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a b s t r a c t

Integrated supplier selection and order allocation is an important decision for both designing and
operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant
operators and customers in different tiers. As firms continue to seek competitive advantage through
supply chain design and operations they aim to create optimized supply chains. This calls for on one
hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties
of demand and supply. Although there are studies on supplier selection using advanced mathematical
models to cover a stochastic approach, multiple criteria decision making techniques and multiple
stakeholder requirements separately, according to authors' knowledge there is no work that integrates
these three aspects in a common framework. This paper proposes an integrated method for dealing with
such problems using a combined Analytic Hierarchy Process–Quality Function Deployment (AHP–QFD)
and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates
orders optimally between them. The effectiveness of the proposed decision support system has been
demonstrated through application and validation in the bioenergy industry.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Supplier selection is a typical multi-criteria decision problem
(Liao and Rittscher, 2007). Weber and Current (1993) describe the
supplier selection problem as which supplier(s) should be
selected and how much order quantity should be assigned to
each. The problem has attracted widespread interest from both
academics and practitioners as firms outsource more and more of
their functions to suppliers and continue to compete through
supply chains (Wadhwa and Ravindran, 2007; Prajogo et al.,
2012). Firms are also involving stakeholder groups in their
decision making including bringing stakeholder opinion into
the design of new products and services early in the design
process (Marsillac and Roh, 2014), especially with regards to
environmental and sustainability performance (Aschehoug et al.,
2012). This practice has also made it into supply chain decision
making as stakeholder influence has become recognized as
important to supply chain performance (Polonsky and Ottman,
1998; Klassen and Vereecke, 2012; Miemczyk et al., 2012; Seuring

and Gold, 2013). Given the complexity and length of some supply
chains the stakeholders impacted by the supplier selection
decision are equally complex and varied.

This study addresses the subset of supplier selection problems
characterized as requiring multiple suppliers to allocate orders to
multiple decision criteria and having multiple stakeholder groups
to satisfy. These types of problem are encountered in situations
where demand is greater than available supply from a single
supplier and where multiple criteria are of interest to the decision
maker. Mix and blending problems are a good example of where
this type of problem is encountered; often there is also the added
complication of uncertainty in the composition of materials being
supplied with variation between delivery batch, variation over
time and natural variation within deliveries all common. Further
complexity is added where the quality criteria of the resulting
products are not clearly or crisply defined and there may be some
benefit or opportunity in exceeding constraints, alternatively some
blending problems will have a tolerance associated with quality
criteria of the final product (i.e. the constraint may be specified as
‘not exceeding the constraint in more than 2% of tested batches’).

Examples of industries facing this type of supplier selection
problem include agriculture and the associated food and drink
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supply chain, metal ore purchasing for smelting, plastic and glass
recycling and sourcing of feedstocks for chemical processes. Across
these sectors millions of dollars' worth of bulk commodities are
ordered, shipped, processed and blended before entering the
supply chain for higher value products. Small improvements in
practice in this area of the economy have a knock on effect
efficiency in downstream areas. For example, variations in density
of supplied materials can lead to the need for re-working of
products or repackaging downstream of other value adding
processes, resulting in significant inefficiency. Stakeholder issues
also impact these sectors significantly. The agri-supply chain has
stakeholder requirements made on it regarding animal rights,
sustainable agriculture and disease control for instance, and the
recycling industry faces significant issues of contamination and
quality control as well as a chain of custody requirement to comply
with packaging regulations. These industries have multiple stake-
holders each holding a range of opinions, requirements and
objectives (Validi et al., 2014). In many industries success against
the stakeholder groups' requirements can define the success of the
value supply chain. Stakeholder requirements are often not quan-
titative, rather they are tacit in nature and the supply chain
manager must elicit and translate these requirements.

To our best knowledge, there is no comprehensive method for
integrating stakeholder requirements into stochastic multi-
stakeholder and multi-criteria problems. These are supplier selec-
tion problems where multiple suppliers must be selected, multiple
stakeholders must be satisfied and the decision must include
consideration of multiple quality criteria and those criteria and/
or constraints are stochastic in nature. The questions that must be
addressed are: (1) how can stakeholder requirements be incorpo-
rated into the supplier selection decision, and, (2) what method
can be used to optimize multi-supplier selection under uncertain
constraint multi-criteria? The contribution of the paper is to
demonstrate the integration of methods answering these ques-
tions and build them into a decision support system. Specifically
the AHP–QFD method is integrated with a multi-criteria chance
constrained optimization algorithm. The system was validated by
implementing it into the emerging biomass to energy industry.

The rest of the paper is structured as follows. Section 2 reviews
the literature of supplier selection and order allocation problems,
and identifies the knowledge gaps. Section 3 discusses the con-
ceptual model of the decision support system. Section 4 presents
the methodology and approach used in the decision support system.
Section 5 applies the decision support system to the integrated
problem faced by the bioenergy industry, and Section 6 concludes
the paper.

2. Literature review

2.1. Supplier selection problem

Supply chain management in firms have been changing as
requirements made of supply chains by customers change.
Whilst traditionally firms have sought to increase the effi-
ciency of logistics processes and supply chains to maximize
value creation (Quariguasi Frota Neto et al., 2009) more
recently value creation has started to come from less obvious
avenues (Sundarakani et al., 2010), such as lower risk supply
chains (Sundarakani et al., 2010), more robust supply chains
(Pan and Nagi, 2010) and a wealth of research on sustainable
and green supply chains (Ferretti et al., 2007; Lam et al., 2010;
Sundarakani and Souza, 2010) as summarized by Miemczyk
et al. (2012). The role of the supplier selection function of
supply chain management in these newer supply chain prac-
tices has only been partly explored in the literature.

Whilst most literature on sustainable supply chain manage-
ment considers stakeholders in some regards there are limited
studies on multiple stakeholder requirements for supplier selec-
tion. Spence and Bourlakis (2009) showed how corporate social
responsibility has moved from a focus on the firm to a focus on the
supply chain, introducing more stakeholders and complicating the
supplier selection process. Wolf (2011) showed how external and
internal stakeholder needs, along with supplier characteristics, can
be incorporated into supply chain strategy to reduce risk in the
supply chain. Reuter et al. (2012) investigated how purchasing
managers respond to different stakeholder groups and neatly
capture the view that the various stakeholder and shareholder
opinions are frequently in conflict, especially in the design of
ethical or sustainable supply chains.

Operations research (OR) has an important role to play in
supporting solving the supplier selection problem (de Boer et al.,
2001). OR methods can enhance the effectiveness of purchasing
decisions in several ways including improving the transparency of
decision making and better communication about the justification
of the outcome (Carter et al., 2000; de Boer et al., 2001), evaluation
of suppliers (Bottani and Rizzi, 2008; Amid et al., 2011; Mafakheri
et al., 2011; Golmohammadi and Mellat-Parast, 2012; Ekici, 2013).
OR methods can also support changing decisions over time
(Bottani and Rizzi, 2008; Vanteddu et al., 2011) and decisions
made under uncertain conditions (Bai and Sarkis, 2010; Chen et al.,
2006; Franca et al., 2010; Liao and Rittscher, 2007; Lin, 2012).

The supplier selection function is dominated by quantitative
methods and mathematical modelling. Generally these focus on
improvements to the accuracy of supplier assessment and perfor-
mance or on the method used to rank and select suppliers.
According to Ho et al. (2010) methods including AHP, data
envelopment analysis, simple multi-attribute rating technique,
case based reasoning have all been used to assess the performance
of suppliers against multiple criteria. There are many studies in
this area showing different methods for supplier selection in
various contexts (Mafakheri et al., 2011; Vanteddu et al., 2011;
Lin, 2012; Ekici, 2013; Qian, 2014).

2.2. Order allocation problem

Multiple suppliers are commonly required in blending or mixing
problems. Often it is infeasible to meet either total demand or the
criteria constraints from one single supplier, rather orders must be
placed with several suppliers and the material from each blended
together to create the final product. The classic example of a linear
blending problem, also known as the mixing problem, is shown in
Murty and Rao (2004) to blend barrels of different fuel types
together to give a required octane rating. The decision maker must
decide how many barrels of each constituent fuel type to purchase
in order to make a final blend with the required characteristics.
There may be limits, costs or constraints associated with the
problem and these are represented by constraints for the linear
programming model. Further complexity has been added to multi-
ple supplier problems as models become more sophisticated and a
better representation of the real business environment. General
models for multiple supplier selection have been applied success-
fully to specific applications in industry, demonstrating the rele-
vance of this approach (Dantzig and Thapa, 2003).

Methods such as linear programming (LP) and mixed integer
linear programming (Talluri, 2002; Basnet and Leung, 2005; Hong
et al., 2005), goal programming (GP) or genetic algorithms have been
applied to help make decisions on supplier selection and order
allocation. Extensions of these methods to include stochastic ele-
ments and uncertainty have also been made (Burke et al., 2009; Li
et al., 2009; Xu and Nozick, 2009; Amin et al., 2011) including fuzzy
methods for handling decision maker's fuzzy goals (Nazari-Shirkouhi
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et al., 2013). Dealing with uncertainty within systems has been a
major theme of expansion for novel problem treatments with
stochastic or probabilistic methods being introduced (Sakallı et al.,
2011) including the use of fuzzy set theory (Rong and Lahdelma,
2008). Li and Chen (2011) proposed a method of integrating
stochastic and fuzzy methods with intervals to a linear programme
to assist with the problem of transportation in the waste manage-
ment industry. Hammami et al. (2014) presented a method that can
handle multiple suppliers under various currency conditions
depending on the suppliers location.

Some blending problems are suited to stochastic methods as
the system being modelled may have extensive variation in some
or all of the important variables. In some problems variation can
be overlooked as insignificant, however in others solutions may be
recommended that are clearly sub-optimal or breach constraints.
The chance constrained approach was developed by Charnes and
Cooper (1959) and according to Verderame et al (2010) has been
improved by Lin et al. (2004) and Janak et al. (2007). With the
development of fuzzy set theory further extensions and applica-
tions to the method were made (Wang, 2004). The chance
constrained approach has been applied in several bulk handling
fields including coal blending (Shih and Frey, 1995), aggregate
blending (Lee and Olson, 1983) and metal casting (Sakallı et al.,
2011) amongst others.

2.3. Knowledge gaps

The academic literature on supply chain management and
supplier selection has been growing in line with the growing
practitioner and customer focus on sustainable supply chains. Whilst
the existing literature includes methods to handle various combina-
tions of multiple supplier, multiple stakeholder and multiple criteria
supplier selection, there is no available decision support framework
that can fully address all of these problems together; translating
stakeholder requirements into a stochastic multi-criteria multi-
supplier selection decision making process. This situation is faced
by industry in several sectors, and such an approach would allow a
more holistically successful decision on supplier selection and order
allocation to be made by the supply chain designer, and therefore a
more sustainable supply chain can be created. There is a need to
integrate the available decision support methods into a robust
system that can assist practitioners faced with multi-stakeholder,
multi-criteria decisions under uncertainty.

3. Methodology

This section describes the development of a decision support
system that can integrate a stakeholder requirements method and
a stochastic multi-criteria optimization method.

3.1. Development of conceptual model

To develop a conceptual model that could be used to fill the
knowledge gaps identified and assist industry in the subset of
supplier selection problems of interest a literature review process
was used. There are several helpful review papers on multi-criteria
decision making for supplier selection, selecting suppliers under
uncertain conditions and incorporating stakeholder requirements
into the supplier selection decision (Ghodsypour and O'Brien,
1998; de Boer et al., 2001; Kahraman et al., 2003; Aissaoui et al.,
2007; Ho et al., 2010; Igarashi et al., 2013).

The challenge of including stakeholder requirements in the
supplier selection decision is usually handled in several stages;
stakeholder identification, then prioritization or ranking, then the

use of some methods for inclusion of stakeholders into the decision
process. Various prioritization methods are used with the AHP being
amongst the most popular (Ho et al., 2010). Identification of
stakeholders has been studied extensively and methods are usually
borrowed from the established literature for this purpose (Mitchell
et al., 1997; de Vries, 2009; Pacheco and Garcia, 2012).

Having identified the important stakeholders that will be
impacted on or can influence the supplier selection decision
and the overall success of the supply chain being designed there
is then a requirement to incorporate their opinions into the
decision process. This is less fully studied in the literature with
most authors either mapping stakeholder requirements straight
into the objective function according to the importance weight-
ing or eliciting a list of requirements that are then used to
measure performance against. This is an important part of the
decision system because information lost or misinterpreted at
this stage can have a significant influence on the final supply
chain success.

Having identified the decision stakeholders and their require-
ments the next stage is to allocate orders according to the success
criteria outlined by the stakeholder group. Because the problem
being faced is a multi-criteria problem and we are interested in
allocating orders to multiple suppliers the method selected should
be able to handle supplier capacities and multi-criteria analysis.
The method must also be able to deal with stochastic inputs for
uncertain supply criteria. There are many mathematical models
that address various parts of this problem. Because the problem of
interest here is with regard to mixing and blending applications
linear and mixed integer problems are frequently used as identi-
fied in the literature review section.

The conceptual model for the decision support system presented
in this paper is shown in Fig. 1. Stage 1 of the proposed decision
support system uses the AHP–QFD method to translate the impor-
tance of different stakeholder groups and the requirements of those
stakeholders into a weighted list of evaluating criteria against which
any potential supplier can be judged. The full AHP–QFD method for
supplier selection was developed by Ho et al. (2011) and applied in
Ho et al. (2012), Scott et al. (2013), and Dey et al. (2015). The
integrated method has also been used in other industries for
different types of selection problem (Hanumaiah et al., 2006;
Bhattacharya et al., 2010).

Stage 2 aims to allocate orders to suppliers to maximize stake-
holder satisfaction and therefore maximize the success of the overall
supply chain. The optimization algorithm must take account of the
multiple selection criteria, the constraints on the final product or
quality of goods ordered, the stochastic quality measures of the
supplied material, the capacity of each supplier to supply material
and the supplier score from stage 1.

There are various methods available for stochastic multi-
objective optimization including GP (Hu et al., 2007; Li and Hu,
2009; Moghaddam, 2013) and various search algorithms such as
pattern search, genetic and evolutionary algorithms and heuristic
methods. These methods are not usually used for supplier selection
but are applied to other problems in supply chain management
(Franca et al., 2010; Mirzapour Al-e-hashem et al., 2011; Moncayo-
Martínez and Zhang, 2011; Nearchou, 2011; Validi et al., 2014).
Stage 2 could therefore be performed using several different
approaches; the method selected will depend on the application.

Stage 3 is a validation of results stage. One of the criticisms of
decision support systems in general is the tendency for the human
decision maker to distrust the outcome if it appears counter
intuitive or sub-optimal (Shim et al., 2002; Arnott and Pervan,
2005). The Monte-Carlo simulation stage of the model overcomes
this by using a robust method to show compliance with the
technical criteria outlined in the optimization stage.
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3.2. Validation through application

The industry selected for demonstration is the solid biomass to
energy industry. In this industry buyers face a complex and influential
stakeholder group who tend to focus on supply chain issues and also
must purchase from a dynamic and developing supplier market. The
variation of natural materials (biomass), the uncertainty in long term
supply quality and composition and the complex stakeholder require-
ments make the buyers problem in this industry an ideal instance of
the problem set being studied (multi-stakeholder, multi-criteria,
multi-supplier and stochastic supply characteristics).

To ensure that the model is usable and applicable to the target
industry and that it provides genuine decision support to the decision
maker it has been deployed in a real case study with a bioenergy
project developer. Express Energy Ltd. aims to develop new bioenergy
projects in the UK using a mixture of residual fuels, recovered woody
material and high grade wood products, for the projects to receive
permission to operate and structured project finance. Express Energy
must demonstrate the presence of a robust, sustainable and holistically
successful supply of biomass to the project.

4. The integrated AHP–QFD chance constrained optimization
model

AHP–QFD method output (supplier performance scores) are
integrated into a chance-constrained model.

Fig. 2 shows an overview of the AHP–QFD method for supplier
selection. The requirement importance weighting (output of house
of quality 1) is used to give an importance score to the requirements
being made by different stakeholders. Then these are translated into
an importance score for specific evaluating criteria (output of house
of quality 2). These evaluating criteria can finally be used to meas-
ure the performance of any given set of suppliers resulting in an
array of supplier scores (output of house of quality 3) indicating the
extent to which those suppliers satisfy the stakeholder group. The
higher the suppliers score the greater the likelihood of stakeholder
satisfaction.

The model used to optimize order allocation is shown in this
section. The method selected for this application in stage 2 of the
conceptual model is chance constrained optimization. The chance
constrained model has been selected because it allows for non-crisp
constraints to be handled, this is useful in problems where multiple
suppliers are involved as they may all provide material with
different quality criteria; thus the problem becomes analogous to
a mixing problem. There are other optimization methods available
that could be used in stage 2 of the model such as LP (useful for
blend problems), GP (useful for multiple objective and multiple
criteria problems), and various other multi-criteria decision meth-
ods that are available in the literature from a variety of industries
(Lee and Olson, 1983; Glismann and Gruhn, 2001; Murty and Rao,
2004; Bilgen and Ozkarahan, 2007; Sakallı et al., 2011).

The objective function is to maximize the total stakeholder
satisfaction score as shown by Eq. (1). Stakeholder satisfaction is

Fig. 1. Conceptual model.
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assumed to be linear with relation to the quantity of material
taken from each supplier. Notation for the model is shown in
Table 1 and the general form of the model is shown in Eqs. (1)–(6).

max : ∑
n

i ¼ 1
Vixi ð1Þ

Subject to:

∑
n

i ¼ 1
xiZD ð2Þ

xirCi 8 i ð3Þ

Prob
∑n

i ¼ 1xiPi;j

D
rLj

� �
r p

j
8 j ð4Þ

Prob
∑n

i ¼ 1xiPi;j

D
ZLj

� �
rpj 8 j ð5Þ

xiZ0 8 i ð6Þ
The constraint shown in (2) requires that the quantity of

material provided is at least equal to demand such that the
generator is not short of fuel. Constraint (3) requires that the
orders allocated from each supply source do not exceed the
capacity available from that source. The constraint shown in (4)
requires that the probability that the blend characteristic for
characteristic j is less than the lower constraints for characteristic
j is not greater than the corresponding chance constraint. (i.e. the
user can allow for the constraint to be breached some of the
time). Similarly the constraint in (5) requires the probability of
the blend characteristics for characteristic j exceeding the upper
limits is less than the corresponding chance constraint as set by
the decision maker. This allowance for exceeding constraints is
shown graphically in Fig. 3 for a characteristic of the final
blended material.

The variable Pi;j representing the characteristic j of material from
supplier i is the stochastic element of the program. In chance
constrained optimization this is the variable changes between the
different deterministic equivalent linear programs that are generated
for the optimization process. An important element that affects the
quality of results obtained from chance constrained programming is
the number of deterministic equivalent models that are generated,
sometimes referred to as sample number. The greater the number of
deterministic equivalent models (the greater the sample number) that
can be processed the more accurate the result obtained will be. The
chance constrained elements of the model are reported as either
satisfied or unsatisfied for each equivalent model created. As with
most computational methods, especially when dealing with stochastic
problems, there is a compromise between computation speed and

accuracy. For the experiments a sample rate of 350 was used and the
solver required around 2min to complete on a 2.6 GHz machine with
4 GB RAM. Even if the sample size is lower to speed up solving time
the solver gives solutions that are close to being able to meet the
constraints but may exceed constraints slightly more than specified
but not greatly. On the other hand if the sample size is too low a
clearly non-optimal solution may be produced. This heuristic element
of chance constrained programming is a disadvantage to the approach
but one that is outweighed by the speed and ease of use once the
model is created.

To measure the performance of the recommended portfolio against
the constraints associated with the blend properties a Monte-Carlo
simulation is used. This involves generating random inputs based on

Fig. 3. Chance constrained optimization allows some characteristics to exceed the
constraint within the pre-determined chance constraint.

Table 1
Notation.

Indices

i: Supply of material i¼ 1; 2; 3;…nð Þ
j: Material characteristic j¼ 1; 2; 3; …mð Þ
Parameters
Vi: Supplier score
D: Demand
Ci: Capacity of supply i available
Pi;j: Concentration of characteristic j in material i.
Lj: The lower constraint for the blend regarding characteristic j.

Lj: The upper constraint for the blend regarding characteristic j.
p
j
: The user set limit on how frequently the lower limit for characteristic j can

be exceeded
pj: The user set limit on how frequently the upper limit for characteristic j can

be exceeded
Decision variables
xi: Quantity of orders to be allocated to supplier i.

Fig. 2. AHP–QFD method for supplier selection in stage 1. (Adapted from Scott et al. (2013)).
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the variation of Pi;j to simulate many instances of the constituent
feedstocks being blended together. The results of the Monte-Carlo
analysis allow the decision maker to test how frequently the recom-
mended portfolio can be expected to exceed the constraints. The
Monte-Carlo simulation runs 10,000 iterations for each characteristic
of the blend of interest. The general guidance for Monte-Carlo analysis
is to use as many iterations as feasible, striking a balance between
computation time and accuracy to ensure a proper distribution of
results is obtained (Hauskrecht and Singliar, 2002). For the 10
characteristics of interest in this model this required around 20min
to complete and report to an excel spreadsheet. The optimization
model was written in the LINGO 13.0 software package and published
to run within excel from a macro.

5. Adaption to the bioenergy industry

To demonstrate the efficacy of the proposed model it is applied
to the biomass for energy supplier selection problem. This indus-
try problem exhibits the characteristics of interest for the pro-
posed model. This section gives a brief introduction to the industry
and the problem being faced by managers aiming to procure
biomass fuels.

Biomass refers to organic material that has recently been alive.
This definition distinguishes it from fossil fuel based materials and
inorganic non-combustible materials. Generally biomass can be
considered as wood, agricultural wastes and residues and organic
wastes from society. The conversion of biomass to energy involves a
linear supply chain starting with harvesting or collection of bio-
mass, pre-treatment of material so that it is suitable for a conver-
sion process and the distribution of energy products with the
associated logistics and warehousing challenges between value
adding stages. The supply and conversion of biomass to energy is
a multi-stakeholder and multi-criteria value chain composed of
several key decision points (Iakovou et al., 2010; Adams et al., 2011;
Scott et al., 2012; Eswarlal et al., 2014).

To adapt the above conceptual model to be specific and useful
enough to address the challenges faced in the biomass industry a
series of industry workshops and interviews were conducted. Parties
interviewed included developers and operators of both large and small
bioenergy schemes, key staff in council planning departments, engi-

neering experts and staff from merchants and dealers of biomass.
Two stages of engagement were used, firstly an open ended

conversation with the industry collaborators allowed the problem
to be properly defined and the major stakeholder groups and their
requirements to be identified. Then a larger number of semi
structured interviews were used to identify the specific require-
ments of stakeholder groups and the related evaluating criteria.

Table A1 in Appendix shows the stakeholder groups that were
identified through interviews with technology providers and opera-
tors of biomass combustion for electricity generation projects. This
technology is well understood in comparisonwith some of the more
novel technologies and the quality criteria are therefore consistent
between technology provider. The criteria relate to chemical and
physical fuel properties that in turn relate to maintenance require-
ments in the combustion chamber and heat exchangers, corrosion
risk, fuel handling and stack emissions of pollutants. The full table of
criteria considered are given in Table A2 in 0.

The model requires some data input to run the analysis. A
specification of the expected probability distribution shape for the
characteristics j of each fuel supplier or supply to be evaluated i is
required. For instance if the characteristic is expected to follow a
Gaussian distribution the mean and standard deviation for each
Pi;j must be specified. The model can handle Gaussian, Weibul,
uniform and beta distribution types. The available capacity from
each supply Ci, a cost per unit for each supply Vi the total material
demanded by the project D, the limits that the blend must comply
with Lj, Lj and their associated chance constraints p

j
and pj. The

input data that is most difficult for practitioners to identify is the
supply characteristics Pi;j.To counteract this lack of information
the presented decision support system uses a data store of
biomass materials compiled from various sources and from pre-
vious development experience. The data store allows the decision
maker to select a material description that closely matches the
material available and to estimate its characteristics for situations
where complete analytical data is unavailable. As more informa-
tion is gathered on specific available supplies the user can update
the data store with more accurate information. For the implemen-
tation shown below data on fuel sources is compiled from the
EU BioDat database (ECN, 2013) and other literature sources on
biomass (Huang et al., 2007; van Loo and Koppejan, 2008;
Vamvuka and Kakaras, 2011; Vassilev et al., 2010; 2013). Standards
for biofuels and waste derived fuels are also included in the data

Fig. 4. Data flow through the decision support system.
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store (van Tubergen et al., 2005; Christensen and Rotter, 2010;
Loibnegger, 2010). Fig. 4 shows the dataflow through the decision
support system. Information on material characteristics is con-
tained in a knowledge base that could be enhanced through the
use of ontology of the domain. Supplier scores from the AHP–QFD
supplier selection process become Vi in the model.

5.1. Application to bioenergy buyer's case

The problem faced by biomass to energy power stations and
their fuel supply chain is to ensure that fuel supply contracts are
arranged in such a way that the technical requirements of the con-
version plant are met and the project is attractive to the import-
ant stakeholders.

There are many different chemical and physical constraints
that are set by the exact type of technology selected for the
project. A technology provider may provide a conditional
warranty for instance, indicating that the warranty is only valid
if a fuel within a particular standard or requirement is used.
Typically this warranty requirement is well within the actual
operating parameters of the plant and is of finite length.
Exceeding the warranty conditions or the operating parameters
can have different impacts depending on the type of chemical
constraint that is exceeded. Sometimes exceeding a constraint
may mean that pollutant emissions are increased, sometimes
that efficiency is decreased, sometimes that maintenance costs
may increase or plant availability may be reduced.

To further complicate this problem the characteristics of the fuel
may vary over time, between deliveries and even within a single
delivery. This means that the buyer is uncertain of exactly what the
chemical properties of a given batch of material will be. An extensive
sampling regime can combat this problem but even if every kilogram
of material was tested there would still be a natural variation of
characteristics given the natural origins of the material. For some
materials this variation is very wide.

From conversations with the industry this is currently
resolved through clauses within contracts drawn up between
suppliers and buyers, the supplier will agree to deliver material
within particular constraints specified within the contract,
however, this approach is ultimately unsatisfactory as if mate-
rial is found to be in breach of the contract the generator cannot
operate and the losses cannot be covered by the small supplier
company regardless of contract conditions.

The problem of uncertain characteristics is reduced when
material has undergone pre-processing and is more of a homo-
genized tradable commodity, however this also pushes up the
material price. The cheaper materials tend to have larger variation
and less testing or quality control, these are often described as
“waste” or “residual” materials. The challenge is compounded by
the buyer not always knowing exactly what the resource is when
negotiating for a supply contract. For instance the description of
‘wood waste’ may cover a range of sources and materials which
themselves may have a wide range of properties.

The bioenergy buyer's problem is therefore to allocate orders
between the available suppliers in such a way that chemical,
energetic and total demand constraints as definedby the tech-
nology being constructed are satisfied whilst also maximizing
stakeholder satisfaction. The model presented in this paper
provides a tool that can assist in making this decision. The tool
gives a rapid assessment of the impact of potential new fuel
supplies being introduced in to the supply portfolio and gives an
accurate price for the overall feedstock blend.

5.2. Model specification

The technology being used for the conversion process requires
a fuel (final fuel blend) that has properties within the constraints
shown as the upper and lower limits in Table 2. Each characteri-
stic also has an associated chance constraint that represents
the likelihood that the constraint can be breached. A tolerance of
1 means the constraint cannot be breached. A tolerance of
0.8 means the constraint can be exceeded 20% of the time and
the solution can still be accepted as feasible. This information has
been aggregated from 3 different industry projects using different
technology providers. This means that although the limits are
representative of situations faced in industry the data presented
does not compromise confidentiality of the participating parties.

The suppliers available to the buyer are: a supplier of wood from
a building demolition company; a supplier of refuse derived fuel
that is sourced from municipal waste streams; a limited supply of
wood chips; a supply of residues from the olive production process
and a supply of expensive but high quality wood pellets. Each
source has different chemical properties, availability and price. This
information has been provided by the industry partners anon-
ymously and has been checked against literature databases (ECN,
2013). The different supplies also have an associated supplier
performance score according to the AHP–QFD method. The final
scores have been assigned by the buyer according to the evaluating
criteria importance weightings from Scott et al. (2013) as shown in
Table A3 in Appendix. The score, rank, availability and associated
price of each supply of biomass are shown in Table 3.

The refuse derived fuel is the cheapest available and is the most
preferable for the stakeholder requirements. However, it has some

Table 2
Chemical constraints and associated chance constraints for the conversion technology.

Characteristics Biomass Moisture Lower heating Ash content F Na K Al
Units wt% % MJ/kg wt% mg/kg mg/kg mg/kg mg/kg

Lower limits 90 5 10.0 – – – 0 –

Upper limits 100 20 21.0 6 280 10,000 8000 700
Lower tolerance 1 1 0.8 – – – 1 –

Upper tolerance – 0.8 0.98 0.75 0.95 0.9 0.8 0.95

Table 3
Score, capacity and unit price for each supplier.

Supplier Supplier score Rank Capacity
(tonnes/year)

Unit cost (d/tonne)

Demolition wood 0.176 4th 10,000 d25.00
Refuse derived fuel 0.269 1st 10,000 �d5.00
Wood chips 0.141 5th 5000 d50.00
Olive residues 0.225 2nd 7500 d25.00
Wood pellets 0.188 3rd 8000 d85.00
Total 1.000 40,500
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disadvantages as it has higher pollutant levels and lower biomass
energy content than the other supplies. The wood pellets have less
impurities and ash but do not score as highly for the stakeholder
requirements. The wood chips supply is not favoured by the
stakeholder group according to the AHP–QFD process.

The final point of data required is the projects total demand.
For this project the buyer required 18,000 tonnes of biomass per
year for use in a combustion system. With this information the
decision support system is now fully specified and the chance
constrained program can be run to find the blend of suppliers that
will best satisfy the requirements of the stakeholder group.

5.3. Results

The resulting recommended portfolio is shown in Table 4 and
Fig. 5.

The objective function for this portfolio is 3758.6. The LINGO
solver produced a global optimum output using a sample number
of 1200. The solver required 1 min 10 s to find a solution.

To check the accuracy of the result the Monte-Carlo part of
decision support system is now used. Using the known fuel char-
acteristics and the recommended order quantity a new instance of
the blend characteristics is calculated for each iteration of the Monte-
Carlo simulation. 10,000 iterations are completed for each character-
istic. The simulated points can then be compared with the con-
straints from Table 2 to ensure the chance constrained program has
found an accurate solution. In the case being tested the binding
constraint is found to be the upper limit of Fluorine content (F).
Table 2 shows that the buyer will allow a 5% exceedance of this limit,
the Monte-Carlo result is that there is a 4.8% chance that the
recommended blend will exceed the limit of 280 mg/kg, within the
5% tolerance and therefore a feasible solution. The other chemical
constraints are not found to be binding although the supply of both

olive residues and wood pellets is entirely used (contracted up to the
available amount) and these constraints are also binding.

The Monte-Carlo result for fluorine content in the recom-
mended blend is shown in Fig. 6 with the likelihood of the
blend properties falling outside of the 280 mg/kg constraint
coloured dark.

The computation time for the decision support system could be
improved by using a more powerful computer, however consider-
ing that this type of solution will likely be required less than once
per day by the decision maker the computational efficiency is
acceptable. The decisions support system also has a mechanism for
displaying error messages when the solution is found to be
infeasible or when the model is not fully specified.

The Monte-Carlo stage is useful for building trust in the obtained
solution. Without this step there is no evidence for the performance
of the chance-constrained algorithm and the decision maker may
consider that the system could be flawed or be making a sub-
optimal selection, especially when the solution appears counter
intuitive at first. By converting the stakeholder group into require-
ments and then into evaluating criteria and supplier performance
measurements mean the decision maker now has an empirical
measure of performance. This allows stakeholder satisfaction to be
written into the objective function, removing the subjectivity of the
decision maker themselves. Areas where decision maker opinion is
used are in the assessment of stakeholder importance and in the
assessment of suppliers against evaluating criteria.

6. Conclusion

The presented model has been shown to successfully integrate
the requirements of stakeholders into the decision making process
for supplier selection. By using the AHP–QFD method a set of
evaluating criteria scores are created against which suppliers can
be judged. This has several positive effects for the decision maker and
the supply chain as a whole. Firstly the decision maker has a clear
mandate for how to place orders according to stakeholder wishes.
The decision makers own subjective judgement is removed from the
equation and replaced by an empirical representation of the tacit
requirements of the stakeholder group. Secondly, if the evaluating
criteria weightings are communicated to potential suppliers those
suppliers can respond accordingly. Suppliers can develop their
offering in full knowledge of the performance criteria they will be
competing on. Thirdly the stakeholder group are properly consulted
before the order allocations are made; this prevents the supply chain
manager second guessing their stakeholder requirements and brings
the requirements of stakeholders to the fore.

Fig. 6. Fluorine content in portfolio according to Monte-Carlo simulation.

Table 4
Recommended portfolio of orders to allocate between suppliers.

Supplier Recommended amount to contract
for

Percentage of final
fuel blend (%)

Demolition wood 1198.9 6.7
Refuse derived

fuel
1301.1 7.2

Wood chips 0.0 0.0
Olive residues 7500.0 41.7
Wood pellets 8000.0 44.4
Total 18,000.0 100

Fig. 5. Recommended portfolio.
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If stakeholders remain unsatisfied by the managers decision they
too now have a clear route for response, they can position themselves
to have greater salience in the success of the supply chain and thus
become further empowered as agents in the creation of successful
supply chains. The remaining subjective element on which the buyer
must pass judgement are with regards to the importance of each
stakeholder group. The accuracy of stakeholder importance weight-
ings can impact on the overall success of the final decision. Therefore
this remains an area for potential improvement in the presented
model. There are various weighting and scoring methods available to
assist with this stage of the AHP–QFD that could also be integrated
into the decision framework.

The proposed model has been applied to a problem in the
bioenergy industry where it is manifested as a blend or mixing
problem. Similar problems exist in the food ingredients supply
chain, the agricultural supply chain for grain and feed mixing and
the metal smelting and fuel blending industries. By following
similar steps of capturing available information, understanding the
stakeholder groups and their requirements and the decision
constrains and criteria each of these industries could make use
of the presented general model.

By ensuring that the conventional quality criteria can be incor-
porated into the decision the presented model does not introduce a
compromise between the quality of materials purchased and
stakeholder satisfaction. However, a compromise is naturally intro-
duced between optimum price and optimum stakeholder satisfac-
tion. In its presented form the model is only applicable where
decisions are made regardless of price. The model could be
extended by including some consideration of price into the model,
the authors suggested approach for the presented case would be to
create a layer of goal programming code that sets an acceptable
total supply price. Where the price represents the limit at which the
project can be economically sustainable. It is not recommended to
take a similar approach for stakeholder satisfaction, the aim of using
this method is to better meet the needs of the supply chain
stakeholders, imposing artificial targets on performance could lead
to counter intuitive solutions from the perspective of a particular
stakeholder.

The model also does not consider minimum order quanti-
ties, batch sizes and inventory management that may be
important for the successful allocation of orders at the opera-
tional decision level. Methods demonstrating how these con-
straints can be included can be found in the literature (Chung
and Wee, 2007; Rau and OuYang, 2008; Song et al., 2013).
Further improvement could be made through introducing
more sophisticated data management techniques for handling
the performance of suppliers over time and especially for
making accurate estimates of the probability distribution
function that should be expected from a supplied material for
each quality criteria. This could compliment the knowledge
base part of the biomass specific model.

The presented integrated AHP–QFD chance constrained opti-
mization method has been shown to allow for order allocation
to be optimized against stakeholder requirements with uncer-
tain supply characteristics and with non-crisp constraints. It
can be used to address multi-stakeholder, multi-supplier, multi-
criteria stochastic problems. This is the contribution of this work.
The presented model has been shown to assist with supplier
selection in problems such as that faced when procuring biomass
for energy projects. This contributes to the range of support tools
available in the literature to the industry.
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Appendix

See Tables A1–A3.

Table A1
Participants involved from each stakeholder group.

Bioenergy stakeholder group Number of participants

Financial groups and project partners/investors 5
Environmental groups 3 plus documentation
Developers/operators and utilities 5
National government and policy makers Documentation only
Local government 4 plus documentation
Community/public 4

Table A2
Quality criteria of fuels according to technology provider.

Criteria Unit of
measurement

Comments

Biomass energy content % To qualify for renewable
energy financial incentives
the bioenergy content of the
fuel must be over 90% (UK
only)

Moisture content Percentage
weight (wt%)

The amount of water in the
material can affect efficiency
and corrosion of the
conversion process

Lower heating value (energy
content)

Megajoules per
kilogram (MJ/
kg)

The energy density of the
material affects the efficiency
and operating hours of the
conversion plant

Ash content wt% The non-combustible fraction
of the fuel can cause problems
associated with corrosion and
clogging of feed mechanisms

Non-metal impurities:
sodium (Na), potassium
(K), fluorine (F)

mg/kg Under certain conditions
these elements can lead to the
creation of corrosive acids and
are controlled under
emissions regulation

Aluminium (Al) mg/kg Can lead to corrosion of
equipment and are tightly
controlled under emissions
regulations
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Supplier scores and weightings (Scott et al., 2013).

Evaluating criteria Evaluating criteria importance
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Demolition
wood

Refuse derived
fuel

Wood
chips

Olive
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Wood
Pellets

Long term contracts 0.0226 8 0 2 7 1
Take or pay clauses 0.0539 5 6 0 10 7
Track record 0.1098 5 4 3 4 5
personal relationship 0.0125 4 6 9 7 2
Contract has PFI back up 0.0131 2 7 0 6 8
Fixed price 0.0571 8 5 8 7 3
Traceable (chain of custody) 0.0169 5 6 4 6 1
Base cost of material (d/MWh) 0.0684 5 7 1 8 5
Clear definition of fuel 0.0098 6 5 0 4 7
Visibility 0.0132 2 0 10 10 6
Quality control mechanisms in place 0.0034 3 5 1 6 2
Guarantee of fuel quality available 0.0529 2 10 4 10 9
Supplier stability (in biomass market) 0.0061 0 0 5 9 1
Distance from buyer 0.0008 4 1 5 3 9
CO2/MWh 0.0779 2 4 3 7 5
Land use change 0.0327 1 10 0 7 8
FSC accreditation 0.0116 4 4 6 6 9
Alternative end use (best use of biomass) 0.0196 7 0 4 7 7
Diversion of material from landfill 0.0411 4 6 10 8 3
Environmental regulatory environment in which the supplier

operates
0.0068 9 5 9 7 4

Performance against sustainability assurance certificate
indicators

0.0145 0 1 9 10 6

Credit strength 0.0398 2 9 4 7 8
Size of balance sheet 0.0172 2 2 1 10 6
Financially robust or credible counterparty 0.1490 2 7 3 1 2
Rural jobs created or safeguarded 0.0919 5 8 1 1 3
Dependency on imports 0.0066 8 4 6 0 8
SME employment created 0.0459 8 9 3 6 2
Biodiversity change 0.0053 4 6 4 10 1
Total 1.000 117 137 115 184 138
Normalized score 0.176 0.269 0.141 0.225 0.188
Rank 4 1 5 2 3
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