 μm, in order to
prevent leakage of the fundamental mode into the cladding. As2S3 chalcogenide glass has been considered for the
simulations, because of its high infrared transparency, up to 10 μm, high nonlinear coefficient and good drawing
capability.18 The refractive index of As2S3 has been calculated according to the Sellmeier equation:

n2(λ) = 1 +
∑

i

Aiλ
2

λ2 − λ2
i

, (1)

being A1 = 1.8983678, A2 = 1.9222979, A3 = 0.8765134, A4 = 0.1188704, A5 = 0.9569903, λ2
1 = 0.0225 μm2,

λ2
2 = 0.0625 μm2, λ2

3 = 0.1225 μm2, λ2
4 = 0.2025 μm2, λ2

5 = 750 μm2.20

The fundamental mode of the SCFs has been obtained by means of a full-vector modal solver based on the
finite-element method,21 in the wavelength range from 1000 nm to 3500 nm. The modal solver has been already
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Figure 4. Dispersion parameter versus wavelength of the SCFs with 5 bridges and core radius of (a) 0.5 μm, (b) 0.6 μm,
(c) 0.7 μm, (d) 0.8 μm, (e) 0.9 μm and different values of bridge thickness. (f) Dispersion parameter versus wavelength
of the SCFs with 5 bridges and core radius from 1.1 μm to 1.5 μm, with t = 0.45 nm.

applied with success to the analysis of the dispersion properties of several PCFs.22–25 The magnetic field modulus
distribution of the fundamental mode, calculated at λ = 2000 nm for the SCF with 3, 5 and 6 bridges, is shown
in Fig. 2(a)-(c), respectively.

3. DISPERSION ENGINEERING

Fig. 3(a) shows the dispersion parameter D versus the wavelength obtained for the SCFs with 3 bridges,
rc = 0.5 μm and different strut thickness values. Thanks to the large waveguide dispersion achieved with
the small core diameter, all the considered fibers present two different zero dispersion wavelengths below 3.5 μm,
the lowest one being conveniently located at λZDW,1

∼= 1500 nm. Notice that bulk As2S3 has negative dispersion
throughout the considered range and presents a single ZDW at λ = 4.9 μm.20 Remarkably the bridge thickness
t, which has been usually neglected in previous works, has a strong impact on the dispersion properties. In
particular, larger struts cause an overall decrease of D, whose maximum value is over 300 ps/(km·nm) in the
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Figure 5. Dispersion parameter versus wavelength of the SCFs with 6 bridges and core radius OF (a) 0.5 μm, (b) 0.6 μm,
(c) 0.7 μm, (d) 0.8 μm, (e) 0.9 μm and different values of bridge thickness. (f) Dispersion parameter versus wavelength
of the SCFs with 6 bridges and core radius from 1.1 μm to 1.5 μm, with t = 0.45 nm.

SCF with t = 0.15 μm and only 130 ps/(km·nm) in the fiber with t = 0.45 μm. More interestingly, the increase
of the bridge thickness causes the distance between the two ZDWs to narrow, mostly by blue-shifting the second
ZDW. As a result, λZDW,2 = 2763 nm when t = 0.45 μm, while it is 3489 nm for t = 0.15 μm.
Fig. 3(b)-(e) report the curves of the dispersion of SCFs with larger rc, up to 0.9 μm. Notice that the increase
of the core size causes an overall red shift of the curves and a broadening of the regime where the fibers operate
in anomalous dispersion. Furthermore, the dispersion is progressively flattened and λZDW,2 is shifted far outside
from the considered wavelength range. The influence of the bridge thickness is greatly reduced in the SCFs with
larger core, and no significant effects are observed when rc ≥ 0.9 μm. Therefore the bridge thickness has been
neglected for the SCF with core radius larger than 1 μm, whose dispersion is shown in Fig. 3(f) for t = 0.45 μm.
Again, lower overall D values are obtained with the increase of the core size, and λZDW,1 is further shifted
towards longer wavelengths, up to 2284 nm for rc = 1.5 μm.
Further degrees of freedom for the dispersion engineering of SCFs can be provided by the choice of the number
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Figure 6. Nonlinear coefficient γNL of the considered SCFs with different core size and t = 0.45 μm, calculated at
λ = 2000 nm.

of bridges, which influence the shape of the core and the field distribution. Fig. 4(a)-(e) report the calculated
dispersion parameter for the fibers with 5-fold symmetry, core radius between 0.5 μm and 0.9 μm and different
t values. The most remarkable effect of the increased number of struts is that their thickness has a stronger
impact on the dispersion properties, especially if small cores are considered. For example, by comparing Fig. 3(a)
and Fig. 4(a) it is clear that a larger anomalous dispersion, up to 400 ps/(km·nm), can be achieved with small
bridges in 5-fold SCFs with respect to 3-fold ones. The situation is reversed for designs with large struts, being
for example the maximum D about 130 ps/(km·nm) in the 3-fold SCF with t = 0.45 μm rc = 0.5 μm and less
than 50 ps/(km·nm) in the 5-fold fiber with the same structural parameters. Furthermore, in the SCFs with 5
bridges the change of t has a stronger effect on λZDW,1, which is significantly red-shifted by the increase of the
strut width, while it was almost constant in the SCFs with 3 bridges. A larger dispersion slope is also generally
observed, yielding to a narrowing of the distance between the two ZDWs, down to about 570 nm for the PCF
with rc = 0.5 μm and t = 0.45 μm. The effect of the bridge width gradually fades out with the increase of the
core size, as shown by Fig. 4(b)-(e), and becomes negligible for rc > 1 μm, as already observed in 3-fold SCFs.
Notice also that for these values of the core radius the number of bridges in the cladding is almost unimportant,
being the dispersion curves of the 5-fold SCFs, shown in Fig. 4(f), very close to those in Fig. 3(f).
The calculated dispersion of the SCFs with 6 bridges are reported in Fig. 5(a)-(f). For small core diameter,
that is for fibers whose dispersion properties are still influenced by the strut thickness, the dispersion is slightly
lower than in the 5-fold counterparts for any given value of t. Remarkably, if the parameters rc = 0.5 μm
and t = 0.45 μm are chosen, the fiber operates in normal dispersion regime throughout the whole considered
wavelength range, as shown in Fig. 5(a). Again, increasing values of the core radius cause the effect of t on the
dispersion properties to become less significant, as the curves converge on those already found for PCFs with 3
and 5 bridges.
In conclusion, a general feature of SCFs can be inferred by these results. For small core radii, namely for
rc < 1 μm, the guidance is severely influenced by the struts, whose size and number can be adjusted to tune the
dispersion characteristics. On the contrary, the guiding properties of SCFs with larger core are only marginally
affected by the size of the struts, and their dispersion curves have a lower slope, being similar to the one of a
step-index fiber with the same NA. Moreover, it is worth noting that the design with 3 bridges allows to blue-shift
the material ZDW by more than 3500 nm, by acting only on the values of rc and t. SCFs with 3 bridges are easier
to manufacture with small core diameters, without requiring tapering, and are the most used so far. The designs
with 5 and 6 struts enable a stronger control of the dispersion curve, allowing dual-ZDW dispersion profiles with
very close λZDW and lower dispersion in the anomalous regime, or even all-normal dispersion curves. On the
other side, manufacturing of 5-fold and 6-fold SCFs with small cores is more difficult. As a consequence, they
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should be considered only in case that a fine dispersion tailoring is required to provide a significant benefit for
the desired application.

4. NONLINEAR PROPERTIES

Besides the dispersion control, it is important to provide low effective area and high nonlinear coefficient to
enhance the nonlinear properties of the material, in order to fully exploit the potential of SCFs for applications
such as wavelength conversion or SC generation. Thanks to the high refractive index of the chalcogenide glass
and due to the small fiber core, very small effective area Aeff can be achieved, down to less than 1 μm2 between
1000 nm and 1500 nm for the SCFs with rc = 0.5 μm, regardless of the number of bridges. Aeff values lower
than 4 μm2 can be obtained at λ = 3500 nm, which is the longest wavelength considered in this analysis, in
fibers with relatively large core radii, up to 1.1 μm–1.2 μm. In general, PCFs with more struts provide a smaller
Aeff value for a given rc, λ pair. This is due to the fact that the guided mode is less prone to expand outside
from the glass, because of the smaller air-filling fraction of the cladding.
The combined effect of the high material nonlinearity and of the small effective area provides the possibility to
achieve very large nonlinear coefficient γNL, which has been calculated according to this formulation:

γNL =
2π

λ

n2,NL

Aeff,NL
, (2)

being

Aeff,NL =
| ∫

S
Ē × H̄∗ · ẑdA |2∫

S
| Ē × H̄∗ |2 ·ẑdA (3)

with n2,NL = 4.2 · 10−18 m2/W the nonlinear refractive index of As2S3 glass26 and S the glass domains in
the cross-section.27 The equation neglects the contribution to overall nonlinearity of air, which is 5 orders of
magnitudes lower than As2S3 glass.
Fig. 6 shows the curves of the nonlinear coefficient obtained at λ = 2000 nm as a function of the core radius, for
the SCFs with 3, 5 and 6 bridges and the largest bridge width t = 0.45 μm. Very high values of γNL are achieved
with small cores, up to more than 9000 W−1·km−1 with rc = 0.5 μm. Larger core radii cause the effective area
to increase and, as a consequence, a smaller γNL is obtained. Notice that the fibers with 5 and 6 bridges are
more nonlinear with respect to the 3-struts ones, having values of γNL 15%–20% higher for a given core size.

5. CONCLUSION

The dispersion and nonlinear properties of As2S3 suspended-core fibers have been thoroughly analyzed by means
of a full-vector modal solver based on the finite-element method. The possibility to widely tune the position of
the ZDWs by acting on the number and size of the glass bridges has been investigated for the first time, showing
that they have an impact on the dispersion characteristics which is comparable to the one of the core size.
A wide range of possible designs have been considered, providing guidelines for the design of highly nonlinear
SCFs to operate in several applications relying on different sources. Moreover, nonlinear properties have been
investigated, showing that values of nonlinear coefficient higher than 9000 W−1·km−1 can be achieved.
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