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Abstract 

Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. 

With new and re-emerging infections posing increasing risks to food stocks and the health of the 

population in general, there is a need to improve the rationale of vaccine development. One key 

challenge lies in development of effective T cell-induced response to subunit vaccines at specific 

sites and in different populations. In this review, we consider how a proteomic systems-based 

approach can be used to identify putative novel vaccine targets, may be adopted to characterise 

subunit vaccines and adjuvants fully and offers future opportunities in combination with structural 

biology approaches to predict T cell subset responses.  
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Introduction 

Conventional live attenuated or killed vaccines have been successfully applied as preventative 

strategies against many diseases. However, even with advances in our understanding of mechanisms 

of vaccine action there is no straightforward predictive correlate of which vaccines will afford 

protection against many diseases. Vaccine efficacy against pathogens may be B cell dependent, with 

neutralising antibodies as the effector molecules [1, 2]. However, it is becoming more apparent that 

the T cell responses are critical for protection against many pathogens and the phenotype, 

localization and duration of antigen specific T cell response is essential to vaccine efficacy [3]. 

Historically, vaccine research has been hampered by the antigenic variability of the pathogenic 

surfaces, a lack of known protective mechanisms, and the absence of appropriate models for testing 

candidate vaccines and manipulating host responses. Recent advances in characterising antigens and 

host responses through systems biology have offered new insights into mechanisms of vaccine-

induced immunity, so paving the way for a more rational approach to vaccine design. Previous works 

that have explored systems biology for reverse vaccinology have largely focussed on genomic 

approaches because of the dirth of information on proteomic approaches [4]. Here, we review the 

proteomic technologies and choices to be considered by vaccinologists entering the field. A 

proteomic systems-based approach offers new and untapped opportunities to characterise subunit 

vaccines and adjuvants and may in the future be used in combination with structural biology 

approaches to improve predictions of T cell responses. 

1. Proteomic technologies  

The proteome is the entire protein complement of a cell line, tissue, or organism under specific 

conditions. Its analysis, proteomics, has been established for 20 years and in the earliest days began 

with two-dimensional gel electrophoresis (2-DE).  A number of different technologies are currently 

used to analyse proteomes and are developed to increase sensitivity and precision in the 

identification of peptides or post-translationally modified (PTM) peptides. The experimental 

workflow of proteomics consists of a number of key steps as illustrated in Figure 1; 

 Sample preparation which may include isolation and purification of a subcellular 

compartment or the chemical ‘tagging’ of a PTM of interest.  

 Separation of a complex mixture of proteins either by electrophoretic techniques prior to 

enzymatic digestion, or the separation of peptides by chromatographic techniques followed 

by post enzyme digestion.  

 Analysis of peptides by mass spectrometry. 

 Analysis of MS data using genomically-derived databases. 

 Quantitative interrogation of the proteome of interest.  

 

a. Label-free approaches.  

In 2-DE, proteins are separated in the first dimension by isoelectric focussing (IEF) and then in the 

second by SDS-PAGE. The protein mixture is suspended in a urea-rich buffer causing protein 

denaturation. The complex protein mixture is left to hydrate a gel strip containing an immobilised pH 

gradient, and upon application of high voltage the proteins migrate to each protein’s isoelectric 

point, where it has no overall charge. The isoelectric point varies depending on post-translationally 
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modified isoforms of a protein e.g. phosphorylation moves the isoelectric point towards negative 

and disialylation moves the isoelectric point towards positive. Following this initial separation step 

the focussed IPG strip is incubated in an SDS-rich reducing buffer and laid on top of a polyacrylamide 

gel and separated according to molecular weight by an electrophoretic mobility shift assay [5]. 

Coomassie or silver staining techniques were used for many years to identify total protein within a 

sample. However, these are not without problems; coomassie requires relatively large amounts of 

protein for a protein spot to be visible, silver stain is not specific to proteins but can bind to nucleic 

acids and polysaccharides increasing the likelihood of streaks on the gel which also interfere with 

densitometry based quantification. A number of fluorescent dyes, such as Sypro Red have been 

developed and offer higher sensitivity whilst maintaining good specificity for proteins, these 

fluorescent stains often have a larger range over which a linear signal is achieved leading to more 

accurate quantification [6]. Other more sensitive methods have been developed and are reviewed 

elsewhere [7].  Following enzymatic digestion of any differentially expressed spots, resultant 

peptides are separated by liquid chromatography and identified by mass spectrometry. A schematic 

diagram of the approach to 2-DE is shown in figure 1.   

Non-gel based proteomics (commonly referred to as ‘shotgun proteomics’) have been developed in 

recent years and offer certain benefits over 2-DE. Non-gel based proteomics is achieved by 

enzymatic digestion the entire complex protein mixture followed by separation with liquid 

chromatography and direct infusion into a mass spectrometer (MS). Such an approach can be 

quantitative using a mass spectrometer capable of MS/MS fragmentation. This approach overcomes 

the challenge of multiple compounds having the same intact mass. In electrospray, which can deliver 

multiply charged species, the chance of many compounds having the same mass to charge ratio is 

high following MS analysis; the intact mass to charge is rarely a unique identifier. For the majority of 

compounds, second dimension MS which fragments the parent ion, yields one or more unique 

fragments for quantitation. By zooming in on one or more specified parent ion(s) and selectively 

monitoring unique fragment ion transition(s), single or multiple reaction monitoring (SRM or MRM) 

methods are established. SRM and MRM offer quantitative label-free MS approaches when MS/MS 

is available. Future opportunities lie using the most advanced triple MS in hyper-reaction monitoring 

and SWATH for determining digital fingerprints based on post-acquisition SRM data mining, 

however, this methodology is very much in its infancy.  

Label-free techniques have advanced in recent years and with improved mass accuracy in modern 

mass spectrometers, label-free technologies do not require sample clean up to remove unreacted 

reporter tags and therefore do not suffer loss of material in the sample preparation steps. 

b. Sample labelling approaches.  

Difference gel electrophoresis (DIGE) is an advancement of gel based proteomics whereby the intact 

proteins are labelled with fluorescent tags, mixed together and separated by 2DE. The benefits of 

DIGE over traditional 2DE include improved spot matching and quantitation of relative protein 

abundance differences between samples.   

Quantification in non-gel based approaches can be achieved by differentially labelling all digested 

peptides from two different “treatments” or disease versus control samples and combine the 

mixture of samples for LCMS analysis. Peptide quantification is achieved by post-acquisition analysis. 
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A number of different technologies exist to label peptides for quantification. Generally these 

molecular tags consist of a coupling group, a linker group and a molecular reporter, an isotope-

coded affinity tag (ICAT).  The coupling group may bind to primary amines and lysine residues e.g. 

trimethyl tags (TMT) or isotopically distinct iodoacetamide groups (iCAT) to couple to cysteine 

residues. These are far and above the two major coupling chemistries used in proteomics but can be 

biased towards proteins which either contain a high frequency of either cysteine or lysine. 

Conversely, they can be impeded by thiol modifications on cysteine residues such as oxidation to 

sulphenic acid residues. The molecular reporters used are isotopically different to facilitate the 

detection of a defined and constant mass change in the mass spectra obtained. Following data 

acquisition, the ratio of the same peptide containing different tags is used to quantify the abundance 

of specific peptides in the proteome.  Isobaric tags have identical masses and chemical properties. 

Heavy and light “isotopologues” co-elute together and are then cleaved during MS/MS. These 

isobaric labels have the benefit that they fundamentally do not interfere with peptide ionisation, but 

the conjugation processes do require significant sample clean-up which is often inefficient, this can 

be a significant issue when dealing with valuable material such as small volumes of patient samples. 

A benefit of iCAT and TMT tags is the option for a purification step by biotinylation of iCAT or 

antibodies to TMT which enables purification using a streptavidin matrix. This extra step removes 

any unlabelled peptides which can reduce the presence of contaminants in the sample which can 

interfere with peptide ionisation. Another common way to achieve quantification is by stable 

isotope labelling of amino acids in cell culture (SILAC) [8]. SILAC is based on the incorporation of 

isotopic amino acids into the cells of interest. Heavy and light isotopes are incorporated into the 

control and test conditions respectively. The protein mixture from both test conditions are mixed 

together and subject to enzymatic digestion and LC-MS analysis simultaneously in order to reduce 

technical variation. Upon interrogation of the resultant mass spectra, a ratio of the heavy and light 

isotopes of each individual peptide allows for relative quantification in the two test systems. 

Although this approach was initially limited to cell culture models, recent development of SILAC 

organisms as whole organism models have been created for drosophila [9], nematode [10] and 

mouse [12] so may be useful for studying host response to vaccines and/or adjuvants.  

c. Which method is best? 

The best approach to adopt is affected by both the amount of starting proteins and the 

spectrometer hardware.  Non-gel based techniques benefit from increased sensitivity and can 

achieve increased protein coverage; for these reasons they are generally the methods of choice for 

proteomic experiments now. Direct LC-MS analysis is also much more useful in the identification of 

hydrophobic proteins such as integral membrane proteins which are vastly under-represented 

compared to cytosolic proteins in 2DE. Also, proteins with a low molecular weight and either a very 

high or very low pI such as cytokines which modulate the immune response and are vital in the 

vaccination process are poorly represented in 2DE studies. Nevertheless, pre-analytical membrane 

protein isolation can overcome this bias of 2DE (see section 2c). However, 2DE does have provide 

insight into differential glycosylation patterns which may not be observed under standard LCMS 

proteomics experiments due to poor ionisation of glycopeptides. The latter are under-represented in 

traditional non-gel approaches. 2DE can give information of in vivo protease mediated protein 

truncation or partial degradation which would not be observed in LC-MS studies. Such information 

can be of enormous value for the identification of common protein subunits for vaccine 

development. 
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2. Identifying novel vaccine targets 

 

a. Choosing the right antigen for a vaccine 

Viral vectors and subunit vaccines composed of peptides, proteins or non-protein components of the 

pathogen have shown huge promise for adaptive immune defence with some already marketed for 

use in animals. Many are being evaluated in human trials for a number of diseases [12-14]. 

Canarypox vectored vaccines (ALVAC, produced by Merial) against West Nile disease virus, equine 

influenza virus, rabies and canine distemper virus are already available as well as Fowlpox vectored 

vaccines against Newcastle disease virus (Biomune) and avian influenza (Merial).  

Many pathogens whether viral, bacterial or parasitic can be highly variable especially in expression 

of their surface antigens, which are the primary candidates for vaccine development. This variability 

makes vaccine development more challenging and has implications for drug development 

particularly in terms of resistance. The problem of antibiotic resistance with hospital acquired 

infections or super-bugs is a growing concern in the Western world along with multi drug resistance 

for many serious global health issues such as TB and malaria. With the lack of newly available drugs 

or treatments on the market, development of prophylactic vaccines becomes increasingly important. 

Another concern for vaccine development is the potential for vaccine driven evolution of pathogens 

and escape mutants. Marek’s disease virus (MDV), a common disease of chickens, which poultry 

production units routinely vaccinate against, has been shown to evolve, quite rapidly, within these 

chicken populations. This evolution is thought to be driven by incomplete protection following 

vaccination. Although birds are protected from Marek’s disease, low level replication of MDV within 

the host still occurs when exposed to infection [15]. This highlights the importance of developing 

vaccines which ideally induce sterile immunity. Unfortunately this is not always easy to measure, 

particularly in humans where challenge studies are not usually ethical. Identification of surface 

antigens for use in vaccines is great in theory but if the target is constantly changing how do we 

address this? There is evidence to suggest including a number of similar but slightly different 

antigens could induce a more broadly cross-reactive immune response [16]. 

b. What makes a good antigen? 

Induction of T cell responses requires exogenous or endogenous antigen processing and 

presentation by major histocompatibility complex (MHC) class I and II molecules, a process which 

has which has been extensively studied and described well [17-19]. Peptides from pathogens are 

delivered into the cytosol of an antigen presenting cell (APC), undergo proteasomal degradation and 

transportation to the endoplasmic reticulum (ER) where they are associated with an MHC class I 

molecule before translocation to the surface for antigen presentation to CD8+ T cells. APC are able 

to modulate class I loading depending on the subunit components of the proteasome and 

immunoproteasome which is determined by inflammatory signals [20,21]. In thymic cortical 

epithelial cells the thymoproteasome appears to positively select weakly self-reactive T cells [22]. As 

an intracellular parasite, protection against Toxoplasma gondii relies on induction of a good T 

lymphocyte response recognising antigenic peptides expressed by MHC class I molecules. T.gondii 

has a large proteome but only a small number of peptides have been associated with induction of 

CD8+ T cell responses; moreover what makes an immunodominant epitope is not clear. Experiments 

with the immunodominant antigen GRA6 showed that C-terminal localisation of the epitope within 
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the antigen was critical for generating immunodominance and thus the ability of the antigen to 

access the MHC class I pathway and be processed correctly to have a significant effect on 

immunodominance [23].  Vaccination strategies which deliver antigens to APC and allow correct 

processing for presentation are crucial but presentation of antigen does not necessarily confer a 

protective response. MHC class 1 molecules do have highly conserved pockets through which the C- 

and N- termini of the peptide interacts by extensive hydrogen bonding that increases the binding 

specificity [24].  Development of a database from proteomic identification of peptides bound to 

MHC I on APCs following antigen delivery could offer a powerful tool to aid understanding the rules 

for cell-based peptide selection for antigen presentation. 

c. Membrane proteomics for surface antigen discovery 

Here, the proteomic workflow is reviewed and discussed with specific reference to the analysis of 

exofacial plasma membrane proteins and its application in the identification of novel antigens for 

example on-virally infected cells, where these novel targets could be exploited for antibody 

therapies and vaccine design. Pre-sample preparation offers the ability to isolate subcellular 

compartments and identify proteins at specific locations, e.g. the exofacial surface. This is the 

expected site of many putative subunit vaccine candidates. Finally, using proteomic technologies it is 

possible to identify PTMs that effect function or that could improve antigenic responses or which are 

involved in non-infectious pathology [25]. 

Good sample preparation is vital for the specific proteomic analysis of the plasma membrane. One 

strategy, relevant for targeting virally infected cells, is to extract the relevant cell membrane e.g. 

from virally infected epithelial cells to study respiratory pathogens or the cell walls from bacteria for 

the development of therapeutic anti-infective vaccines. In cell-based studies, cells must be isolated 

to a high degree of purity. Cell isolation is often achieved by negative selection protocols which use a 

mixture of biotinylated antibodies directed against cell surface markers of non-choice cells; the 

unwanted cells are then removed using streptavidin magnetic beads [26]. 

In order to look specifically at the plasma membrane, a number of techniques are available 

(summarised in Figure 2). First, a differential centrifugation method may be used, whereby the cells 

are lysed and sequentially centrifuged generating fractions containing different organelles which can 

be sequentially removed. Large intact organelles (mitochondria, nucleus) are removed, followed by 

plasma membrane, leaving a cytosolic fraction [27]. The downside to this approach is that the 

plasma membrane fraction is often contaminated with organelle membranes, particularly 

mitochondrial membranes. The second approach is cell surface biotinylation followed by steptavidin 

pull-down [28]. The most common coupling chemistry is using NHS-biotin to covalently link biotin, 

via a linker region, to primary amine groups on the protein residue (lysine residues). The cells can 

now be subject to lysis and solubilisation followed by purification with streptavidin conjugated to 

agarose or magnetic beads. Removal of proteins from the beads is often achieved by heating the 

bead suspension to above 90°C which can result in alteration in the PTM composition of the 

proteins. To avoid this using a streptavidin bead with a linker that contains a disulphide bond can be 

used, therefore, simply requiring the addition of a reducing agent such as dithiothreitol to remove 

the protein, still containing a small portion of the linker on the lysine residue, from the magnetic 

bead. This cell surface biotinylation technique specifically targets exofacial proteins as the cell-

impermeable probe should not diffuse through the plasma membrane to label intra-cellular 
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proteins. High pH and high osmotic buffers can be used to further clean the sample of intracellular 

peripheral membrane proteins. 

The digestion step is important to optimise for membrane proteins, as these are typically 

underrepresented in proteomic experiments. Trypsin, an endopeptidase that cleaves the peptide 

bond C-terminal after the basic amino acid residues lysine and arginine, except when they are 

followed by a proline, is the most frequently used protease for protein digestion in proteomics 

owing to the relatively high abundance of both lysine and arginine residues in the human proteome 

[29]. However, the frequency of lysine and arginine residues is much less in plasma membrane 

proteins compared to cytosolic proteins. Also, when using the biotinylation strategy described above 

where the lysines are modified to biotin conjugates, the targets for trypsin mediated cleavage are 

greatly reduced. A number of alternative proteases have been investigated and chymotrypsin, 

pepsin [30] and Streptomyces peptidase I [31] have shown better performance in membrane 

proteomic studies. The use of two proteases combined or used sequentially have also performed 

better than that of trypsin alone, trypsin followed by pepsin increased the number of proteins 

identified from 621 to 686 [32]. Combining enzymatic digestion with non-enzymatic digestion is also 

beneficial, by combining trypsin with CNBr and acetic acid three times as many proteins were 

identified when compared to trypsin alone [33]. 

The hydrophobic nature of membrane proteins, particularly those with multiple transmembrane 

regions, means that the cleavable regions are stochiometrically obscured. One approach is to use 

detergents in the digestion stage. Using SDS can significantly increase solubility of membrane 

proteins but high concentrations also inhibit trypsin enzymatic activity. SDS at a concentration of 1% 

can be used to increase protein identification without significantly affecting trypsin activity, however 

SDS at even these low concentrations are not compatible with MS and require sample clean up prior 

to LC-MS analysis. Similarly the use of the surfactant, sodium deoxycholate, up to a concentration of 

5% resulted in minimal loss of activity of trypsin activity whilst greatly improving the number and 

sequence coverage of integral membrane proteins identified [34, 35]. Development of protease and 

MS compatible detergents is ongoing. Recently, sodium laurate, a novel detergent was found to 

cause solubilisation of membrane proteins equivalent to SDS while at the same time remaining 

compatible with trypsin-mediated digestion of membrane proteins [36]. The use of organic solvents 

to unwind hydrophobic regions of membrane proteins have also been investigated, conducting the 

enzymatic digestion in a 60% methanol solution greatly increased peptide identification from a 

bacterial membrane when compared with trypsin alone or with 1% SDS [37]. 

The potential application of this approach has been explored recently using Trichinella spiralis, 

where surface proteins were identified in order to understand more about mechanisms of parasite 

infection and invasion as well as in defining putative diagnostic antigens and vaccine targets [38]. 

3. Characterising subunit-vaccine post-translational modifications and adjuvant responses 

 

a. Using proteomics to characterise essential post-translational modifications relevant for 

subunit vaccines 

Post-translational modifications are important to consider in relation to membrane proteins and are 

often the source of antigens. Many distinct protein PTMs have been described including enzyme 

mediated modifications such as phosphorylation, glycosylation and acetylation and also non-enzyme 



8 
 

mediated modifications such as oxidation, nitration and glycation. PTMs serve a number of functions 

and can be used as dynamic functional switches, to maintain structural properties or to protect the 

protein against proteasome mediated degradation. However, preparation of subunit vaccines in a 

manner which is consistent to minimise potential for post-translational modification is likely to be 

important in deriving consistent responses. The likely most important PTM for exofacial membrane 

proteins is glycosylation. Depending on the expression system used to produce subunit vaccines, 

glycosylation may differ from the pattern seen in an infected mammalian cell. As the glycoform 

often influences protein folding structure, abnormal glycosylation of subunit vaccine components 

may also improve or impede the vaccination response [39].  

Glycosylation is the enzymatic conjugation of carbohydrate subunits and can be either O-linked on 

serine residues or N-linked on asparagine residues. Glycosylation of proteins contributes to the 

structure and therefore function of proteins and also prevents degradation of extracellular proteins, 

therefore, extending their half-life. Glycan PTMs are found on secreted and cell surface proteins and 

their branched nature gives rise to a huge amount of heterogeneity. Global analysis of glycans on the 

surface of cells and tissues, referred to as glycomics, is achieved by using endoglycosidase enzymes 

such as PNGase F to separate intact N-linked glycan residues from proteins. These are then 

subsequently analysed by LC-MS or by glycan arrays [40]. This approach details the structure of the 

glyans present on the cell or tissue of interest but does not give information regarding which 

proteins these glycans are conjugated to. Using Pichia pastoris to express subunit vaccines often 

results in increased and variable glycosylation whereas E. coli expression systems are devoid of 

carbohydrates. It is increasingly important to recognise and characterise glycosylation during vaccine 

development and if necessary, employ glyco-engineering strategies to improve responses [41]. 

Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, 

little work has been reported on identifying MHC 1 binding peptides for subunit vaccines generating 

T cell responses in the literature to date. Table 1 outlines the four studies retrieved from a search 

and summarises the key outcomes [42-45]. These illustrate the power of the proteomics and 

indicate value in further exploitation of this technology. 

b. Informed adjuvant choice; a proteomic approach? 

In the veterinary field, both adenovirus vectors and capripox vectors have been shown to induce 

good immune responses [46-51] and even protect against challenge after a single dose [52]. 

Attenuated adenovirus (Ad) and modified vaccinia virus ankara have shown promise in vaccine trials 

against malaria, TB and HIV with vectors inducing both cellular and humoral immune responses [53-

58]. However, in human trials pre-existing vector immunity to Ad vectors reduces their 

immunogenicity [59, 60]. To address this, chimp and other simian adenoviruses are being tested [61, 

62] as well as other less prevalent human Ad vectors and heterologous prime boost vaccine regimes 

[63]. The adjuvant and delivery system remains critical and there is a gap in systematic 

understanding of how to define those adjuvants that induce the strongest responses.  

Novel delivery vectors, formulations and improved adjuvants may be a solution. Currently there are 

only a few adjuvants licenced for use in humans. Alum or aluminium containing salts are the most 

widely used. Monophospholipid-A is part of the hepatitis B vaccine Fendrix and the human papilloma 

vaccine Cervarix which are both produced by GlaxoSmithKline (GSK). The adjuvant MF59TM 

(Novartis) and AS03 (GSK) are oil-in-water emulsions and both of these have been approved for use 
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in pandemic flu vaccines. Adjuvant technology is a growing area of research with increased 

understanding of pattern recognition receptors and the signalling pathways associated with immune 

activation [64, 65]. Liposomes, nanoparticles and virus like particles are a relatively new technology 

in vaccine development for delivering antigens and targeting them specifically to APCs [66, 67].  

There is a need to target the effector T cells and elicit the appropriate response in vivo for the 

pathogen of interest. At the time of writing this article, the authors could not identify any proteomic 

studies that had characterised the effects of adjuvants on cells of the immune systems. A knowledge 

gap remains in our understanding of how adjuvants work and what makes a good adjuvant. 

Proteomic approaches could offer some important insights to fully characterise adjuvant responses 

in the host that would inform the basis for rational adjuvant choice in future.  

4. Proteomics in combination with structural biology approaches to predict T cell subset 

responses. 

One of the key determinants of antigenicity is whether a given peptide is surface-expressed by APC. 

An emerging opportunity for proteomics lies in the ability to define the complement of peptides 

presented by MHC after antigen processing. The systematic analysis of APC-processed and 

presented peptides for proteins that already formed the basis of successful subunit antigenic 

vaccines is required.   This systems-orientated approach to identifying antigens can be combined 

with structural biology approaches generating algorithms can be used to predict potential T cell 

epitopes which potentially bind MHC molecules. Endogenous peptides presented by MHC molecules 

display specific anchor residue preferences and peptide length bias [20, 69]. Pitfalls in epitope 

prediction arise due to the fact that MHC binding is not very strict, throwing up false positives. 

Having said that, using whole genome sequence data, hundreds of open reading frames can be 

identified which have novel surface-exposed or exported proteins. Using forward and reverse 

proteomics, identification of potential MHC-associated T cell epitopes has been made possible on a 

much larger scale. Various online tools are available for T-cell epitope prediction such as ANNPRED 

(http://www.imtech.res.in/raghava/nhlapred/neural.html) and Bimas (http://www-

bimas.cit.nih.gov/molbio/hla_bind) to name just a couple [70, 71]. The reverse vaccinology 

approach, where the starting point is the epitope, was used to develop a vaccine successfully for 

meningococcus B [72]. This approach has been reviewed recently and the reader is referred to 

reference 4. Antigens were expressed in Escherichia coli, used to immunise mice and antibodies with 

bactericidal activity identified, resulting in development of a 5-component vaccine against MenB. 

This approach has also been used successfully to develop a vaccine against Group B Streptococcus 

[73].  In forward immunoproteomics, T cell reactivity is the starting point. APC are transfected or 

transduced with pathogen genes of interest and the T cell response is measured. Once T cell 

reactivity is detected the gene of interest can be truncated and investigated further by site specific 

mutagenesis until the specific epitope has been identified. These T cell activity assays have the 

advantage of being very sensitive but can also generate false positives from ‘mimotopes’, sequences 

which are recognised by the T cell receptor but which are not true epitopes [20].  While these 

approaches have had some success there are still many diseases for which there are no vaccines 

available and for which treatment is not always possible. Other high throughput assays for 

identification of real T cell epitopes have been developed based on p/MHC micro arrays [74, 75] or 

multiplexed flow cytometry platforms [76, 77] and a combination of all these approaches together 

will likely be the only way to really combat the most challenging diseases.  

http://www.imtech.res.in/raghava/nhlapred/neural.html
http://www-bimas.cit.nih.gov/molbio/hla_bind
http://www-bimas.cit.nih.gov/molbio/hla_bind
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Summary 

In summary, proteomics-based systems approaches can be a valuable tool in vaccine development 

through 1) identifying novel exofacial antigens; 2) providing detailed information on the molecular 

nature of the vaccine; and 3) providing insight into the host response to vaccination. It provides a 

snapshot of the proteins present in a specific site at a specific time and can be used to describe PTM 

isoforms of proteins in a quantitative manner.  In combination with predictive and structural biology 

approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped 

addition to the armoury of vaccine discovery.  
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Legends 

Figure 1. Work flow for proteomics studies 

Figure 2.  Methods for isolating membranes for antigenic protein determination; a) by differential 

gradient ultracentrifugation; and b) by chemically tagging surface proteins and affinity purification 
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Table 1. Published studies that have successfully identified MHC class 1 epitopes for vaccines using 

proteomic-based approaches. 

Author Year Method: Key findings 

Testa at al 2012 Immunoproteomics: Uncovered cross-reactive MHC class I specific T-cell 
epitopes presented by influenza A infected cells. Vaccination with these 
peptides generated cross-strain specific T and B cell responses in 
combination ectodomain of influenza M2. 

Testa et al 2012 Immunoproteomics: Uncovered conserved HLA-2 specific epitopes from 
Dengue virus infected cells. Epitope-specific T cell response elicited on 
vaccination that protected against four Dengue virus strains. 

Nakayasu et al 2012 2D-LC MS/MS: 1448 proteins identified from T cruzi (14% surface 
glycophosphoinositol anchored). Informatics analysis suggests that 
many could bind MHC1 or II. 

Ramakrishna et al 
(2003) and 

Morse et al 

2011 MS: HLA-2 binding human cancer associated peptides identified and 
combined to activated naïve T cells in vitro. A combined peptide vaccine 
elicited peptide specific T cell response in 9 out of 14 patients. 
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