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Abstract: An approach to realizing simultaneous measurement of refractive index (RI)
and temperature based on a microfiber-based dual inline Mach–Zehnder interferometer
(MZI) is proposed and demonstrated. Due to different interference mechanisms, as one
interference between the core mode and the lower order cladding mode in the sensing
single-mode fiber and the other interference between the fundamental mode and the
high-order mode in the multimode microfiber, the former interferometer achieves RI sensi-
tivity of �23.67 nm/RIU and temperature sensitivity of 81.2 pm/oC, whereas those of the
latter are 3820.23 nm/RIU, and �465.7 pm/oC, respectively. The large sensitivity differ-
ences can provide a more accurate demodulation of RI and temperature. The sensor is
featured with multiparameters measurement, compact structure, high sensitivity, low cost,
and easy fabrication.

Index Terms: Sensors, subwavelength structures, refractive index, temperature.

1. Introduction
Micro/nanofiber (MNF) has been widely used in grating [1], resonator [2] and sensor [3] in the
past few years, due to its unique and promising optical properties of low transmission loss,
large evanescent field, high nonlinear effect, and tight optical confinement. Among these
merits, large evanescent field make MNF to have the application prospect in chemical and bio-
medical areas. During these fields, refractive index (RI) and temperature are the two most
important parameters owning to direct reflection of physical properties of materials. Recently,
many investigation have been done for RI or temperature sensing, including optical microfiber
mode interferometer [4], D-shaped microfiber [5], and microfiber-based Mach-Zehnder inter-
ferometer (MZI) [6] for RI sensing, and multimode fiber tip [7], silica/polymer microfiber knot
resonators (SMKR/PMKR) [8], and isopropanol-sealed optical microfiber taper (OMT) [9] for
constructing temperature sensor. However, as we all known, temperature will strongly influence
the RI of solution due to a large thermo-optic coefficient, therefore, distinguish them effectively
during measurement is extremely important.
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Over the past few years, significant efforts based on microfiber have been devoted to the de-
velopment of simultaneous measurement of RI and temperature, such as the microfiber Fabry-
Perot interferometer (MFPI) [10] and our previous work of multimode microfiber (MMMF) based
dual MZI [11]. Other fiber structure like microfiber Bragg gratings (mFBGs) [12], [13] are pro-
posed for temperature independent RI sensing, which also have the ability of simultaneous dual-
parameters measurement. However, the MMMF based dual MZI has complex configuration and
less stability due to the natural defect of two arms MZI setup, while the MFPI and mFBGs require
UV laser photolithograph FBG, which increases equipment cost and manufacturing difficulty.

In this paper, we present a compact dual in-line MZI by tapering the designated region of fiber
structure into micrometer size, then forming (single-mode fiber)-(multimode fiber)-(single-mode
fiber)-(multimode microfiber)-(single mode fiber) (SMSMS) structure, providing simultaneous
measurement of RI and temperature with high sensitivities. The dual in-line MZI is composed of
one in-line MZI between the core mode and the cladding mode in the SSMF and the other in-
line MZI between the fundamental mode and the high order mode in the MMMF. The former
MZI provides an interference envelope with a large free spectrum range (FSR) while the latter
MZI generates a dense interference fringe with a small FSR and modulated by the interference
envelope. Due to different interference mechanisms of the two MZIs, the specific interference
fringes have different responses to the external variation and, consequently, offer the possibility
of dual-parameters measurement.

2. Schematic Diagram and Theoretical Simulation

2.1. Structure of the Sensing Element
The structure of the sensing element is shown as Fig. 1, which is fabricated with the following

steps. First, a section of single mode fiber (SMF) is spliced with the multimode fiber (MMF) pos-
sessing core and cladding diameter of 100/125 Km and the spliced point named the first spliced
point is marked. Secondly, the MMF is cut off at the point which is 8 mm away from the first
spliced point to form single-mode fiber-multimode fiber (SM) structure. Thirdly, the SM fiber
structure is spliced again with SMF to form single-mode-multimode-single-mode (SMS) fiber
structure, and the spliced point is named as the second spliced point. Lastly, the heated region
with 15 mm away from the second spliced point is selected and tapered down into micrometer
size by hydrogen flame, and thus the tapered SMF turns into three sections including the sens-
ing SMF, MMMF, and lead-out SMF. In this way, the SMSMS fiber structure is constructed.

2.2. Working Principle of the Sensing Element
When the light transmits from the lead-in SMF into the MMF and then the SSMF, at the spliced

point between MMF and SSMF, optical power is partly coupled into the cladding modes of the
SSMF and partly remained in the core mode on account of the mode field mismatch. Then the
cladding and core modes are collected by the taper region, and interference is generated due to
optical path difference. It is confirmed that the interference in the SSMF is dominated by the low-
order cladding mode and the core mode [14]. Owing to the fact that both modes propagate in the
same fiber, the interference is an in-line MZI. Consequently, when the light transmits from the ta-
per region into the MMMF with waist diameter less than 12 7 �m, two main modes i.e., HE11

mode and HE12 mode are excited [15], [16], and then, the other in-line MZI between the two
guided modes are produced at the same time. As a result, the transmission spectrum containing

Fig. 1. Structure of the sensing element.
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two MZIs are guided out through the lead-out SMF and analyzed by the signal processing sys-
tem. One highlight of the SMSMS fiber structure should be pointed out that the two in-line MZIs
are independent to each other, which provides favorable property of simple demodulation of
each MZI variation separately from the transmission spectrum.

2.3. Simulation of RI and Temperature Sensitivities
The resonant dip �p in the interference fringe generated by the in-line MZI between the core

mode and the low-order cladding mode in SMMF can be expressed as

ðn0 � n0ÞL0 ¼ �neff0L0 ¼ p þ 1
2

� �
�p (1)

where n0 and n0 are the effective RI of the core mode and the low-order cladding mode, respec-
tively. L0 is the length of SMMF, �neff0 represents the effective RI difference between the two
modes, and p is a positive integer.

It is obvious that dip �p will shift to short wavelength along with surrounding RI (SRI) increas-
ing [14], [17], because �neff0 will decrease as n0 increases which is subjected to SRI [14].
Meanwhile, the temperature sensitivity of dip �p is usually around dozens of picometer per
Celsius [18], [19], which is much higher than that of fiber Bragg grating (FBG), due to the signifi-
cantly different thermo-optic coefficients between the core and the cladding in the SSMF [19].

For the other in-line MZI between the two guided modes in the MMMF, its resonant dip �q can
be described as

ðn1 � n2ÞL ¼ �neff L ¼ q þ 1
2

� �
�q (2)

where n1 and n2 are the effective RI of HE11 mode, and HE12 mode in MMMF L represents the
length of MMMF, �neff is the effective RI difference between the two modes, and q is a positive
integer.

MMMFs always achieve high RI sensitivity [4], [11] and temperature sensitivity [9], [11]; how-
ever, systematic prediction of the sensing performance has not been done to the best of our
knowledge, especially temperature sensing. In this part, we focused on theoretical analysis of
RI sensitivities as a function of MMMF diameter and SRI as well as temperature sensitivities
subjected to the MMMF diameter and thermo-optic efficient of surrounding solution.

For a MMMF with diameter of several micrometers, the MMMF is considered to be a uniform
medium with the same material of the SMF cladding. According to the circular cross-section op-
tical waveguide theory, the propagation constants i.e., �1 and �2, respectively, corresponding to
HE11 mode and HE12 mode supported by MMMF, are the two most important parameters, and
can be calculated from the eigenvalue equations [20]. The relationship between the propagation
constant � and the effective RI of the eigenvalue mode neff is neff ¼ ��=2�, where � is the light
wavelength.

Then, RI sensitivity of dip �q i.e., SRI can be calculated through the following equation by
transforming (2) [21]:

SRI ¼ d�q

dn
¼ �q

@ð�neff Þ
@n

�neff � �q
@ð�neff Þ

@�q

¼ �q

G
@ð�neff Þ

@n
(3)

where G ¼ �neff � �q � @ð�neff Þ=@� is the group effective RI difference between HE11 mode
and HE12 mode in MMMF. To investigate the methods to improve the RI sensitivity, we analyzed
the key impact parameters like diameter of MMMF, and SRI. These two parameters dominate
�neff , and thus affect the RI sensitivity. Assuming that the RI of the fiber material is 1.444 at
wavelength of 1550 nm, we calculate the RI sensitivities of MMMF with diameter ranging from
5 �m to 12 �m at SRI of 1.3310, 1.3410, and 1.3510 exhibited in Fig. 2(a). It clearly shows
that the sensitivities will be enhanced along with diameter of MMMF decreasing at a certain
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SRI. For example, at SRI of 1.3510, the RI sensitivity will be high as 15560 nm/RIU with a di-
ameter of 5 �m, which is much larger than the sensitivity of only 1770.1 nm/RIU at diameter
of 12 �m. Fig. 2(b) demonstrates the relationship between RI sensitivity and SRI, which indi-
cates that the RI sensitivity of MMMF is over than 2300 nm/RIU within a large SRI variation
scope and much higher RI sensitivity can be achieved with a relatively larger SRI. For in-
stance, for MMMF with a diameter of 6 �m, the RI sensitivity will reach 31 598 nm/RIU at SRI
of 1.3848, while it will decrease to 4192 nm/RIU when SRI is 1.3310.

The working principle of temperature sensing is similar to the RI sensing, as the resonant
wavelength shift is also caused by �neff variation when temperature changes. Temperature
sensitivity ST calculation equation (4) is actually transformed from (3), where variable tempera-
ture i.e. T is used to replace variable RI i.e., n.

ST ¼ d�q

dT
¼ �q

@ð�neff Þ
@T

�neff � �q
@ð�neff Þ

@�q

¼ �q

G
@ð�neff Þ

@T
: (4)

In this equation, �neff is determined by temperature through thermo-optic effect of the fiber and
that of solution When the temperature changes, the RI of MMMF correspondingly varies with
thermo-optic efficient of 0:68� 10�5 RIU=�C as well as that of solution will also change. Assum-
ing the surrounding mediums are sucrose solution, glycerin solution, and isopropanol with
thermo-optic coefficient of �1� 10�4 RIU=�C, �3:5� 10�4 RIU=�C [22], and �4:5�
10�4 RIU=�C [9], respectively, the simulated temperature sensitivities of MMMF with different di-
ameters at SRI of 1.3631 are presented in Fig. 3(a), which indicates that the temperature sensi-
tivity is a negative value. More information we can get from the graph is that temperature
sensitivity will be much improved by employing the MMMF with a smaller diameter. For exam-
ple, we can seal the MMMF in isopropanol for only temperature sensing, and the sensitivity
nearly �16 nm=�C can be obtained at the diameter of 5 Km while the sensitivity is limited at
�1:04 nm=�C at the diameter of 12 Km. Moreover, Fig. 3(b) shows the temperature sensitivities
as a function of thermo-optic coefficient, which illustrates that the temperature sensitivity is al-
most linearly proportional to the thermo-optic coefficient and higher thermo-optic efficient brings
higher temperature sensitivity.

3. Experimental Results
Fig. 4(a) exhibits the schematic diagram of the experimental setup, which contains a circulator,
an interrogation system (Micron Optics, Inc., sm125-500), including a broadband light source
ranging from 1510 nm to 1590 nm and an optical spectrum analysis with wavelength scanning
interval of 5 pm and accuracy of 1 pm, and a signal processing system, which is used to ana-
lyze and demodulate the transmission spectrum. The sensing element is the SMSMS fiber

Fig. 2. (a) Calculated RI sensitivity of MMMF based in-line MZI with different diameters. (b) Simu-
lated RI sensitivities within the RI range of 1.3310–1.3850 at certain fiber diameters.
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structure, and the lengths of SSMF and MMMF are selected to be 15 mm and 26 mm, respec-
tively. Microscope image of the MMMF is shown in Fig. 4(b). The length of the first taper region
and the second taper region are around 4.7 mm and 5.2 mm, respectively, and the uniform
waist section has a length of 16.1 mm, and the diameter is about 6.049 Km supporting multi-
mode transmission.

The RI experiment is implemented by immersing the sensing element in different concentra-
tions of sucrose solution. Typical transmission spectrums with external RI of 1.3320 and 1.3325
are exhibited in Fig. 5. As we can see, the spectrum contains an interference envelope with large
FSR as well as a dense interference fringe with amplitude modulation, corresponding to the in-
line MZIs in SSMF and MMMF, respectively. The envelope dip cannot be directly obtained from
the wide band and modulated transmission spectrum, therefore, special data processing steps
are taken as follows: firstly, we choose a section of transmission spectrum which contains the en-
velop dip as the sample; second, we directly get the wavelength corresponding to the minimum
power within the sample and record it; third, we use Guass function to fit the transmission spec-
trum within 24 nm wavelength range on the center of the recorded wavelength; finally, we calcu-
late the dip from the fitting function as dip1. The insert picture depicts the enlarged spectrums,
with wavelength ranging from 1548 to 1557.5 nm, which clearly shows that the FSR of the dense
spectrum is much smaller than that of the envelope. As the dense spectrum contains ripples, in
order to obtain its accurate dip for analysis, Gauss function is utilized again to fit a section of
transmission spectrum with 3 nm wavelength range, and then, dip2 is obtained. In order to obtain
a relative larger dynamic measurement range and more accurate wavelength shift measurement,
we choose the resonant dips around 1550 nm and with highest extinction ratio as dip1 and dip2.
As we can see from the picture, dip2 is much more sensitive than dip1 with external RI variation.

By heating the sucrose solution, representative interference spectrums at temperature of
35 -C and 40 -C are obtained and presented in Fig. 6. When temperature goes up, dip1 slightly
move to longer wavelength while dip2 moves to shorter wavelength with high sensitivity. It
should be noticed that the extinction ratio of the dense interference spectrum in temperature
sensing is lower than that in RI sensing, which could attribute to the inhomogeneous

Fig. 3. (a) Calculated temperature sensitivity of MMMF based in-line MZI with different diameters at
n ¼ 1:3631. (b) Simulated temperature sensitivities within the solution thermo-optic efficient range
from �1� 10�4 to �4:5� 10�4 at certain fiber diameters.

Fig. 4. (a) Schematic diagram of the experiment. (b) Microscope image of MMMF.
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temperature field. When the solution is localized heated rapidly, the temperature gradient will
lead to the fluid flowing and then the micro-deformation of the fiber structure, and thus the en-
ergy attenuation of two modes in MMMF will be different from the initial state.

Fig. 7(a) shows the wavelength shift of dip1 and dip2 when RI increases from 1.3315 to
1.3350, with the sensitivities of �23.67 nm/RIU and 3820.23 nm/RIU, respectively. Although
the measurement range in the experiment is relatively small due to the high sensitivity of dip2
it can be improved by increasing the spectrum interrogation scope. Meanwhile, It should be no-
ticed that the RI sensitivity of dip2 is much higher than that of dip1, resulting from the weaker
transverse light confinement in MMMF than that in SSMF. Further enhancement of the RI sen-
sitivity of dip1 could be implemented by using thinned fiber (TF) instead of SSMF [14], [23].
Remarkably, the calculated sensitivity of dip2 at the external RI of 1.3320 based on (3) is
4145.5 nm/RIU, which agrees well with the experimental result.

Fig. 5. Transmission spectrums in ambient RI of 1.3320 and 1.3325. (Inset) Enlarged spectrums
with wavelength ranging from 1548 to 1557.5 nm.

Fig. 6. Transmission spectrums at the temperature of 35 -C and 40 -C. (Inset) Enlarged spectrums
with wavelength ranging from 1546.25 to 1555.75 nm.
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Temperature sensing result is exhibited in Fig. 7(b), when temperature varies from 30 -C to
60 -C, dip1 shifts to longer wavelength while dip2 shifts to shorter wavelength with sensitivities
of 81.2 pm/-C and �465.7 pm/-C, respectively. For the in-line MZI of the SSMF, the relation-
ship between the wavelength shift of dip1 and temperature variation is actually the combined
action of thermo-optic effect of sucrose solution and SSMF itself. Specifically, sucrose solution
with thermo-optic coefficient of �1� 10�4 RIU=�C will generate 2.367 pm wavelength shift per
Celsius as one part temperature sensitivity of dip1. The other part of temperature sensitivity is
caused by thermo-optic coefficients difference between the core and the cladding in SSMF. As
a result, the two thermo-optic effects working together lead to red shift of dip1 with sensitivity
of 81.2 pm/-C. For the other in-line MZI of MMMF, the theoretical sensitivity could be calcu-
lated as �428:5 pm=�C at SRI of 1.3310 according to (4), which also shows good coherence
with the experimental sensitivity of �465.7 pm/-C.

From above, by tracking the wavelength shifts of dip1 and dip2 along with the RI and temper-
ature variation, dual-parameters simultaneous measurement can be implemented by calculating
the following function:

�RI
�T

� �
¼ �23:67 nm/RIU 81:2 pm=�C

3820:23 nm/RIU �465:7 pm=�C

� ��1
��dip1

��dip2

� �
(5)

where ��dip1 and ��dip2 are the wavelength shifts of dip1 and dip2, respectively. The big differ-
ence of RI sensitivities as well as that of temperature between dip1 and dip2 could provide a
more accurate demodulation. Although the direct measurement range is limited by the narrow
fringes, it can be greatly improved by the real-time wavelength tracking method [24].

4. Conclusion
We have proposed and demonstrated a microfiber based dual in-line MZI scheme to realize si-
multaneous measurement of RI and temperature. By tracking the wavelength shifts of certain
resonant dips of the dual in-line MZI, RI sensitivities of �23.67 nm/RIU and 3820.23 nm/RIU, as
well as temperature sensitivities of 81.19 pm/-C and �465.7 pm/-C for the two independent
MZIs can be achieved. Such sensitivities with big difference between dip1 and dip2 could pro-
vide a more accurate demodulation of RI and temperature. Meanwhile, systematic theoretical
analysis and simulation of the sensing performance have been done and the results demon-
strate that the enhanced sensitivities of RI and temperature could be achieved by employing
MMMF or SSMF with smaller diameter, as well as using liquid with higher thermo-optic coeffi-
cient and higher SRI. The sensor has great potential application in chemical and biological
sensing fields due to its merits of multi-parameters measurement, compact structure, high sensi-
tivity, low cost, and easy fabrication.

Fig. 7. (a) Wavelength shifts of dip1 and dip2 as a function of RI. (b) Wavelength shifts of dip1 and
dip2 as a function of temperature.
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