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1. Introduction

Understanding the efficiency and robustness by which the human brain processes

information has been the motor force behind the development of neural networks

models. Recent findings in Neuroscience have provided insight into the principles

governing information representation in the mammalian brain [1, 2], motivating recent

advances in the deep-learning subfield (for a review, see [3, 4] and references therein).

Two characteristics are common to the mainstream deep-learning approach, namely

hierarchical network architecture and feature extraction through relatively simple

classifiers. It is only natural to infer that the level of sophistication reached by the

deep-learning applications strongly motivates the study of similar systems, using the

statistical mechanics technology developed during the past decades.

From the theoretical physics perspective, neural networks are the archetype of

disordered systems. Similarities between networks of formal neurons and spin systems

have suggested the application of statistical mechanics techniques for their study [5].

Particularly after [6], where it was demonstrated that the statistical-mechanics approach

can be helpful for studying the properties of perceptrons [7, 8], most of the effort

was concentrated on solving the generalization and the storage capacity problems for

networks with more complex architectures [9–16]. Nonetheless, the feed-forward network

with only one hidden layer of binary units [15,16] has been the most complex architecture

considered for the storage capacity problem.

Recently, more complex architectures have drawn attention, due to the possibility

to obtain analytically some computational properties [17, 18]. In this article we are

interested in computing the storage capacity of such architectures, known as ultrametric

committee machines (UCMs).

1.1. UCMs

Let us consider a feed-forward network implementing a Boolean function σW : {±1}N →
{±1}, with L hidden layers and with K ≪ N hidden-to-input units in the first hidden

layer. All units (output, hidden and input) in the committee are binary. Hidden-to-

input links are implemented by synaptic vectors w ∈ R
N (figure 1). The structure

from the bottom up is composed by one output unit connected to KL units in the L-th

hidden layer, each of them connected to KL−1 units in the (L − 1)-th level. The total

number of units in the (L − 1)-th level is then KLKL−1. Each node has an activation

variable that is a function of the activation variables of the sub-tree with root at the

node. Connections from units at the ℓ-th hidden layer to units at the ℓ + 1-th layer

are all set to one. To single out the variables of the ℓ-th layer we will use the notation

kℓ ≡ [kL, kL−1, . . . , kℓ] = [[kL, kL−1, . . . , kℓ+1] kℓ] = [kℓ+1kℓ], which runs over all hidden

units of the ℓ-th layer. Thus

σW(S) ≡ sgn

(

1√
KL

KL
∑

kL=1

σkL(S)

)

(1)
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Figure 1. Schematic representation of an UCM with L = 3 hidden layers. The

highlighted unit σ2,2,1 is linked to the output unit through the path k1 = [2, 2, 1].

σkℓ
(S) ≡ sgn





1√
Kℓ−1

Kℓ−1
∑

kℓ−1=1

σ[kℓkℓ−1](S)



 (2)

σk1
(S) ≡ sgn

(

wT

k1
S√

N

)

, (3)

where W =
{

wk1=[kL,...,k1] ∈ R
N , wT

k1
wk1

= N, 1 ≤ kj ≤ Kj

}

is the set of synaptic

vectors of the units in the first hidden layer, sgn(x) = x/|x| if x 6= 0 and 0 otherwise,

wT is the transpose of the vector w and S ∈ {±1}N is a pattern to be stored. As a

last note over the architecture, we will impose the condition Kj ≫
∏L

ℓ=j+1 Kℓ, which is

equivalent to the initial imposition N ≫ K.

The committee has been constructed drawing vectors from a suitable distribution

over RN such that

[Ω]k1,k′
1
≡

wT

k1
wk′

1

N
(4)

= δk1k
′
1

(

1− ζ̃1

)

+ δk2k
′
2

(

ζ̃1 − ζ̃2

)

+ . . .+ δkLk
′
L

(

ζ̃L−1 − ζ̃L

)

+ ζ̃L,

where δkℓk
′
ℓ
≡
∏L

m=ℓ δkmk′m and δij = 1 if and only if i = j and 0 otherwise. The structure

of the matrix Ω is block-diagonal and resembles the matrices used to represent inter-

replica interactions [19]. We impose the following scaling relationship to the elements

of (4):

ζ̃ℓ =
ζℓ

∏ℓ
j=1Kj

, (5)
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where ζj ∼ O(1) and
∏L

j=1Kj = K. In this way we can express the overlap matrix as:

[Ω]k1,k′
1
= δk1k

′
1
Ω0 + δk2k

′
2

Ω1

K1

+ . . .+ δkLk
′
L

ΩL−1

K1 . . . KL−1

+
ΩL

K
, (6)

where

Ωℓ ≡ ζℓ −
ζℓ+1

Kℓ+1

. (7)

Observe that the matrix Ω has the following properties

(i) Ω is symmetric, i.e. [Ω]k1,k′
1
= [Ω]k′

1
,k1

for all paths k1 and k′
1

(ii) Ω has non-negative entries, i.e. [Ω]k1,k′
1
> 0 for all paths k1 and k′

1

(iii) [Ω]k1,k′
1
≥ min

{

[Ω]k1,k′′
1
, [Ω]k′′

1
,k′

1

}

for all paths k1, k
′
1 and k′′

1

(iv) 1 = [Ω]k1,k1
≥ max

{

[Ω]k1,k′
1
∀ k′

1 6= k1

}

,

therefore the matrixΩ is ultrametric [20]. Given that the overlap matrixΩ is ultrametric

we dubbed these networks ultrametric committee machines.

1.2. The replica approach

Given a set of examples SP =
{(

ξµ
)}P

µ=1
we want to compute the volume occupied by

suitable synaptic vectors equally classifying the vectors in SP , according to the metric

dµ(W):

VT (SP ) ≡
P
∏

µ=1

Θ(τµ)

∫

dµ(W)
P
∏

µ=1

∏

k1

Θ

(

τk1,µ

wT

k1
ξµ√
N

)

,

where the binary variables T ≡
{

τµ, {τkL,µ}KL

kL=1 ,
{

τkL−1,µ

}KL,KL−1

kL−1=1,1
, . . . , {τk1,µ}KL,...,K1

k1=1,...,1

}P

µ=1

conform the internal representation of ξµ in the UCM with architecture determined by

W, and satisfy the following relationships

1 = Θ

(

τµ√
KL

KL
∑

kL=1

τkL,µ

)

= Θ

(

τkℓ+1,µ√
Kℓ

Kℓ
∑

kℓ=1

τ[kℓ+1,kℓ],µ

)

and Θ is the Heaviside function. Following [14], we compute the power β of the volume

associated to the compatible internal representations:

V β
T (SP ) ≡

P
∏

µ=1

Θ

(

1√
KL

KL
∑

kL=1

τkL,µ

)[

∫

dµ(W)
P
∏

µ=1

∏

k1

Θ

(

τk1,µ

wT

k1
ξµ√
N

)

]β

.(8)

By replicating the products born from the powers we obtain the following expression:

V β
T (SP ) =

P
∏

µ=1

Θ

(

1√
KL

KL
∑

kL=1

τkL,µ

)

KL
∏

kL=1

∑

{τkL−1,µ}
Θ

(

τkL,µ√
KL−1

KL
∑

kL=1

τkL−1,µ

)

. . .

K2
∏

k2=1

∑

{τk1,µ}
Θ

(

τk2,µ√
K1

K1
∑

k1=1

τk1,µ

)

β
∏

α=1

K1
∏

k1=1

∫

dµ(Wα)Θ

(

τk1,µ

wαT
k1
ξµ√
N

)

.
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The statistical properties of the system can be obtained through the partition function:

Zβ(SP ) ≡
P
∏

µ=1

∑

{τkL,µ}
V β
T (SP ), (9)

and, in particular, we are interested in optimizing the zero temperature specific entropy,

which is a self averaging quantity, i.e.:

s(β) ≡
〈logZβ(SP )〉SP

KN
=

1

KN
lim
n→0

〈

Zn
β

〉

SP
− 1

n
. (10)

The replicated, quenched averaged partition function is then

〈

Zn
β

〉

SP
=

P
∏

µ=1

n
∏

a=1

KL
∏

kL=1

∑

τakL,µ=±1

Θ

(

1√
KL

KL
∑

kL=1

τakL,µ

)

×

KL−1
∏

kL−1=1

∑

τa
kL−1,µ

=±1

Θ

(

τakL,µ√
KL−1

KL
∑

kL=1

τakL−1,µ

)

. . .

. . .

K1
∏

k1=1

∑

τa
k1,µ

=±1

Θ

(

τak2,µ√
K1

K1
∑

k1=1

τak1,µ

)

∏

α

∫

dµ(Wα,a)

〈

Θ

(

τak1,µ

w
α,aT
k1

ξµ√
N

)〉

SP

.

We can represent the Heaviside function by using the Fourier transform of the delta

function

Θ(x) =

∫ ∞

0

dη δ(η − x) =

∫

D(η, η̂) exp(iη̂x),

where we have defined the notation D(x, x̂) ≡ dx dx̂ Θ(x) exp(−ixx̂)/2π. Thus

〈

Zn
β

〉

SP
=

P
∏

µ=1

n
∏

a=1

∫

D(ηaµ, η̂
a
µ)

KL
∏

kL=1

∑

τakL,µ=±1

exp

(

i
η̂aµτ

a
kL,µ√
KL

)∫

D(ηakL,µ, η̂
a
kL,µ

) . . .

. . .

∫

D(ηak2,µ
, η̂ak2,µ

)

K1
∏

k1=1

∑

τa
k1,µ

=±1

exp

(

i
τak2,µ

η̂ak2,µ
τak1,µ√

K1

)

∏

α

∫

D(ηα,ak1,µ
, η̂α,ak1,µ

)

∫

dµ(Wα,a)

〈

exp

(

iτak1,µ
η̂α1,a
k1,µ

w
α,aT
k1

ξµ√
N

)〉

SP

.

The average over patterns can be computed as follows
〈

exp

(

i
∑

a

∑

α

∑

k1

τak1
η̂α,ak1

w
α,aT
k1

ξ√
N

)〉

ξ

=
N
∏

j=1

cos

[

1√
N

∑

a

∑

α

∑

k1

τak1
η̂α,ak1

wα,a
k1,j

]

≃ exp

(

−1

2

∑

a,b

∑

α,γ

∑

k1,m1

τak1
η̂α,ak1

w
α,aT
k1

wγ,b
m1

N
τ bm1

η̂γ,bm1

)

+O(N−2).

The synaptic overlaps are then arranged in a matrix with the following structure

[Q]α,a;γ,bk1,m1
≡

w
α,aT
k1

wγ,b
m1

N
.
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Let us define the vector components [τ 1η̂1]
α,a
k1

≡ τak1
η̂α,ak1

. We have then

〈

Zn
β

〉

SP
=

∫

dQ

〈

∏

a,b

∏

α,γ

∏

k1,m1

δ
(

N [Q]α,a;γ,bk1,m1
−w

α,aT
k1

wγ,b
m1

)

〉

Wβn






n
∏

a=1

∫

D(ηa, η̂a)

KL
∏

kL=1

∑

τakL
=±1

exp

(

i
η̂aτakL√
KL

)∫

D(ηakL , η̂
a
kL
) . . .

. . .

∫

D(ηak2
, η̂ak2

)

K1
∏

k1=1

∑

τa
k1

=±1

exp

(

i
τak2

η̂ak2
τak1√

K1

)

∏

α1

∫

D(ηα,ak1
, η̂α,ak1

)

exp

(

−1

2
[τ 1η̂1]

TQ[τ 1η̂1]

)}P

.

The average over the replicated set of synaptic vectors (Wβn) can be expressed as:
〈

∏

a,b

∏

α,γ

∏

k1,m1

δ
(

N [Q]α,a;γ,bk1,m1
−w

α,aT
k1

wγ,b
m1

)

〉

Wβn

=

∫

dQ̂

(2π)Kβn
exp

(

N

2
trQQ̂

)

×

×
〈

exp

(

−1

2

∑

a,b

∑

α,γ

∑

k1,m1

w
α,aT
k1

wγ,b
m1

[Q̂]α,a;γ,bk1,m1

)〉

Wβn

.

By construction the measure of the synaptic vectors imposes that w
α,aT
k1

wα,a
m1

=

N [Ω]k1,m1
, so we have that the average

〈

∏

a,b

∏

α,γ

∏

k1,m1
δ
(

Nqα,a;γ,bk1,m1
−w

α,aT
k1

wγ,b
m1

)〉

Wβn

can be expressed as:
∫

dQ̂ exp

[

−N

2

(

nβK − trQQ̂+ log |Q̂|)
)

]

.

By applying the Laplace method we observe that an extreme of the free energy will be

obtained if Q̂ = Q−1. If we consider P = αN then we have that the quenched average

is
〈

Zn
β

〉

SP
=

∫

dQ exp

[

N

(

1

2
log |Q|+ αGE(Q)

)]

where

GE(Q) ≡ log





n
∏

a=1

∫

D(ηa, η̂a)

KL
∏

kL=1

∑

τakL
=±1

exp

(

i
η̂aτakL√
KL

)∫

D(ηakL , η̂
a
kL
) . . .

. . .

∫

D(ηak2
, η̂ak2

)

K1
∏

k1=1

∑

τ
α2,a
k1

=±1

exp

(

i
τak2

η̂ak2
τak1√

K1

)

∏

α

∫

D(ηα,ak1
, η̂α,ak1

)

exp

(

−1

2
[τ 1η̂1]

TQ[τ 1η̂1]

)]

.

Finally we have that:

〈

Zn
β

〉

SP
∼ extr

Q

{

exp

[

N

(

1

2
log |Q|+ αGE(Q)

)]}

.
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Let OK×K the commutative ring of ultrametric matrices with the block structure

outline in (4). If we consider the Replica Symmetric (RS) Ansatz we can assume that

[Q]α,a;γ,b = δa,b {δα,γ [Ω−Y] +Y −R}+R

where Ω, Y,R ∈ O
K×K . Observe that, although both have been originated from similar

processes, the matrix Y stores information about synaptic overlaps corresponding to

vectors belonging to UCMs replicated due to the exponent β and R stores similar

information due to the replication process to compute the logarithm. Moreover, we

have that:

[R]k1,m1
= δk1m1

(r̃0 − r̃1) + δk2m2
(r̃1 − r̃2) + . . .+ δkLmL

(r̃L−1 − r̃L) + r̃L

= δk1m1
R0 + δk2m2

R1

K1

+ . . .+ δkLmL

RL−1

K1 . . . KL−1

+
RL

K

[Y]k1,m1
= δk1m1

(ỹ0 − ỹ1) + δk2m2
(ỹ1 − ỹ2) + . . .+ δkLmL

(ỹL−1 − ỹL) + ỹL

= δk1m1
Y0 + δk2m2

Y1

K1

+ . . .+ δkLmL

YL−1

K1 . . . KL−1

+
YL

K

where

r̃ℓ =
rℓ

∏ℓ
j=1 Kj

, Rℓ ≡ rℓ −
rℓ+1

Kℓ+1

, ỹℓ =
yℓ

∏ℓ
j=1Kj

, Yℓ ≡ yℓ −
yℓ+1

Kℓ+1

,

and rℓ, yℓ ∼ O(1). Thus the logarithm of the determinant log |Q|1/nK can be expressed

as:
L
∑

ℓ=0

Kℓ+1 − 1
∏ℓ+1

j=1Kj

[

β log

(

ℓ
∑

j=0

∆j

)

+ log

(

1 + β

∑ℓ
j=0Dj

∑ℓ
j=0∆j

)

+ β

∑ℓ
j=0 Rj

∑ℓ
j=0(∆j + βDj)

]

,

where ∆j ≡ Ωj − Yj and Dj ≡ Yj −Rj.

Following the developments presented in Appendix A we have that

GE(Q) ≃ n

{

K

√

∆0

βY0

+

∫

Dz logH
(

−
√

GL

1− GL

z

)}

+O(n2),

where

Σ0 ≡ 1

Σℓ ≡ 1 +
ℓ
∑

j=1

(

2

π

)j [
Ωj

Y0

+
1− β

β

∆j

Y0

]

(11)

G0 ≡ R0

Y0

Gℓ ≡ Σℓ−1

Σℓ

[

2

π
arcsin (Gℓ−1) +

(

2

π

)ℓ
Rℓ

Σℓ−1Y0

]

. (12)

By considering α̂ ≡ α/K, the entropy of the system is:

s(β) =
1

2

L
∑

ℓ=0

Kℓ+1 − 1
∏ℓ+1

j=1Kj

[

β log

(

ℓ
∑

j=0

∆j

)

+ log

(

1 + β

∑ℓ
j=0 Dj

∑ℓ
j=0 ∆j

)

+ β

∑ℓ
j=0 Rj

∑ℓ
j=0(∆j + βDj)

]

+



Storage Capacity of ultrametric committee machines 8

+ α̂

[
√

∆0K2

βY0

+

∫

Dz logH
(

−
√

GL

1− GL

z

)]

.

2. Asymptotic behavior

In the limit of β → 0 we expect Yℓ, Rℓ → Ωℓ, which implies that ∆ℓ, Dℓ → 0 and Gℓ ↑ 1,

so we define the new parameters

ωℓ ≡
Ωℓ

Y0

, ωℓ ≡
ℓ
∑

j=0

ωj, δℓ ≡
Dℓ

Y0

, δℓ ≡
ℓ
∑

j=0

δj (13)

and

m2
0 ≡ lim

β→0

K2∆0

βY0

, mℓ>0 ≡ lim
β→0

∆ℓ

βY0

, mℓ>0 ≡
m2

0

K2
+

ℓ
∑

j=1

mj ≃
ℓ
∑

j=1

mj,(14)

thus we define the entropy at β = 0 as:

s0(α̂; {δj}, {mj}) ≃
K1 − 1

K1

[

logK − logm0 +
1

2
log δ0 +

ω0

2δ0

]

+

+
1

2

L
∑

ℓ=1

Kℓ+1 − 1
∏ℓ+1

j=1Kj

[

log

(

1 +
δℓ
mℓ

)

+
ωℓ − δℓ

mℓ + δℓ

]

+ α̂

[

m0 −
1

4

GL

1− GL

]

.

The optimization process implies solving the saddle point equations ∂λs0 = 0, where

λ is any of the parameters {mj, δj}. The equation for m0 is

0 = − 1

m0

+ α̂ +O(K−1
1 )

which implies that α̂m0 ≃ 1. For all j = 1, . . . , L we have that

0 =
1

2

L
∑

ℓ=1

Kℓ+1 − 1
∏ℓ+1

j=1Kj

[

1

mℓ + δℓ
− 1

mℓ

− ωℓ − δℓ

(mℓ + δℓ)2

]

∂mℓ

∂mj

− α̂

4

1

(1− GL)2
∂GL

∂mj

0 = − 1

2

L
∑

ℓ=1

Kℓ+1 − 1
∏ℓ+1

j=1 Kj

ωℓ − δℓ

(mℓ + δℓ)2
∂δℓ
∂δj

− α̂

4

1

(1− GL)2
∂GL

∂δj
.

The solutions to these equations are such that max{mj, δj} . O
(

√

δ0/K1α̂
)

. These

implies that the dominant variable in GL is δ0, thus

GL ≃ 1−ALδ
1/2L

0 ,

where, by redefining Σℓ, we have that:

Σℓ>0 ≡ 1 +
ℓ
∑

j=1

(

2

π

)j

ζj

AL ≡
(

8

π2

)1−1/2L
∏L−1

j=1 Σ
1/2L−j

j

ΣL

. (15)
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Thus, considering that m0α̂ ≃ 1 and disregarding additive constants, the effective

entropy becomes:

s0(α̂; δ0) ≃ logK + log α̂ +
1

2
log δ0 +

1

2δ0
− α̂

4AL

δ
−1/2L

0 +O(K−1
1 ).

The equation ∂δ0s0 = 0 is

0 = 1− 1

δ0
+

α̂

2L+1AL

δ
−1/2L

0

thus

1

δ0
≃ α̂

2L+1AL

δ
−1/2L

0 (16)

and

s0(α̂; δ0) ≃ logK + log α̂ +
1

2
log δ0 −

α̂

4AL

2L − 1

2L
δ
−1/2L

0 +O(K−1
1 ),

so, disregarding terms of O(log α̂), O(log δ0), we have that the entropy s0(α̂c; δ0) gets

negligibly small at:

α̂c ≃
2L+2

2L − 1
ALδ

1/2L

0 logK. (17)

Close to the criticality we expect that δ0, which is a measure of the largest difference

between the matrices Y and R, to be small. Equations (16) and (17) lead to

1

δ0
≃ 2 logK

2L − 1
(18)

α̂c(L,K) ≃ 2L+2−1/2L

(2L − 1)1−1/2L
AL (logK)1−1/2L . (19)

From (18) we extract the following relationship for L and K:

L < log2(2 logK + 1), (20)

which limits the number of hidden layers we may put in the UCM.

These are the results found by Monasson and Urbanczik for L = 1 [13–15]. The

upper bound for this expression is given by:

α̂c(L,K) .
32

π2
logK ≃ 2.25 log2 K.

Although this capacity is larger than log2 K, there is no violation to the Mithchinson-

Durbin bound [21], which is only applied to networks with L = 1.

3. Conclusions

We computed the storage capacity per unit, for an ultrametric committee machine with

K ≫ 1 units in the first of its L hidden layers. Our results are compatible with previous

works (with L = 1 [13–15]) and represents a step forward in the level of complexity of

tractable architectures. Our results, represented by the equations (19) and (20), are only

valid if all the quantities represented by (12) can reach the value 1 (i.e. Gℓ ↑ 1). This can
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only be achieved for finite values of the overlaps [Σj < ∞ given by (11)]. A divergence

in Σℓ occurs if the overlap ζℓ is too large (particularly if the scaling law given by (5) is

not respected). As it was observed in [17, 18], too large an overlap effectively reduces

the complexity of the machine, i.e. the UCM can be effectively replaced by another

UCM with less hidden layers, rendering the subsequent calculations meaningless.

To understand the information encompassed by (19) consider the following

scenarios. Firstly, in a biological context, the mammalian brain may have up to 1010

neurons, arrayed in hierarchical structures, having no more than six layers. These

numbers are in agreement with the bound (20), which indicates that these structures

may have emerged as an efficient means to increase the brain computation capabilities.

Secondly, suppose that we construct an UCM with only one hidden layer and no overlaps

between synaptic vectors (a true tree committee machine) and a mole (K = 6.02 1023)

of units. For such a machine the critical capacity is α̂1 = 16
π

√
logK ≃ 37.70. If we

take 10% of those units and construct a second hidden layer, leaving 0.9K in the first

hidden layer, the capacity of the new UCM is α̂2 = 215/4
(

8
3π2 log(0.9K)

)3/4 ≃ 101.39,

almost three times the capacity of the one-hidden-layer UCM. If the units in the second

layer are re-arranged to construct a third and fourth layers, we obtain UCMs with the

following capacities: α̂3 ≃ 147.52 and α̂4 ≃ 169.23. Observe that we cannot continue

with this process without breaking the bound imposed by (20) and making δ0 too large.

A note of caution here. The analysis presented is valid if quantities that represent

differences between matrix elements corresponding to original and replicated systems

are sufficiently small. In the present scenario, where the replica symmetric approach

has been applied, there is only one of such quantities that remains relevant, namely

δ0. Equation (18) links δ0 with K and L (the network’s architecture). The necessity

to keep δ0 small produces the upper bound (20) for the total number of hidden layers

given K. We cannot determine if this limitation is real, i.e. that the capacity of the

system cannot be increased any further by adding hidden layers to the architecture, or

a byproduct of the replica symmetric approach. Anyway, it is clear that re-arranging

the network architecture, without adding extra resources, results in more than a 400%

gain in the network capacity.

It is important to note that, given the architectural constraints imposed by (4),

we cannot increase the capacity any further by dilution [22]. The most diluted UCM

is represented by one with all its synaptic overlaps ζl set to zero (a true committee

machine), which is precisely the case presented. The asymptotic behavior obtained

for the capacity is α̂ ∼ log(K). Such behavior is expected in machines where the

architecture is arranged in such a way that the closer to the output the layer the smaller

the number of processing units in it. Given that UCMs are constructed following this

pattern, the upper bound 2.25 log2(K) may represent the true upper bound for these

kind of architectures. To construct machines with capacities beyond log(K) would

require to consider hidden layers with larger number of processing units, i.e. K > N

which goes beyond the scope of the present article.

The possibility to predict these quantities will help the development of real systems
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where the balance of resources and computational gain are very practical issues.
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Appendix A. Calculation of the energetic part

Let us define the vector components [τ 1η̂1]
α,a
k1

≡ τak1
η̂α,ak1

. The exponential in GE becomes

then

exp

(

−1

2
[τ 1η̂1]

TQ[τ 1η̂1]

)

= exp

[

−1

2

∑

a

∑

α

[τ 1η̂1]
α,aT [Ω−Y] [τ 1η̂1]

α,a−

− 1

2

∑

a

∑

α

∑

γ

[τ 1η̂1]
α,aT [Y −R] [τ 1η̂1]

γ,a −

−1

2

∑

a

∑

α

∑

b

∑

γ

[τ 1η̂1]
α,aTR[τ 1η̂1]

γ,b

]

.

Analyzing term by term and by the use of the Hubbard-Stratonovitch (HS) identity,

we have that RHS can be expressed as:
∫

DHS exp

[

−1

2
∆0

∑

a,α

∑

k1

(η̂α,ak1
)2 + i

∑

a,α

∑

k1

(

Γ a
k1

+
Υ α,a
k2√
K1

)

τak1
η̂α,ak1

]

,

where Dx ≡ dx exp(−x2/2)/
√
2π is the Gaussian metric, DHS represents the Gaussian

metric in all the Hubbard-Stratonovitch variables and

Γ a
k1

≡
√

D0x
a
k1

+
√

R0xk1

Υ α,a
k2

≡
L
∑

m=1

[√

∆m
∏m

j=2 Kj

xα,a
km+1

+

√

Dm
∏m

j=2Kj

xa
km+1

+

√

Rm
∏m

j=2 Kj

xkm+1

]

.

The integrals over D(ηα,ak1
, η̂α,ak1

) produce the following expression
∫

D(ηα,ak1
, η̂α,ak1

) exp

(

−1

2
[τ 1η̂1]

TQ[τ 1η̂1]

)

= H
(

− τak1√
∆0

(

Γ a
k1

+ Υ α,a
k2

/
√

K1

)

)

,

where H(x) ≡
∫

DuΘ(u− x). Thus, by applying the formula (B.3), we have:

Aa
k1

≡
∫

Dxa
k1

∏

α

∫

D(ηα,ak1
, η̂α,ak1

) exp

(

−1

2
[τ 1η̂1]

TQ[τ 1η̂1]

)

≃ H
(

−τak1

(

√

R0

D0

xk1
+

∑

α Υ
α,a
k2√

K1D0β

))

+

+
1

2

√

∆0

βD0

exp







−1

2

(

√

R0

D0

xk1
+

∑

α Υ
α,a
k2√

K1D0β

)2






(A.1)
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Observe that the dependency on xα,a
kℓ

is concentrated on the term
∑

α Υ
α,a
k2

, thus we can

make a change of variables such that:

Υ a
k2

≡ 1

β

∑

α

Υ α,a
k2

=
L
∑

m=1

[√

∆m/β +Dm
∏m

j=2Kj

xa
km+1

+

√

Rm
∏m

j=2Kj

xkm+1

]

.

We can disregard terms of O(∆0/(βD0)) and O(
√

∆0/(βD0K1)), such that:

Aa
k1

≃ H
(

−
√

R0

D0

τak1
xk1

)

+

[

1

2

√

∆0

βD0

+
τak1

Υ a
k2√

2πK1D0

]

exp

(

−R0x
2
k1

2D0

)

.

The next step involves the trace over the variables τak1
. Thus

∑

τa
k1

=±1

exp

(

i
τak2

η̂ak2
τak1√

K1

)

Aa
k1

≃ cos

(

η̂ak2√
K1

)

[

1 +

√

∆0

βD0

exp

(

−R0x
2
k1

2D0

)

]

+

+iτak2
sin

(

η̂ak2√
K1

)

[

erf

(

√

R0

2D0

xk1

)

+

√

2

πK1D0

Υ a
k2
exp

(

−R0x
2
k1

2D0

)

]

≃ 1 +

√

∆0

βD0

exp

(

−R0x
2
k1

2D0

)

+ i
τak2

η̂ak2√
K1

erf

(

√

R0

2D0

xk1

)

−

−(η̂ak2
)2

2K1

+ i

√

2

πD0

τak2
η̂ak2

Υ a
k2

K1

exp

(

−R0x
2
k1

2D0

)

,

thus

∏

a

∑

τa
k1

=±1

exp

(

i
τak2

η̂ak2
τak1√

K1

)

Aa
k1

≃ 1 + n

√

∆0

βD0

exp

(

−R0x
2
k1

2D0

)

+

+
i√
K1

(

1√
D0

exp

(

−R0x
2
k1

2D0

)

∑

a

τak2
η̂ak2

)

erf

(

√

R0

2D0

xk1

)

−

− 1

K1

(

∑

a<b

τak2
η̂ak2

τ bk2
η̂bk2

)

erf2

(

√

R0

2D0

xk1

)

− 1

2K1

∑

a

(η̂ak2
)2 +

+
i

K1

√

2

π

[

∑

a

τak2
η̂ak2

Υ a
k2

]

1√
D0

exp

(

−R0x
2
k1

2D0

)

,

and

Ak2
≡
∫

Dxk1

∏

a

∑

τa
k1

=±1

exp

(

i
τak2

η̂ak2
τak1√

K1

)

Aa
k1

≃ 1 +
1

K1

[

nK1

√

∆0

βY0

− 1

2

∑

a

(η̂ak2
)2 − 2

π
arcsin

(

R0

Y0

)

(

∑

a<b

τak2
η̂ak2

τ bk2
η̂bk2

)

+

+i

√

2

πY0

∑

a

τak2
η̂ak2

Υ a
k2

]

≃
∫

Dzk2
exp

[

nK1

√

∆0

βY0

− 1

2

[

1− 2

π
arcsin

(

R0

Y0

)]

∑

a

(η̂ak2
)2+
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+i

√

2

π

∑

a

τak2
η̂ak2

(
√

arcsin

(

R0

Y0

)

zk2
+

√

1

Y0

Υ a
k2

)]

.

Thus

Ak2
≡ exp

[

nK1

√

∆0

βY0

− 1

2

[

1− 2

π
arcsin

(

R0

Y0

)]

∑

a

(η̂ak2
)2+

+i

√

2

π

∑

a

τak2
η̂ak2

(
√

arcsin

(

R0

Y0

)

zk2
+

Υ a
k2√
Y0

)]

,

which marks the end of the integration over the variables associated to the first layer.

The first integration associated to the second layer is over D(ηak2
, η̂ak2

). Thus

∫

∏

a

D(ηak2
, η̂ak2

)Ak2
≃ exp

(

nK1

√

∆0

βY0

)

∏

a

H
(

− τak2

(

Γ a
k2

+ Υ a
k3
/
√
K2

)

√

1− (2/π) arcsin(R0/Y0)

)

,(A.2)

where the dominant part of the argument of the error function can be expressed as

(joining over zk2
and xk2

)

Γ a
k2

≡
√

2

π

(

∆1

βY0

+
D1

Y0

)

xa
k2

+

√

2

π

(

arcsin

(

R0

Y0

)

+
R1

Y0

)

xk2

Υ a
k3

≡
L
∑

m=2

(

m
∏

j=3

K
−1/2
j

)[
√

2

π

(

∆m

βY0

+
Dm

Y0

)

xa
km+1

+

√

2

π

Rm

Y0

xkm+1

]

.

Observe that
∫

DxH(ax+ y) = H
(

y√
1 + a2

)

so
∫

Dxa
k2
H
(

− τak2

(

Γ a
k2

+ Υ a
k3
/
√
K2

)

√

1− (2/π) arcsin(R0/Y0)

)

=

= H
(

−τak2

(

√

G1

1− G1

xk2
+

Υ a
k3

√

K2Σ1(1− G1)

))

,

where

Σ1 ≡ 1 +
2

π

[

Ω1

Y0

+
1− β

β

∆1

Y0

]

G1 ≡ 1

Σ1

[

2

π
arcsin

(

R0

Y0

)

+
2

π

R1

Y0

]

,

thus:

Ba
k2

≡
∑

τa
k2

=±1

exp

(

i
τak3

η̂ak3
τak2√

K2

)∫

Dxa
k2
H
(

− τak2

(

Γ a
k2

+ Υ a
k3
/
√
K2

)

√

1− (2/π) arcsin(R0/Y0)

)

≃ 1 + i
τak3

η̂ak3√
K2

erf

(

√

G1

1− G1

xk2√
2
+

Υ a
k3

√

2K2Σ1(1− G1)

)

− (η̂ak3
)2

2K2

+O(K
−3/2
2 ).
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The product over replica indexes leads to:
∏

a

Ba
k2

≃ 1− 1

2K2

∑

a

(η̂ak3
)2 +

+
i√
K2

∑

a

τak3
η̂ak3

erf

(

√

G1

1− G1

xk2√
2
+

Υ a
k3

√

2K2Σ1(1− G1)

)

−

− 1

K2

∑

a<b

τak3
η̂ak3

erf

(

√

G1

1− G1

xk2√
2
+

Υ a
k3

√

2K2Σ1(1− G1)

)

×

× τ bk3
η̂bk3

erf

(

√

G1

1− G1

xk2√
2
+

Υ b
k3

√

2K2Σ1(1− G1)

)

+O(K
−3/2
2 ).

By integrating over xk2
, and disregarding terms of O(K

−3/2
2 ), we obtain:

∫

Dxk2

∏

a

Ba
k2

≃ 1− 1

2K2

∑

a

(η̂ak3
)2 +

+
i√
K2

∑

a

I (Υ a
k3
)τak3

η̂ak3
− 1

K2

∑

a<b

I (Υ a
k3
, Υ b

k3
)τak3

η̂ak3
τ bk3

η̂bk3
,

where

I (Υ a
k3
) ≡

∫

Dxk2
erf

(

√

G1

1− G1

xk2√
2
+

Υ a
k3

√

2K2Σ1(1− G1)

)

I (Υ a
k3
, Υ b

k3
) ≡

∫

Dxk2
erf

(

√

G1

1− G1

xk2√
2
+

Υ a
k3

√

2K2Σ1(1− G1)

)

×

× erf

(

√

G1

1− G1

xk2√
2
+

Υ b
k3

√

2K2Σ1(1− G1)

)

.

The first integral, though can be exactly obtained, should be computed up to leading

order in K2 :

I (Υ a
k3
) = erf

(

Υ a
k3√

2K2Σ1

)

≃
√

2

πK2Σ1

Υ a
k3

+O(K
−3/2
2 ).

The second integral produces the following expression:

I (Υ a
k3
, Υ b

k3
) = − 1 + erf

(

Υ a
k3√

2K2Σ1

)

+ erf

(

Υ b
k3√

2K2Σ1

)

+

+ 4

∫ ∞

Υa
k3

−Υb
k3

/G1√
2K2Σ1

dz√
2π

exp

[

−1

2

(

z +
Υ b
k3

G1

√
2K2Σ1

)2
]

H
(

−
√

G2
1

1− G2
1

z

)

≃ 2

π
arcsin(G1) +O(K

−1/2
1 ).

Thus
∏

k2

∫

Dxk2

∏

a

Ba
k2

≃
∫

Dzk3
exp

[

−1

2

[

1− 2

π
arcsin(G1)

]

∑

a

(η̂ak3
)2+

+i

√

2

π
arcsin(G1)

∑

a

τak3
η̂ak3

zk3
+ i

√

2

πΣ1

∑

a

τak3
η̂ak3

Υ a
k3

]

+O(K
−1/2
2 ).
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By redefining Υ a
k3

as

Υ a
k3

≡ Γ a
k3

+ Υ a
k4
/
√

K3

Γ a
k3

≡

√

(

2

π

)2
1

Σ1

(

Ω2

Y0

+
1− β

β

∆2

Y0

− R2

Y0

)

xa
k3

+

√

2

π
arcsin(G1) +

(

2

π

)2
1

Σ1

R2

Y0

xk3

Υ a
k4

≡
L
∑

m=3

(

m
∏

j=4

K
−1/2
j

)

2

π
√
Σ1

[
√

Ωm

Y0

+
1− β

β

∆m

Y0

− Rm

Y0

xa
km+1

+

√

Rm

Y0

xkm+1

]

,

we obtain that
∫

∏

a

D(ηak3
, η̂ak3

)
∏

k2

Ba
k2

≃
∏

a

H
(

− τak3

(

Γ a
k3

+ Υ a
k4
/
√
K3

)

√

1− (2/π) arcsin(G1)

)

,

and the process can be repeated, following the procedure starting at (A.2), until:

exp(GE) ≃ exp

(

nK

√

∆0

βY0

)

∫

DzHn

(

−
√

GL

1− GL

z

)

,

where

Σ0 ≡ 1

Σℓ ≡ 1 +
ℓ
∑

j=1

(

2

π

)j [
Ωj

Y0

+
1− β

β

∆j

Y0

]

G0 ≡ R0

Y0

Gℓ ≡ Σℓ−1

Σℓ

[

2

π
arcsin (Gℓ−1) +

(

2

π

)ℓ
Rℓ

Σℓ−1Y0

]

,

thus, for small n

GE ≃ n

{

K

√

∆0

βY0

+

∫

Dz logH
(

−
√

GL

1− GL

z

)}

+O(n2).

Appendix B. Expansion for the Gardner’s error function

The integral we need to compute is

Ia ≡
∫

Dxa
k1

β
∏

α=1

H
(

− τak1√
∆0

(

Γ a
k1

+ Υ α,a
k2

/
√

K1

)

)

,

where

Γ a
k1

≡
√

D0x
a
k1

+ Γ a
k2

and Υ α,a
k2

and Γ a
k2

are variables of O(1), independent on xa
k1
. By defining the parameters

δ ≡
√

∆0

D0

, G ≡ τak1

Γ a
k2√
D0

, ǫα ≡ τak1

Υ α,a
k2√
K1D0
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we can re-write the integral as

I ≡
∫

Dµ

β
∏

α=1

H
(

−µ+G+ ǫα

δ

)

.

=
1√
2π

∫

dµ exp

[

−1

2
(µ−G)2

] β
∏

α=1

H
(

−µ+ ǫα

δ

)

(B.1)

We are interested in the case where 0 < δ ≪ 1 and |ǫα| ≪ 1. Without loss of generality

we can consider that ǫi > ǫi+1. Gardner’s error function presents two distinctive

behaviors depending on its argument. Given H(−x/δ), for all x ∈ (−Cδ,Cδ), for a

suitable 1 ≪ C and Cδ ≪ 1, the function increases rapidly. This is the so-called active

region. For all x /∈ (−Cδ,Cδ), the function admits the following expansion

H(−x/δ) = Θ(x)− δe−x2/(2δ2)

√
2πx

+Dδ3 (B.2)

for a suitable D ∈ R. Observe that for all µ < ε− Cδ, the product is dominated by an

exponentially decreasing behavior, whereas for all µ > ε + Cδ, the product is almost

one. Let us define the quantities: ε ≡ ǫβ and E = ǫ1. In order to find bounds for this

integral, and using the analysis of the previous paragraph, we have that:

cδ <
1√
2π

∫ −ε+Cδ

−ε−Cδ

dµ exp

[

−1

2
(µ−G)2

] β
∏

α=1

H
(

−µ+ ǫα

δ

)

< 2Cδ

0 <
1√
2π

∫ −ε−Cδ

−E−Cδ

dµ exp

[

−1

2
(µ−G)2

] β
∏

α=1

H
(

−µ+ ǫα

δ

)

< e−C2/2(E − ε),

where 0 < c < C ∈ R. In the region that remains, i.e. O1∪O2 with O1 ≡ (−∞,−E−Cδ)

and O2 ≡ (−ε+ Cδ,∞), we have that

IO ≡ IO1
+ IO2

IO1
≡ 1√

2π

∫

O1

dµ exp

[

−1

2
(µ−G)2

] β
∏

α=1

[

δ exp (−(µ+ ǫα)2/(2δ2))√
2π|µ+ ǫα|

+Dδ3
]

IO2
≡ 1√

2π

∫

O2

dµ exp

[

−1

2
(µ−G)2

] β
∏

α=1

[

1− δ exp (−(µ+ ǫα)2/(2δ2))√
2π(µ+ ǫα)

+Dδ3
]

where the first term can be bounded by

e−cβδH(−G− ε+ Cδ) < T1 < ecβδH(−G− E + Cδ).

The second term can be rearranged by considering the following:

exp

[

− 1

2δ2

∑

α

(µ+ ǫα)2 + βd′ log δ

]

<

β
∏

α=1

[

δ exp (−(µ+ ǫα)2/(2δ2))√
2π|µ+ ǫα|

+Dδ3
]

and
β
∏

α=1

[

δ exp (−(µ+ ǫα)2/(2δ2))√
2π|µ+ ǫα|

+Dδ3
]

< exp

[

− 1

2δ2

∑

α

(µ+ ǫα)2 + βd log δ

]
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for suitable 0 < d, d′ ∈ R. Thus, disregarding terms of O(βδ2), the second integral can

be bounded from below by:
√

δ2

β + δ2
exp

[

−1

2

β

β + δ2
(G+ ε)2 − 1

2

β

δ2
σ2
ε + βd′ log δ

]

×

×H
(
√

δ2

β + δ2
G− β

δ

ε
√

β + δ2
+ E + Cδ

)

and from above by:
√

δ2

β + δ2
exp

[

−1

2

β

β + δ2
(G+ ε)2 − 1

2

β

δ2
σ2
ε + βd log δ

]

×

×H
(
√

δ2

β + δ2
G− β

δ

ε
√

β + δ2
+ E + Cδ

)

,

where

ε ≡ 1

β

∑

α

ǫα

σ2
ε ≡

1

β

∑

α

(ǫα)2 − ε2.

Thus, by defining Bδ ≡ β/δ2, and taking the limits β, δ, ǫα, Bδσ
2
ε → 0 and 1 ≪ Bδ, the

integral approaches the following expression

I = H(−G− ε) +
1

2

√

1

Bδ

exp

{

−(G+ ε)2

2

}

, (B.3)

where we substituted ε by ε in the first term of the RHS.
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