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Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties 

of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single 

crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the 

insulator in the MOS structure. By numerically analysing the impedance of the MOS structure 

at various biases, the equivalent circuit of the diamond MOS structure is derived, which is 

composed of two parallel capacitive and resistance pairs, in series connection with both 

resistance and inductance. The two capacitive components are resulted from the insulator, the 

hydrogenated-diamond surface, and their interface. The physical parameters such as the 

insulator capacitance are obtained, circumventing the series resistance and inductance effect. 

By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the 

capacitance-voltage characteristic is discussed.   
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   Diamond is an outstanding semiconductor for high-power and high-frequency 

electronic applications due to the exceptional properties, such as wide bandgap, high 

breakdown electric field, outstanding thermal conductivity, and high carrier mobility.1-3 

Recently, encouraging progress, such as high cut-off frequency, has been achieved in 

diamond field-effect transistors (FETs) by using two-dimensional hole gas based on the p-

type hydrogenated-terminated diamond surface.4-9 Among the diamond FETs, metal-oxide-

semiconductor FETs (MOSFETs) have been attracting growing interest because of the higher 

power handling capability.10 For example, a high drain current density above 1 A/mm has 

been reported.11,12 To further improve the performance of diamond MOSFETs and apply the 

devices to practical applications, it is critical to obtain the relevant physical parameters such 

as the gate capacitance and the equivalent circuit of the MOS structure.  

The determination of the precise gate capacitance of the MOS structure is crucial for the 

extraction of the dielectric constant or the thickness of the oxide, carrier mobility, and trap 

density. Traditional capacitance-voltage (C-V) measurement on MOS structures has the 

drawback of the influence of imperfect contact and semiconductor series resistance, leading to 

misinterpretation13. Especially, when there is a tunnelling leakage through the gate oxide, the 

quasistatic capacitance measurement turns to be difficult. In turn, high-frequency 

measurement should be applied to circumvent the leakage problem so that the capacitive 

current is dominant.14 However, in such a case, the effect of the series resistance and shunt 

parasitic resistance will be pronounced due to the low impedance of the capacitor.  Impedance 

spectroscopy (IS) could avoid the effect of series resistance, thus, offering more reliable 

capacitance values, particularly for the structure with variable series resistance.15 On the other 

hand, the small-signal equivalent circuit can be obtained from the frequency response of the 

IS measurement. The IS technique has been effectively utilized to analyse the electric 

transport of bulk diamond and nanodiamonds, previously.16-19 However, no efforts have been 

made on the more complex diamond MOS structure. 



3	  
	  

In this work, the impedance of the MOS structure fabricated on hydrogen-terminated 

diamond with the atomic layer deposition (ALD)-Al2O3 insulator layer was measured and 

analysed. The equivalent circuit and physical parameters such as the capacitance of the ALD-

Al2O3 (or dielectric constant) and the series resistance were obtained. The frequency 

dispersion of the C-V measurement was also discussed in terms of the IS analysis.    

The intrinsic homoepitaxial diamond layer with p-type hydrogen-terminated surface for 

the MOS structure fabrication was deposited on the high-pressure high temperature (HPHT) 

Ib-type single crystalline diamond (100) substrate (2.6×2.6 mm2 square) by a microwave 

plasma chemical vapour deposition technique. The thickness of the diamond epilayer was 

around 200 nm. A standard photolithographic technique was used for the fabrication of the 

diamond MOS structure. The Ohmic metal contacts of Au/Ti/Pd (200/20/10 nm: Pd was the 

first contact to diamond) were deposited by an e-beam evaporation with a base pressure of 10-

5Pa.20 After the lift-off and the second lithography, an ALD-Al2O3 layer with a thickness of 

25 nm was deposited on the defined circle pattern with diameters of 400 and 500 µm. 

Afterwards, the Au/Ti electrode was deposited on the Al2O3 layer. The interspacing between 

the Ohmic and the Al2O3 insulator was 20 µm. The ALD-Al2O3 layer was deposited with a 

PICOSUN reactor (SUNALE R-100B) under a chamber pressure of 103 Pa with precursors of 

Al(CH3)3 and water vapour at a substrate temperature of 120 ºC. The pulse and purge times 

for both the precursors were 0.1 and 4.0 s, respectively. The variation of the Al2O3 layer 

thickness was checked to be within 2% on a 2-inch Si wafer. The schematic view of the 

metal/Al2O3/H-diamond MOS structure is illustrated in Fig. 1 (a). 

The MOS structure with a diameter of 500 µm behaves like a Schottky diode with a 

rectifying ratio less than 100, as revealed by the current-voltage characteristics in Fig. 1(b).  

Here, the Ohmic contact Au/Ti/Pd was grounded. The leakage current was 10-6 A at 1 V 

(reverse bias) and more than 10-5A at -1 V (forward bias). The large leakage current was 

possibly due to the tunnelling effect originated from the inhomogeneity of the diamond 
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surface due to the large device area. The C-V curve displays frequency dispersion at high 

frequency but keeping almost constant at low frequency from 10 to 100 kHz, as revealed in 

Fig. 1 (c). Accumulation and depletion regions can be clearly identified at forward and 

reverse biases, respectively. The dielectric constant calculated from the capacitance at 10 to 

100 kHz was around 5.8 and at 1 MHz was unreasonably low (< 3), compared to that 

deposited at low temperatures.21  

The IS measurements were performed using a two-probe method in the frequency range 

of 1 Hz to 1 MHz with an ac amplitude 50 mV under various dc biases. We note that the 

impedances (Z) of the MOS structures (small diameters) with low leakage current are difficult 

to measure at reverse biases or small forward biases due to the detection limit of the system. 

Therefore, effective IS curves can only be obtained for the MOS structure with relatively 

large leakage current in this work, for example, for the devices with large diameters or for the 

small devices operated at forward biases. The Cole-Cole plots, Re {Z} vs –Im{Z}  (termed by 

Z’ vs –Z”), of the metal/Al2O3/H-diamond MOS structure with a diameter of 500 µm are 

shown in Fig. 2 with different dc biases. As can be seen, all the spectra exhibit semi-circular 

shape, revealing that the equivalent circuit of the diamond MOS structure consists of both 

resistance and capacitance. The size of the semi-circle strongly depends on the applied biases, 

determining the total impedance. As the reverse bias increases, the semicircle expands along 

the high impedance direction of the real part, which can be ascribed to the increase of the 

semiconductor shunt resistance.  This is consistent with the extension of the depletion region 

width as the reverse bias increases. At low frequency, the shunt resistance governs the real 

part of the impedance. At high frequency, the series resistance effect is dominant. It is noted 

that the imaginary part of the impedance turns to be negative at high frequency. The negative 

value of the –Im (Z) suggests the existence of inductance in the circuit. For the MOS structure 

with a diameter of 400 µm, the IS data can be only obtained at forward biases over -0.2 V, 

and the similar trend of IS plots with varying bias was observed.  
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The asymmetrical shape of the impedance spectra implies that the equivalent circuit 

contains more than one resistance-capacitance (RC) pairs. This is reasonable since the MOS 

structure contains at least the contributions from the insulator, the hydrogenated diamond 

surface and their interface. Therefore, the RxCx (including the diamond capacitance Cd and 

possible interface states related capacitance) and the insulator RoxCox, in series connection 

with a resistance Rs and a parasitic inductance (L), are supposed for the analysis, as shown in 

Fig. 3(a). The parasitic inductance always appears when the device becomes electrically 

conductive. The ac impedance of the MOS structure can be expressed as  

𝑍 𝜔 = 𝑍! 𝜔 + 𝑗𝑍"(𝜔)                                                                                              (1) 

where 𝜔 is the angular frequency, 𝑍! and  𝑍" are the magnitudes of the real and imaginary 

parts of the impedance, respectively. 
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where ω is the angular frequency. The experimental Cole-Cole plots of Fig. 2 were well fitted 

by the equivalent circuit shown in Fig. 3 (a) for the MOS structures with different diameters 

at varying dc biases. The series resistance is less than 1 kΩ, which originates from the electric 

contact and the semiconductor diamond. The resulting capacitances Cox of the insulator are 

around 650 pF and 350 pF for the devices with 500 and 400 µm diameters, respectively. As 

displayed in Fig.4, the resultant Cox varies little with the applied biases, supporting the 

validity of the numerical fitting. If the capacitance Cox is only from the Al2O3 insulator, the 

dielectric constant of the ALD-Al2O3 layer was estimated to be around 7.5-9.5. This value is 

close to those documented previously.22,23 However, the derived capacitance and 
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corresponding dielectric constant are significantly larger than those obtained by C-V method. 

On the other hand, the capacitance of CX (order of 20 pF) increased with increasing the 

forward bias, which was possibly a series connection of the diamond capacitance Cd with an 

interface capacitance Ci, shown in Fig. 3 (a). The Ci is likely the capacitance from the 

interface states, judged from the plateau between the accumulation and depletion regions in 

the C-V curves in Fig. 1. However, we note that Ci does not affect the fitting of the 

accumulation capacitance. The details on this capacitance Ci will be investigated later. 

In order to interpret the large discrepancy of the capacitance in the accumulation region 

between the C-V and IS measurement, the IS curves were fitted with different models.  As 

revealed by Fig. 1, the C-V characteristics exhibit frequency dispersion in the accumulation 

region. Based on this fact, we analysed the impedance by adding a constant phase element 

(CPE) either in the semiconductor or in the insulator or between them. The frequency 

dependent impedance of the CPE is defined as 24 

 𝑍!"# =
!

!!(!")!
                                                                                                   (4) 

where Y0 is the capacitance and resistor, when n=1 and 0, respectively. It was found that the 

extraction of the reasonable physical parameters was difficult. Therefore, the capacitance in 

the accumulation region is not related to the direct frequency-dependent CPE.  

The capacitance inconsistence between the C-V and IS data possibly results from 

frequency dispersion in the C-V measurement. Various mechanisms have been put forward to 

account for the frequency dispersion of the capacitance in the accumulation region, including 

both extrinsic effect (i.e. series resistance and interface states) and intrinsic effect (i.e. 

dielectric relaxation). The dielectric relaxation, which actually occurs at wide frequency range 

(1-10MHz), is unlikely the mechanism for the high-frequency dispersion of the resultant 

ALD-Al2O3 layer.25 The interface layer between the semiconductor and the insulator, acting as 

an additional RC pair, in series connection with the insulator and semiconductor RC pairs, 



7	  
	  

was proposed to analyse the impedance spectra.26 This, however, did not offer the valid 

physics parameters in the diamond MOS structure here.  

When series resistance was taken as the dominant factor in the C-V measurement, the 

frequency dependent capacitance can be fitted by the following equation.27 

𝐶! = !!
(!!!!!)!!(!!!!!)!

                                                                                              (5) 

where Cm is the measured capacitance and G is the conductance of the insulator. According to 

the fitting, the effective dielectric constant was corrected to be 7.3, similar to that obtained by 

the IS analysis. Therefore, the series resistance is considered as the dominant factor in 

determining the frequency dispersion in the C-V measurement, and the IS provides an 

effective tool to characterize the MOS structure.   

The validity of the IS technique was verified by measuring the impedance of a 

metal/Al2O3/H-diamond MOS structure with high resistivity at reverse biases, as shown in Fig. 

5.  The leakage current at reverse bias was much lower than that in Fig. 1, as displayed in 

Fig.S2, and the capacitance measured at reverse bias showed little dependence on frequency 

(Fig. S3).28 Therefore, we employed an equivalent circuit (inset in Fig. 5 (b)) similar to that 

for the C-V measurement to fit the IS data in Fig. 5 (a). As a result, the derived capacitance 

from the IS data is almost the same as that measured by the C-V technique. Similar to the 

device in Fig. 1, the capacitance in the accumulation region for this high-resistance device 

showed frequency dispersion (Fig.S3) at forward biases. Similar to Fig. 4,  the  extracted 

capacitance from the IS data was around 1.2 times higher than that measured by the C-V 

technique (Fig. S4).28 Therefore, impedance spectroscopy techniques can be used to evaluate 

the hydrogen-terminated diamond MOS structures of any quality. It can also be applied to 

MOS structures based on oxygen-terminated  diamond surface doped with boron.3 When the 

MOS structure has a large leakage current due to the inhomogeneity of the semiconductor 

surface, the precise measurement of the accumulation capacitance in C-V has to be carried out 
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at high frequencies. In such a case, the series resistance will affect the capacitance in the C-V 

measurement. The measurements for the MOS structure in Fig. 1 were performed with either 

large areas or at forward biases, and the capacitance measured by impedance spectroscopy 

was not affected by the leakage current. This is because that the leakage current is resulted 

from the diamond surface rather than the insulator. This approach is thus superior to or a 

complementary to the conventional C-V measurement. For a device with large resistivity, one 

can increase the device area or decrease the insulator thickness to increase the signal 

amplitude to satisfy the limitation of the impedance spectroscopy setup. The other advantage 

of using the impedance spectroscopy technique over the C-V measurement is to evaluate the 

interfacial states at the oxide/semiconductor interface. In C-V measurement, the interface or 

border states are likely to induce frequency dispersion of capacitance.29 As discussed in this 

paper, the frequency dispersion of capacitance can also be introduced by series resistance, 

which will result in inaccuracy during the C-V measurement.  However, the interface or 

border states can be treated as a frequency-dependent constant phase element (CPE) in 

impedance spectroscopy analysis using equivalent circuits.  This therefore provides an 

effective and straight forward method to identify and evaluate the origin of the frequency 

dispersion of the capacitance.	  

In summary, the impedance spectroscopy was employed for the characterization of the 

diamond MOS structures at various biases. It was revealed from the IS curves that the 

equivalent circuit contained two RC pairs originated from the insulator, semiconductor, and 

the insulator/semiconductor interface, in series connecting both resistance and inductance.  

The IS measurement was able to circumvent the series resistance effect, thus generating more 

reliable physical parameters. The capacitance of the insulator was extracted from the Cole-

Cole plots and the dielectric constant of the insulator was obtained. After correcting the 

capacitance in the C-V characteristics by the series resistance, the dielectric constant for both 
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IS and C-V measurements were similar. The IS method provides an effective strategy to 

obtain not only the equivalent circuit but also the capacitance of the MOS structure. 
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Figure Captions 
 

FIG.1. (a) Metal-oxide-semiconductor structure based on hydrogenated diamond surface, (b) 

current-voltage characteristics of the diamond MOS structure, and (c) capacitance-voltage 

characteristics at different frequencies.  

 

FIG. 2. Impedance spectra of the diamond MOS structure measured at different biases in the 

frequency range of  1Hz to 1MHz.  

 

FIG.3. (a) Equivalent circuit of the diamond MOS structure, (b)-(e) numerical analysis of the 

impedance spectra based on the equivalent circuit. 

 

FIG.4. Derived capacitance of the ALD-Al2O3 from the impedance spectra for the diamond 

MOS structures with diameters of 400 and 500 µm.  

 

FIG.5 (a) Impedance spectra of MOS structure based on hydrogen terminated diamond with 

high resistivity at reverse biases, (b) derived capacitance from the IS data by using the 

equivalent circuit inserted.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
 

 

 


