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Abstract 

The cost and limited flexibility of traditional approaches to 
11kV network reinforcement threatens to constrain the uptake 
of low carbon technologies. Ofgem has released £500m of 
funding for DNOs to trial innovative techniques and share the 
learning with the rest of the industry. One of the techniques 
under study is the addition of Energy Storage at key 
substations to the network to help with peak load lopping. 
This paper looks in detail at the sizing algorithm for use in the 
assessment of alternatives to traditional reinforcement and 
investigates a method of sizing a battery for use on a Network 
taking into account load growth, capacity fade and battery 
lifecycle issues. A further complication to the analysis is the 
method of operation of the battery system and how this 
affects the Depth of Discharge (DoD). The proposed method 
is being trialled on an area of 11kV network in Milton Keynes 
Central area and the simulation results are presented in this 
paper. 

1 Introduction 

To enable Distribution Network Operators (DNOs) to develop 
new approaches to reinforce the 11kV network with low 
carbon technologies, Ofgem has released £500m of funding 
for DNOs to trial innovative techniques and share the learning 
with the rest of the industry. Project FALCON (Flexible 
Approaches to Low Carbon Optimised Networks) is funded 
via this Ofgem initiative, and aims to facilitate the uptake of 
low carbon technologies by delivering faster and cheaper 
connections to the 11kV network by reducing traditional 
reinforcement requirements. The trial will provide learning on 
the use of real time data to inform network planning rather 
than traditional indicators such as total demand and 
engineering guidelines. The learning obtained throughout the 
project will be shared with other DNOs and the wider 
industry. 
 
Energy Storage at key substations is one such technique being 
studied to help with peak load shaving. Within literature there 
are a number of methodologies used to size and place battery 
energy storage systems around the grid. The majority of these 
studies are either concerned with wind farm generation for 
both grid and non-grid connected systems [1,2] or with micro 
grids [3,4] and only a small number look into sizing and 
costing of systems for offsetting grid reinforcement costs [5]. 
The published work is split into a combination of theoretical 

studies only and those with minimal life cycle validation on a 
microgrid. In some cases, the authors take into account 
battery life cycle but ignore capacity fade [3] and in others 
both capacity fade and life cycle are ignored [5]. Other 
documentation in this research arena concentrates on the 
control (switching energy storage in and out) and assumes the 
energy storage size has already been adequately set [6]. 
 
Firstly, a method of sizing a battery is investigated for use on 
a Network taking into account load growth, capacity fade and 
battery lifecycle issues using a battery equivalent circuit 
model. Finally, the paper uses a case study example from the 
FALCON trials to indicate how future sizing and 
implementation of energy storage could impact life cycle, 
using load profiles at different substations around the trial 
network taken from measured data. 

2 Battery sizing algorithm 

To use a battery as an alternative to Network reinforcement 
requires that the power and energy needed to displace the 
reinforcement be known. From Network modelling, the load 
curve can be run and the minimum power and energy 
requirement of the battery can be established from the yellow 
area as shown in Figure 1  
 

 
Fig 1:  Minimum battery sizing  
 
However, the battery cannot just be sized on minimum energy 
and power rating reduction from Figure 1, because battery life 
cycle is highly dependent on depth of discharge. A full 
battery discharge (100%) daily over a period of years will 
reduce the life cycle significantly. For example, a lead acid 
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needs to be checked against the proposed charge/discharge 
cycling. to take into account the life cycle issues. Using the 
DoDCE method; the DoDCE is divided by the total number 
of cycles that the battery will undertake during its life (set to 
the number of discharges per year (Ncy) times the expected 
life span of the battery (Ny)) this allows the maximum depth 
of discharge that can be used to meet the number of charging 
cycles to be calculated (DoDm). (If DoDCE is not a straight 
line then a look up table may be used in place of this or the 
method published in ref[11]). 
 

   (5) 

 
If this comes out to be greater than 100 then it means the 
battery has sufficient lifecycle available to meet the specified 
number of years operation at 100% DoD without needing to 
add an additional life span factor FLS. If the number comes out 
less than 100, say 50 this means the battery size has to be 
doubled (1/0.5) in order to ensure the battery is only 
discharged to 50% DoD to meet the life cycle. The FLS is 
therefore calculated as: 
 

   (6) 

 
This is only an approximation for sizing the battery based on 
the worst case analysis and the actual loss of life needs to be 
re-calculated after location and operating strategy are 
determined by the network operator. 
 
Step 4: To deal with capacity fade, an intermediate energy is 
required, this is the value of energy that should remain after 
the specified number of years operation once the capacity has 
faded and is equal to  
 

(7) 
 
 
The capacity fade factor FCF is then found by considering   
capacity fade to be a function of Whr processed (as a pu of 
battery energy rating) [12,13] and can be found from the a 
combination of manufacturers data (to obtain a rate of 
capacity fade RCF ) and the quantity of Whr’s the battery is 
likely to process each year over the minimum life span of the 
battery taking into account the increase in load using FLG the 
load growth factor (ie the total throughput of energy is the 
energy per year (ET) times the load growth factor (FLG) over 
the total number of years).  
 

(8) 
 
 
 

(9) 
 

Step 5: The final total battery energy is therefore the energy at 
the end of life plus the energy lost due to capacity fade. 
 

  (10) 

This can be cross checked by multiplying this final energy by 
a capacity fade cross check  

 
(11) 

 
 
 

And ending up with the energy, E, from equation (7). 
 
The load factor FLG is provided by distribution network 
operator and is an estimate of load growth figure per year in 
pu. If the load growth is different in different years then 
instead of using . The individual values for each year 
need multiplying together up to Ny. FLG,year1 x FLG, year2 etc 
 
The capacity fade and life span are also temperature 
dependent. To undertake a proper thermal analysis and 
determine the core battery temperature would require 
significant data and analysis. Approximations are possible 
and should these be necessary the equations can be derived at 
a later date. However, it should be noted that these are at best 
a poor approximation and will act to increase battery size 
further based on tenuous data. 

3 Operating strategy  

There are a number of different ways of operating the battery 
including; Manually, Forecast - Fixed schedule, Day ahead 
schedule, CT reading, Global scheme for multiple units, 
Single/multiple day strategies, Staggered starts and any 
combination of these . Within this paper three strategies will 
be looked at in more detail; 
 

1. Fixed schedule (100% battery power provided at set 
times) 

2. CT reading (100% battery power provided when an 
overload is registered) 

3. Optimum strategy (The % of battery power required 
to prevent the overload will be added when needed) 

 
These strategies or modes of operation are determined from 
the overload magnitude and duration already calculated.  
 
Mode 1 – Fixed schedule: The worst overload magnitude and 
duration already calculated will be used to set the on-off time 
for the battery, which will operate at these times every day. 
This means that battery is sometimes operating when not 
required. 
 
Mode 2 – CT reading: The magnitude and duration of 
overload for each run period will be used to determine if the 
battery should be on or off. This way the battery is only ever 
on when needed but is not necessarily on at the optimum 
value. There is assumed to be one CT per radial feeder 
located to pick up the overload location. The battery would 
not be expected to monitor other feeders as it is unlikely that 
this would affect the need for reinforcement on a different 
feeder. 
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Y  Time of 
overload 

kW to 
compen
sate  

Battery 
kW 

DoD with 
350kW 
battery 

1 1.01 
23/05 22:00 62.19 70 0.2 

20/06 22:00 62.19 70 0.2 

2 1.02 
23/05 22:00 125.29 140 0.4 

20/06 22:00 125.29 140 0.4 

3 1.03 

05/02 18:00 69.40 70 0.2 

05/02 18:30 69.40 70 0.2 

23/05 22:00 188.68 210 0.6 

20/06 22:00 188.68 210 0.6 

4 1.04 

05/02 18:00 139.11 140 0.4 

05/02 18:30 139.11 140 0.4 

23/05 21:30 62.79 105 0.3 

23/05 22:00 252.68 280 0.8 

24/05 22:00 62.794 105 0.3 

20/06 21:30 62.794 105 0.3 

20/06 22:00 252.68 280 0.8 

21/06 22:00 62.79 105 0.3 

5 1.05 

05/02 18:00 209.71 210 0.6 

05/02 18:30 209.71 210 0.6 

23/05 21:30 125.89 175 0.5 

23/05 22:00 317.28 320 0.9 

24/05 22:00 125.89 175 0.5 

20/06 21:30 125.89 175 0.5 

20/06 22:00 317.28 320 0.9 

21/06 22:00 125.89 175 0.5 
Table 1: Loading scenarios with 1% load growth over 5 years 
from maximum static limit 
 
Note: The FALCON trial battery is a lead acid battery with a 
low life span at 100% DoD. According to the parameters 
from the manufacturer, the cycle life is 4500 cycles. This can 
be approximated to a DoDCE of 450,000. The combined 
battery/inverter efficiency is approximately 85% 
 
Fixed schedule (100% battery power provided at set times) 
With the fixed schedule, the set times for discharging are 
fixed. Here, the battery will discharge two hours from 22:00 
over an assummed two week period in the first 2 years (to 
meet the requirements for back feeding a neighbouring 
network). In the last 3 years, the battery will discharge during 
two time intervals, at 18:00-19:00 (every day, as 
representative of normal peak load) and 21:30-22:30 (over the 
same two week back-feed cycle). In each cycle, the battery 
will charge and discharge 2 hours to 100% DoD. The details 
for DoDCE, Cycles and Operation hours during the 5 year 
time period are shown in the Table . The DoDCE is based on 
a battery that fades, hence, as the battery fades the DoDCE 

equivalent for the same DoD increases because the capacity 
fade means the new rated capacity Erated of the battery has 
reduced. 
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1 14 56 1400 448600 1% 696 

2 14 56 1408 447192 1% 692 

3 379 1516 38338 408853 15% 586 

4 379 1516 45280 363673 !8% 480 

5 379 1516 55271 308310 22% 373 
Table 2: Battery operating schedule on fixed timing 
 
On a fixed schedule, the battery capacity fades quickly when 
it is in daily use. By the time the battery reaches the 4th year 
of operation, the battery would no longer be able to meet the 
discharge requirements necessary for the circuit to remain 
within the thermal limit. In fact, in order to size the battery to 
ensure 5 years of operation, approximately 800kWh of battery 
would be required at start of life. 
 
CT reading (100% battery power provided when an overload 
is registered): The set times for discharging are flexible. The 
batteries will operate only over the several days when the 
current exceeds the threshold. 100% DOD is adopted in these 
operational days. According to the measured currents, the 
battery will discharge two hours from 22:00 in the first 2 
years. In the last 3 years, the battery will discharge during two 
time intervals, at 18:00-19:00 and 21:30-22:30. In each cycle, 
the battery will charge and discharge 2 hours. Therefore, the 
operation hours for each cycle should be 4 hours. The details 
for DoDCE, Cycles and Operation hours during the 5 year 
time period are shown in table 3. Using this CT reading 
strategy, the batteries do not operate every day, but they will 
discharge thoroughly in the operation days. As for fixed 
scheduling operation, the batteries will begin to discharge 
with 100% DOD when loads exceed the thermal limit. With 
the low usage the battery fade would be significantly slower 
than on a fixed schedule and therefore the battery would meet 
the 640kWh requirements of the 5th year of operation. As the 
load increases over subsequent years of operation the battery 
capacity would start to fade more quickly. 
 
Optimum strategy (The % of battery power required to 
prevent the overload will be added when needed). The 
optimum strategy makes use of the magnitude and duration of 
the overload to match the battery output, so that the batteries 
run with the minimum energy throughput to maximise life 
span. Therefore, both the set times and the DOD are variable 
according to the overload power. Since the battery discharge 
power varies with the load curve, the DOD should be 
calculated over each 30 minute period and summed over the 
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overload duration. With variable discharge power and time 
setting, the optimum strategy can minimise the capacity fade 
and maximise life span. The details are listed in table 4. With 
an optimum strategy, very little loss of life is calculable. 
However, the peak loads are rather scarce in the studied 
scenarios and the control will be more complex to 
implement.. 
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1 2 8 200 449800 0 699.4 

2 2 8 200 449600 0 698.8 

3 3 12 300 449300 0 697.8 

4 5 20 501 448800 0.2% 696.4 

5 5 20 503 448300 0.2% 695 
Table 1: Battery operating schedule on CT reading 
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1 0.09 2 10 449990 0 700 

2 0.09 2 30 4499970 0 700 

3 0.33 4 70 4499930 0 700 

4 0.74 8 160 449840 0 700 

5 1.11 8 290 449710 0 700 
Table 4: Battery operating schedule on optimum discharge 

6 Conclusion 

It is important to understand capacity fade and battery 
degradation on energy storage. This is because the life span of 
the battery is dependent on how much the battery is 
discharged. Modelling indicates that the operation strategy is 
of great importance to capacity fade and life time and that the 
difference in modelled battery sizing could be as much as 2 
times less if a flexible strategy rather than a fixed 
charging/discharging strategy were used. It is important to 
understand and validate the loss of life and capacity of the 
trial batteries as far as possible so that the implications on 
initial battery sizing can be used with confidence. To help 
with this, the FALCON trial batteries will be operated under 
different operating schedules and the effect on life span and 
capacity fade will be analysed. 
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