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To extend our understanding of the early visual
hierarchy, we investigated the long-range integration of
first- and second-order signals in spatial vision. In our
first experiment we performed a conventional area
summation experiment where we varied the diameter of
(a) luminance-modulated (LM) noise and (b) contrast-
modulated (CM) noise. Results from the LM condition
replicated previous findings with sine-wave gratings in
the absence of noise, consistent with long-range
integration of signal contrast over space. For CM, the
summation function was much shallower than for LM
suggesting, at first glance, that the signal integration
process was spatially less extensive than for LM.
However, an alternative possibility was that the high
spatial frequency noise carrier for the CM signal was
attenuated by peripheral retina (or cortex), thereby
impeding our ability to observe area summation of CM in
the conventional way. To test this, we developed the
‘‘Swiss cheese’’ stimulus of Meese and Summers (2007)
in which signal area can be varied without changing the
stimulus diameter, providing some protection against
inhomogeneity of the retinal field. Using this technique
and a two-component subthreshold summation
paradigm we found that (a) CM is spatially integrated
over at least five stimulus cycles (possibly more), (b)
spatial integration follows square-law signal transduction
for both LM and CM and (c) the summing device
integrates over spatially-interdigitated LM and CM
signals when they are co-oriented, but not when cross-
oriented. The spatial pooling mechanism that we have
identified would be a good candidate component for a
module involved in representing visual textures,
including their spatial extent.

Introduction

First- and second-order vision

The human visual system is sensitive to both
luminance-modulated (LM) and contrast-modulated
(CM) stimuli and has mechanisms well suited to the
extraction of each of these sources of information from
the retinal image (e.g., Foley & Legge, 1981; Malik &
Perona, 1990). The contrast detection and discrimina-
tion of simple first-order stimuli (e.g., sinusoidal
luminance gratings) is typically modeled by a linear
spatial filter followed by a sigmoidal transducer that
accelerates for low stimulus contrast (e.g., a square-law;
Meese & Summers, 2009; Meese, 2010) but becomes
compressive at higher contrasts (Legge & Foley, 1980).
The processing of second-order, or non-Fourier stim-
uli—so-called because the contrast-modulation com-
ponent is not directly visible in the Fourier spectrum
(e.g., Schofield, 2000)—is characterized by a filter-
rectify-filter (FRF) model (e.g., Dakin & Mareschal,
2000; Schofield, 2000) in which a band-limited filter is
followed by a rectifying nonlinearity then a second-
stage band-limited filter tuned to lower spatial-
frequencies than the first stage. The FRF models of
second-order vision were influenced by related models
of texture segmentation (e.g., Malik & Perona, 1990;
Landy & Bergen, 1991) and second-order motion
perception (e.g., Chubb & Sperling, 1988; Wilson,
Ferrera, & Yo, 1992).

The extent to which first- and second-order stimuli
are processed independently is a matter of some debate.
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There is no facilitation from a subthreshold pedestal
between LM and CM, either way (i.e., there is no
‘‘dipper;’’ Schofield & Georgeson, 1999), nor is there
masking between these cues (Allard & Faubert, 2007);
they are discriminable at detection threshold (George-
son & Schofield, 2002) and the judgment of global
orientation using one cue is unaffected by the presence
of the other (Allen, Hess, Mansouri, & Dakin, 2003).
All of this points to independent channels for LM and
CM. At some stage, however, CM and LM information
must be integrated. For example there is energy
summation between superimposed co-oriented LM and
CM gratings (Schofield & Georgeson, 1999) and
orientation and contrast after-effects transfer from one
cue to the other (Georgeson & Schofield, 2002).

Area summation in first- and second-order
vision

As a luminance grating is increased in size its
contrast detection threshold decreases. When this is
done for a grating placed in the central visual field, the
initial benefit of area soon diminishes, such that
detection thresholds improve very little beyond eight
signal cycles or so. The asymptotic nature of the area
summation function is traditionally attributed to
retinal inhomogeneity (e.g., see Baldwin, Meese, &
Baker, 2012; Bradley, Abrams & Geisler, 2014) and,
until recently, the benefit of stimulus area was thought
to be the result of probability summation over the
relevant detecting mechanisms (Robson & Graham,
1981; Pelli, 1985; Tyler & Chen, 2000). However, by
manipulating extrinsic uncertainty and appealing to
constraints from the shape of the psychometric
function, and by measuring classification images, a
series of recent papers (Meese & Summers, 2007, 2009,
2012; Meese, 2010; Baker & Meese, 2011, 2014;
Baldwin & Meese, in preparation) has provided strong
evidence that probability summation cannot account
for the area summation effects in first-order modula-
tions of luminance. Instead, the results are consistent
with a noisy energy model (Meese, 2010; Meese &
Summers, 2012) that sums the squared outputs of noisy
linear filter-elements over space. Thus, the contrast
detection of grating-like stimuli reveals linear spatial
pooling over much larger areas (� 8 cycles) than has
previously been supposed.

As alluded to above, one problem with the tradi-
tional area summation experiment is that nonuniform
contrast sensitivity across the visual field means that
the more peripheral parts of the stimulus contribute
little, if at all, to performance because the detecting
mechanisms there are so much less sensitive than those
in the central fovea. In fact, beyond a critical distance,
peripheral mechanisms would degrade the signal-to-

noise ratio (SNR) by contributing disproportionate
amounts of noise (Meese & Summers, 2012). One way
to address this problem is to keep the stimulus diameter
constant while manipulating the area of the stimulus
that contains the signal. Using novel interdigitated
modulation of signals in so-called Swiss cheese stimuli
(Meese & Summers, 2007, 2009; Meese & Baker, 2011)
and Battenberg stimuli (Meese, 2010), summation
ratios of ;6 dB (a factor of 2) have been found for a
doubling of stimulus area. This contrasts with the
results from traditional area summation experiments
(c.f. Meese & Summers, 2012), where the same
improvement in performance (;6 dB) requires the
stimulus area to be quadrupled by increasing grating
diameter from one to two cycles. In extensive testing of
several types of summation model, including a con-
temporary implementation of probability summation
(by taking the max() over detecting mechanisms; see
Tyler & Chen, 2000), only the noisy energy model was
found to be consistent with the full set of results (Meese
& Summers, 2012).

Studies of spatial summation in second-order vision
have found similar bow-shaped summation curves for
second-order stimuli such as CM Gaussian blobs
(Schofield & Georgeson, 1999; Sukumar & Waugh,
2007), CM gratings (Wong & Levi, 2005). and narrow-
band orientation-filtered noise textures (Landy & Oruç,
2002). In those studies that compared spatial summa-
tion of CM and LM stimuli, both Schofield and
Georgeson (1999) and Wong and Levi (2005) found
that the summation curves for CM and LM were
parallel across the whole range of stimuli tested.
However, Sukumar and Waugh (2007) found that the
area summation for CM extended beyond the range of
LM. Notwithstanding the differences above, the
similarity of the LM and CM functions implies that the
noisy energy model might be extended to also account
for area summation of CM stimuli.

More generally, it is also natural to inquire whether
the Swiss cheese approach developed above can be
exploited to shed new light on area summation for
second-order (CM) signals. In particular, we wanted to
know whether the first-order area summation process
that we have identified previously (see above) also
receives input from second-order stimuli. A result of
that kind would suggest that the area summation
process is a fairly general purpose mechanism, operat-
ing on a variety of inputs, as might be appropriate for
marking visual textures, for example.

The experiments presented here compared area
summation in CM and LM stimuli when: (a) signal
diameter and area increased together (as in the
traditional method), and (b) signal diameter was held
constant but signal area was increased by filling in the
holes of a ‘‘Swiss cheese’’ (Meese & Summers, 2007,
2009). To investigate the generality of spatial pooling, a
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second experiment compared summation between CM-
and LM-signals, where the modulations of the two
components in the compound were either superim-
posed, interdigitated or cross-oriented.

Methods

Equipment

Stimuli were presented on a Sony Multiscan 20 SE-II
CRT (Sony, Tokyo, Japan) using a ViSaGe (CRS Ltd,
Cambridge, UK) operating in 14-bit mono mode. The
display was linearized (Berns, Motta, & Gorzynski,
1993) and calibration was performed daily. Resolution
of the display was 1024 · 768 at a frame-rate of 100 Hz
with mean luminance of 53 cd/m2. Observers sat in a
dark room at a viewing distance of 1 m with their head
in a chin and head rest, and viewed the stimuli
binocularly. At this distance, 55 pixels subtended one
degree of visual angle.

Stimuli

Contrast- and luminance-modulated noise stimuli
were created with the following equation

S ¼ L· 1þ Nþ ðcCM·N·GCM·ECMÞ½
þ ðcLM·GLM·ELMÞ� ð1Þ

where L is mean luminance, N is a two-dimensional
sample of band-limited zero mean noise, GCM and GLM

are sine-wave gratings, ECM and ELM are the grating
envelopes, and cCM and cLM are the modulation
contrasts of the CM and LM signal components. LM-
only stimuli were created by setting cCM to zero. CM-
only stimuli were created by setting cLM to zero.

The target gratings (GCM and GLM) were all
sinusoidal (spatial frequency [SF] ¼ 1.25 c/8; 44 pixels
per cycle) and were modulated by a circular window
with a central plateau of unity, and half a cycle of a
raised-cosine skirt (2 pixels wide) around the edge. The
nominal grating diameters were 1, 2, 4, 8, and 16 cycles
(12.88). Since the raised-cosine skirt extended beyond
the central plateau of the grating, the smallest stimulus
had a diameter of 48 pixels (44 for the one cycle grating
plus 2 either side for the modulator) and the largest had
a diameter of 708 pixels. In Experiment 1 both GCM

and GLM were oriented horizontally. In two conditions
of Experiment 2, GLM was oriented vertically. The
gratings were always in sine-phase with respect to the
stimulus center such that the peak was always either
below or to the right of fixation depending on the
orientation of the grating.

Further, there were two conditions for the shape of
the overall stimulus envelope. The first was a ‘‘full’’
(i.e., uniform) condition and was exactly as described
above. The second was a ‘‘checks’’ condition, in which
a raised plaid modulator (Meese & Summers, 2007) was
applied to the window described above. The check
spatial frequency was 0.25 c/8 (horizontal and vertical).
There were 2.5 grating cycles per modulator check.
Interdigitated LM/CM compounds were created by
setting ELM in counter-phase with ECM. This check
modulation was used only for the eight- and 16-cycle
stimuli. The phase of the checks envelope was fixed (see
Figure 1).

Note that the full stimulus can be thought of as a
compound stimulus constructed by summing (a) the
signal in a checks stimulus with (b) the signal in another
checks stimulus of opposite phase. Thus, by measuring
sensitivities to full and check stimuli we were per-
forming a classical two-component summation exper-
iment.

The stimulus noise, N, was bandpass-filtered
Gaussian white noise (center SF ¼ 8 c/8; 60.5 octave
bandwidth) with RMS contrast of 20%. The noise
always subtended 708 pixels (which was the diameter of
the largest signal). The filtering was necessary for two
reasons. First, to ensure the modulation frequency and
carrier frequency were spectrally distinct, thereby
avoiding within-channel masking effects (Schofield &
Georgeson, 1999); second, to avoid ‘‘clumping’’ arte-

Figure 1. Examples of 16-cycle single-component stimuli for

Experiment 1. A and B are CM and LM noise gratings with a full

envelope. C and D are equivalent, but with a checks envelope.

Note that in all cases, the 1.25 c/8 grating modulation was the

signal.
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facts (Smith & Ledgeway, 1997) that might cause
second-order stimuli to be detected by first-order
mechanisms. In addition, the possibility of side-band
detection of CM stimuli by LM mechanisms (Dakin &
Mareschal, 2000) is avoided by the use of an isotropic
noise carrier.

Fixation marks indicating the spatial extent of the
target were displayed throughout the experiment. They
comprised a quad of points (2 · 2 pixels) at the corners
of a virtual square that enclosed the signal modulation
(the length of one side of this square was equal to the
diameter of the grating, GCM or GLM). We did not use a
central fixation point as this can interfere with the
detection of small stimuli (Meese & Hess, 2007;
Summers & Meese, 2009).

Examples of the single- and two-component stimuli
are shown in Figures 1 and 2 respectively.

Procedure

Target modulation contrast was selected by a pair of
interleaved three-down/one-up staircases (Wetherill &
Levitt, 1965). Step-size was 3 dB and each staircase
terminated after 12 reversals (;100 trials for the pair).
Thresholds (at 81.6% correct) were obtained by fitting a
two free-parameter (threshold and slope) Weibull
function to the staircase data using psignifit (Wichmann

& Hill, 2001). Mean observer thresholds for each
stimulus configuration were derived by averaging the
fitted threshold parameter estimated across four blocks
(;400 trials).

We used a temporal two-interval forced-choice
(2IFC) procedure where, from trial to trial, one
randomly selected interval contained a nonmodulated
noise stimulus and the other contained a modulated-
noise stimulus (the signal) at the modulation depth
selected by the staircase. The noise sample in each
interval was always different. Stimulus duration was
100 ms and the interstimulus interval was 400 ms. Each
interval was accompanied by a tone to reduce temporal
uncertainty. Observers selected the interval in which
they perceived the signal using the buttons of a mouse.
Auditory feedback was provided to indicate correctness
of response.

In Experiment 1, each experimental session com-
prised threshold estimates for either CM or LM alone,
blocked by stimulus diameter and envelope (full or
checks). In Experiment 2, the single-component (LM or
CM) thresholds obtained in Experiment 1 were used to
create CMþLM mixtures where the component mag-
nitudes were adjusted to normalize sensitivities on an
observer by observer basis. After completing Experi-
ment 1, we also performed a supplementary experiment
in which we measured detection thresholds for lumi-

Figure 2. Two-component stimuli for Experiment 2. A and C are mixtures of horizontal CM and LM gratings with a full envelope where

the gratings are (A) in phase and (C) in counter phase with each other. B and D are the equivalent interdigitated conditions; each

component (LM and CM) has a checks envelope in counter-phase with the other. E is a cross-oriented CM/LM mixture where the LM

component is a vertical grating and there is a full envelope for each grating. F is similar to E, but each component has a checks

envelope as in B and D. In the experiment the relative levels of each component were normalized for each observer with respect to

their sensitivity. Note that in all cases, the 1.25 c/8 grating modulation was the signal.
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nance gratings in the absence of noise (i.e., N in
Equation 1 was set to zero.)

Observers

Three experienced observers took part in the
experiments. DHB and RJS (co-authors) completed
Experiments 1, 2, and the supplementary experiment.
SAW completed Experiment 2 and the subset of
conditions from Experiment 1 that were needed for
Experiment 2. SAW was naive to the purposes of the
experiment. Observers had normal or optically cor-
rected-to-normal vision.

Results and discussion

Experiment 1: A comparison of area summation
of LM and CM signals

The detection thresholds for 1.25 c/8 LM and CM
gratings (one to 16 cycles; full/uniform window) are
shown in Figure 3. For LM signals (filled circles) the
summation curves are bow-shaped, similar to those
found for sine-wave gratings in the absence of noise,
and shown by the cross symbols in Figure 3C (the
results of the supplementary experiment). The nor-
malization procedure hides the overall difference

between these two functions, but overall sensitivity was
lower in the presence of external noise (e.g., a difference
of 5.3 dB at one cycle), owing to cross-channel
suppression from the bandpass noise (Baker & Meese,
2012). This confirms that area summation of luminance
contrast remains intact in the presence of noise masks,
consistent with previous observations using cross-
oriented masks (Meese, 2004).

We now compare predictions from the zero-free-
parameter noisy energy model (Meese, 2010; Meese &
Summers, 2012)—see black dashed curve on the right-
most panel of Figure 3—with the area summation
results for our LM stimuli. Full details of this model are
given in Meese and Summers (2012); we provide only
an overview here. First, the input image was filtered (by
a 1.25 c/8 horizontal sine-phase filter: spatial-frequency
bandwidth of 1.6 octaves, orientation bandwidth of
6258; Meese, 2010) and multiplied by a retinal
attenuation surface to simulate spatial inhomogeneity
(using the average parameters from Table 5 in Baldwin
et al., 2012). Each pixel was then squared and summed
over area. The prediction is fair, but slightly underes-
timates the overall effects of summation. For compar-
ison, the crosses in Figure 3C are the mean and
standard error for sensitivity to a 1.25 c/8 luminance
grating (with no noise carrier). The model predicts
these results very well, suggesting that the minor
deviations of the model from the LM results owes to a
subtle effect of noise masking, beyond the scope of our
modeling here.

Figure 3. Results for Experiment 1: area summation functions. Contrast detection thresholds are for DHB (left), RJS (middle) and their

average (right), for LM signals (circles) and CM signals (squares). Solid and half-filled symbols are for signals with a full (i.e., uniform)

and a checks envelope, respectively. Thresholds for full CM and full LM signals are normalized to 0 dB for a one-cycle image. The

differences between CM and LM thresholds for one-cycle targets were 22.1 dB and 21.0 dB for DHB and RJS, respectively. The results

for the checks stimuli are expressed relative to their respective full conditions. Error bars are standard errors of the within-subject

mean (left and middle panels) and the between-subjects mean (right panel). In the right hand panel the dashed curve is the

prediction of the noisy energy model (no free parameters; see text for details) and the black crosses are mean thresholds for

luminance gratings (the results of the supplementary experiment for DHB and RJS). These are normalized so that their average is

matched to that of the mean LM full results (see text for details). In all cases, the signal spatial frequency was 1.25 c/8.
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An experiment by Wong and Levi (2005) is closely
related to our Experiment 1, but there are several
differences in the results (and methodologies) across the
two studies. We think that our use of narrow-band
noise gave us the cleaner measure of the processes being
investigated, but some of the differences across the two
studies remain puzzling. We shall consider these
differences in the General Discussion. However, one
puzzle that we shall address here is the question of why
our CM summation curve is so much shallower than
our LM summation curve. Assuming that area
summation of CM signals is determined by linear
spatial summation across noisy local CM mechanisms,
there are at least three possibilities: (a) spatial
summation is less extensive for CM than for LM, (b)
the overall transducer exponent (p) for the local CM
mechanism (before area summation) is much greater
than for LM (i.e., p � 2; c.f. figure B3 in Meese &
Summers, 2012), or (c) CM sensitivity is attenuated
more heavily with eccentricity than is LM sensitivity.
We shall present arguments against the first two
possibilities later. The third possibility is more prom-
ising. For example, Hess, Baker, May, and Wang
(2008) demonstrated that for low-modulation frequen-
cies (;1 c/8 and below), the decline in CM sensitivity
with eccentricity follows that predicted by the spatial-
frequency of the carrier. As the deleterious eccentricity
effects for LM signals are scale invariant (e.g., Baldwin
et al., 2012), and as the center spatial-frequency of our
band-limited noise carrier was 8 c/8, 6.4 times higher
than our 1.25 c/8 signals, we might expect signal
sensitivity to decline with eccentricity much more
rapidly for CM than for LM, consistent with our
results (Figure 3). Notwithstanding our remark above
regarding the choice of noise carrier, the considerations
here reveal a profound difficulty in deriving a true
measure of spatial summation of second-order signals
using conventional methods.

We addressed the problem above by extending
Experiment 1 to use the method of Meese and Summers
(2007), where contrast sensitivity is compared for
stimuli with a fixed diameter—thereby stimulating the
same retinal extent—but a variable signal area. The
half-filled symbols in Figure 3 show detection thresh-
olds for check windowed stimuli (for LM and for CM;
see Figure 1C and D) with diameters of eight and 16
cycles.

For both LM and CM stimuli, filling in the gaps of
the checks to produce full (uniform) modulation—
thereby doubling the signal area—improved sensitivity
by an average of about 4.7 dB (a factor of 1.7; compare
filled and half-filled symbols in Figure 3). Clearly there
was substantial area summation for both CM and LM
stimuli (over at least two envelope checks, equivalent to
five stimulus cycles) despite the relatively small
improvement in sensitivity when area was increased in

the conventional way (by increasing stimulus diameter).
The ‘‘cheese effect’’ here is similar in magnitude to the
;5 dB benefit that has been found for luminance
gratings with comparable windowing (Meese & Sum-
mers, 2007; Baker & Meese, 2011).

Experiment 2: Investigating the combination of
LM and CM over space

Experiment 1 provided good evidence for extensive
area summation of signal for both LM and CM signals
(well beyond that of a stereotypical V1-type local
receptive field). However, it remained unclear whether
there is a single summing device for both signal types,
or parallel pathways for area summation across LM
and CM. Previous studies (Schofield & Georgeson,
1999) have reported results consistent with energy
summation between superimposed LM and CM
gratings of the same orientation, but did not establish
whether this was taking place only within local
mechanisms or whether a more global signal integrator
might be involved. Here we addressed this issue with
the help of the check windowed stimulus design: by
placing patches of CM and LM signals on either the
same or different parts of the retina, it becomes possible
to determine whether the area summation device
receives input from both types of signal. This follows
the approach of Meese and Summers (2009), who used
the technique to investigate contrast (LM) summation
across area and eyes.

Specifically, we compared summation ratios for a
single component (either LM or CM) and several CMþ
LM compounds, where the CM and LM components
were either superimposed or interdigitated across
space. Furthermore the two components had either the
same or orthogonal orientations (co-oriented or cross-
oriented). When the stimulus components were co-
oriented, the signals were either in- or out-of-phase
with each other. For the compound stimuli and for
each observer the signal strength of the CM component
was adjusted relative to the LM component so that
sensitivity was equalized across the two. For the co-
oriented component pairs, this normalization was done
using the mean thresholds from Experiment 1. For the
cross-oriented conditions normalization was carried
out relative to thresholds obtained for full and check
windowed vertical LM stimuli in Experiment 2. In all
cases, the normalization was done on an observer by
observer basis, and stimulus diameter was 16 cycles.

For each stimulus pairing, summation ratios were
calculated as the dB difference (i.e., 20 · log of the
sensitivity ratio) for a single component in the
compound stimulus (LM þ CM) compared to that
single component alone (the normalization procedure
means that it does not matter which). The results for
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three observers (symbols) and their average (bars), are
shown in Figure 4. The two bars on the far left show
the mean summation ratio between full and checks
windowed stimuli for CM (green) and LM (red) signals
(results for RJS and DHB are replotted from Exper-
iment 1), which was 4.7 dB in each case. This repeats
the observation from Experiment 1: signal is integrated
over space for both first- and second-order stimuli.

The middle two bars show the results for co-
orientation summation between CM and LM. When
the signals were superimposed (solid blue bar) mean
summation was 2.7 dB. This is close to the energy
summation prediction (3 dB) found previously by
Schofield and Georgeson (1999), and provides sup-
porting evidence for a spatial mechanism that inte-
grates signal over first- and second-order stimuli.
Summation ratios were only slightly lower (2.3 dB;
hashed blue bar), when the two components were
interdigitated, suggesting that the mechanism first
identified by Schofield and Georgeson also integrates
over space. When the signals were superimposed (solid
blue bar) there was a slight tendency for the counter-
phase arrangement to produce higher summation ratios
than the in-phase arrangement (3.2 dB vs. 2.2 dB on
average; not shown). Previous work (Schofield &
Georgeson, 1999; Georgeson & Schofield, 2002) found
no effect of phase but, like us, Schofield and Georgeson

found more interobserver variability in the in-phase
condition than the out-of-phase condition (see their
figure 7). It is not clear what the cause of these small
differences and/or individual differences might be, but
they detract little from our overall findings and
conclusions.

The two bars on the far right show the summation
ratios between orthogonal LM and CM signals. There
was very little summation (0.9 dB, consistent with
probability summation; see Modeling below) for these
conditions, regardless of whether the components were
superimposed (solid orange bar) or interdigitated
(checked orange bar), less than has been found for
interdigitated pairings of orthogonally-oriented LM
signals (Meese, 2010). Note that this loss of cross-
oriented summation relative to the co-oriented
LMþCM conditions strengthens the case for there
being something more sophisticated than probability
summation in the co-oriented conditions, since other-
wise, surely, we would expect a similar result for the
cross-oriented conditions.

Modeling area summation of LM and CM

Schofield and Georgeson (1999) found that a simple
two-channel energy summation model fit their data

Figure 4. Results for Experiment 2: Summation ratios are for various pairs of stimulus components. Red and Green: Benefit of the full

(uniform) windowing over the check windowing for CM and LM signals, respectively (see Figure 1). Blue, Solid, and Hashed: Benefit of

adding a normalized CM signal to an LM signal for superimposed and interdigitated component pairs, respectively. Results were

averaged across phase (see Figure 2A–D). Orange, Solid, and Hashed: same as blue, but for crossed signal orientations (see Figure 2E,

F). Bars show means across three observers and interobserver standard errors; symbols are individual means for each condition. The

double-headed arrows are predictions from a zero free-parameter model for each pair of conditions (see text for details). Note that

the x-axis **/* labels refer to sensitivities (not thresholds).
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well. Their model computed the mean energy in each
channel (i.e., the mean of the squared outputs of the
LM and CM mechanisms, prior to linear summation).
Here we extend the scope of that model by computing
the LM and CM energy at each location in the image
(i.e., summing the squared outputs of the LM and CM
mechanisms at each location) prior to linear summa-
tion across space (see Figure 5). We develop this model
first, producing the successful predictions in Figure 4,
before considering and rejecting some alternatives.

We begin by making the simplifying assumption that
our LM and CM mechanisms are able to successfully
recover the signals from the stimulus (e.g., as shown by
Schofield & Georgeson, 1999), and that they have equal
responses at detection threshold. This allows us to use
normalized signal strengths (c) as the inputs to a
computational model. For co-oriented signals, the
model involves linear summation of signal over space.
Note that we have made no explicit provision for
spatial phase but, led by our results (Figure 4), we
assume that phase information is discarded at the
initial filtering stage. Cross-oriented signals produced
very little summation in our Experiment 2, and we
wondered whether this might be accommodated by
probability summation across cross-oriented mecha-
nisms. Detail modeling of this concept can be quite
complex (Tyler & Chen, 2000; Meese & Summers,

2012), but for the situation here it is reasonable to
approximate these effects using Minkowski summation
with an exponent of 4 across orthogonally-oriented
mechanisms following their square-law nonlinearities
(see Meese & Summers [2012] for extensive theoretical
treatment of probability summation and data).

Following Meese (2010; appendix C), we derived an
analytic expression for summation ratios between
single- and dual-component stimuli. The signal-to-
noise ratio (SNR) is given by:

SNR ¼
X
jc·LMij2 þ jc·CMij2ffiffiffi

n
p ð2Þ

Where LMi and CMi are co-oriented luminance- and
contrast-modulated signals, respectively, at the ith
spatial location, n is the number of pixels in the input
image and

ffiffiffi
n
p

is the expected standard deviation of the
noise in the summation channel. With the arbitrary
assumption that signal detection occurs for signal
strength, cT, (contrast at threshold) when SNR¼ 1
then:

1 ¼
c2
T

X
jLMij2 þ jCMij2ffiffiffi

n
p ð3Þ

and solving for cT we have:

cT ¼
X
jLMij2 þ jCMij2ffiffiffi

n
p

" #�1
2

ð4Þ

The summation ratio, SR, for a co-oriented sum-
mation channel is given by:

SR ¼ cTðSingleÞ
cTðCompoundÞ ð5Þ

where cT(Compound) and cT(Single) are the signal
strengths at threshold for the same single component in
the compound and single-component stimuli respec-
tively (because of the normalization it does not matter
which).

Combination across orientation channels is assumed
to be probability summation, following area summa-
tion, and is computed here using Minkowski summa-
tion with an exponent of 4 to combine contrast
sensitivities, giving:

cTðCrossOrientedCompoundÞ

¼
X
ðc�4

T;h¼08 þ c�4
T;h¼908Þ

h i�1
4 ð6Þ

where cT,h¼y is the contrast detection threshold for the
channel oriented at y0. In this instance, the summation
ratio is computed using Equation 5, but with Equation
6 substituted into the denominator.

Quantitative model predictions are shown in Figure
4 by the double-headed arrows. Note that the model

Figure 5. Area summation model for combining co-oriented

signals across first- and second-order mechanisms and across

space. Following Meese (2010), limiting noise (N) is placed

before the area summation stage. For simplicity, summation

across first- and second-order channels is shown as mandatory,

but this is not a requirement of our model and a scheme in

which the observer is able to switch between first- and second-

order mechanisms as appropriate is also consistent with our

results (i.e., the summing box to the left of the noise (N) has the

option to switch as well as to sum), since this does not affect

the limiting noise (N). Cross-oriented signals are assumed to be

combined by probability summation at the ‘‘pooling’’ stage,
following the area summation stage. This scheme extends the

area summation scheme proposed by Meese (2010; his figure 6)

for LM stimuli.

Journal of Vision (2015) 15(1):12, 1–13 Summers, Baker, & Meese 8

Downloaded From: https://jov.arvojournals.org/ on 06/21/2018



predicts exactly the same levels of summation for each
condition in the pair, but different levels for each of the
three pairs. In all cases, the predictions are in good
agreement with the experimental results with no free
parameters. When the two stimulus components are the
same orientation and of the same type (i.e., both LM or
both CM) then high summation (5.1 dB) is predicted
and found (red and green bars in Figure 4). At first
glance this might seem puzzling since in the model,
linear summation over area comes after the square-law
(energy) transduction, and so we might expect the
conventional prediction of 3 dB (a factor of =2) for
two-component energy summation. However, as rec-
ognized elsewhere (Meese & Summers, 2007, 2009), the
raised antiphase pair of check modulators that sum to
produce our full stimulus (see Methods) are not
spatially independent but have substantial overlap in
the regions between their peaks. This means that the
two modulators sum locally in the display (prior to
exponentiation by the square-law transducer in the
model), lifting the summation ratio predicted by the
model above 3 dB.

When the two components are co-oriented but of
different types (LM þ CM), then intermediate energy
summation (3 dB) is predicted and found. Note that for
this stimulus, although the LM and CM signals are
independent; there is no physical summation between
them in the display and the model follows the factor of
=2 intuition. Note also that the global (area)
integration property of the model means that predic-
tions are identical, regardless of whether the LM and
CM components were superimposed or interdigitated.

Probability summation for cross-oriented compo-
nents, following energy transduction and area sum-
mation, predicts a summation ratio of 0.75 dB (the
combination of square-law signal transduction and a
Minkowski exponent of 4 produces an overall sum-
mation exponent of 8), and is very close to what we
found for the cross-oriented pairings (0.81 dB and 0.9
dB for interdigitated and superimposed cross-oriented
components respectively). The other conditions pro-
duced more summation than this, implying that they
involved a summation process more potent than
probability summation, consistent with our model.

We can also rule out several other model configu-
rations. One possibility is that square-law energy
transduction follows linear summation across LM and
CM. However, if this were the case, our interdigitated
LM þ CM stimuli would behave in the same way as
LM and CM alone (red and green bars in Figure 5)—
linear summation in the visual system mimicking linear
summation of signal in the display—and that is not
what we found. Another possibility is that area
summation takes place within LM and within CM
channels before summing across the two. In this case,
independent noise sources would need to be placed

after square law transduction, one for each channel
(LM and CM), but before the area summation device
to be consistent with previous work (Meese, 2010;
Meese & Summers, 2012). For this arrangement to
predict 3 dB of summation between superimposed LM
and CM stimuli (Figure 4) mandatory summation
across LM and CM channels would be required.
Without this, the observer could benefit by switching
out the noise from the irrelevant channel in the single
component conditions. This cascade of ideal summa-
tion with square-law energy transduction predicts a
fourth-root summation law (Meese, 2010), giving 1.5
dB of summation for interdigitated LMþ CM pairs,
which is too little (by comparison to human results).
Thus, the requirement for mandatory pooling across
LM and CM channels (to achieve summation¼ 3 dB)
makes this alternative scheme seem unlikely since LM
and CM signals are clearly distinguishable at threshold
(Georgeson & Schofield, 2002) and above (e.g., see
Figure 1).

Summary and general discussion

We assessed area summation of luminance and
contrast modulations of a noise stimulus. Summation
slopes were shallower for CM than for LM signals
(discussed below). However, when stimulus diameter
was held constant and signal area was doubled,
summation was around a factor of 1.7 within LM or
CM stimuli. Some of this we attribute to signal
summation within the display, the rest (a factor of =2)
to energy summation over space. Combining the two
cues either in a superimposed or interdigitated config-
uration reduced signal summation to levels roughly
consistent with energy summation (a factor of around
=2). Very little signal summation was found when LM
and CM gratings were orthogonal. All the results are
shown to be consistent with a noisy energy model that
sums co-oriented LM and CM channels then pools
over area, with a final stage of probability summation
for cross-oriented signals. There is good evidence that
co-oriented first- and second-order information is
partially correlated in natural images (Johnson &
Baker, 2004) and so it is perhaps not surprising that the
visual system exploits this correlation by pooling across
these signals. Our experiments here do not put an upper
limit on the spatial extent of the pooling, but it must
operate over at least five signal cycles.

Comparison with Wong and Levi (2005)

Wong and Levi (2005) found steeper summation
functions than we did. In particular, for both LM and
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CM they found the initial slope (from one to two
cycles) to be �1. They attributed this to linear
summation within a receptive field, but this is
questionable. A slope of �1 would occur only if the
limiting noise were constant (see Meese, 2010). While
this is true for their full-field external noise, the
implication is that the same detecting mechanism was
used when the number of stimulus cycles was doubled
from one to two cycles (thereby doubling the integral of
signal contrast but with no concomitant increase in
noise). In the blocked experimental design used by
Wong and Levi (2005) (and us) this seems unlikely,
particularly for LM, since most estimates put the
receptive field of the detecting mechanism at something
less than two full cycles (e.g., see Meese, 2010; Meese &
Summers, 2012). If, on the other hand, the stimuli were
detected by mechanisms whose spatial extent matched
the targets, then the summation slope would be �1/2,
consistent with this ideal strategy (and the initial slopes
of our own summation functions). So why might Wong
and Levi’s summation slope have been so steep? One
possible factor is that, unlike in our study, Wong and
Levi provided no indication of the precise location and
size of the target stimulus. Thus, for their smallest
stimulus sizes, we might expect a drop in their
measured sensitivity (and therefore a steeper summa-
tion function) owing to (spatial) uncertainty (Pelli,
1985; Meese & Summers, 2012). But this still leaves the
question of why the summation functions measured by
us should be so much shallower for CM than for LM.
At first glance, it might seem that summation for CM is
not as extensive as it is for LM, but if that had been so,
then we would not have found the strong benefit of
filling in the holes in the Swiss cheese stimulus.
Similarly, although the shallow summation functions
might be explained by a rapidly accelerating contrast
response exponent for CM (p � 2), that would not be
consistent with the results and modeling in Experiment
2. As we mentioned in the Results and discussion
section, a more likely account of the shallow CM
functions relates to the decline in sensitivity to our
carrier away from the center of the display. We used
high-pass noise to avoid within channel effects of noise
masking of the target from the carrier. However, by
doing this, sensitivity to our carrier would have
declined quite rapidly with eccentricity (Baldwin et al.,
2012), attenuating the effective depth of signal modu-
lation in the periphery, reducing sensitivity, and
thereby the summation slope. Furthermore, filling in
the holes of the Swiss cheese would not suffer from this
problem because that operation does not involve
further encroachment of peripheral retina (note that the
check modulations were in sine-phase with the center of
the display). Nonetheless, regardless of these details
and the differences in stimulus design, it is gratifying
that one of the main conclusions of Wong and Levi

(2005) is the same as one of ours: that second-order
(CM) signals are summed over multiple signal cycles,
similar to first-order signals (LM).

Other factors

The cue-invariant spatial summation found here is
closely related to the eye-invariant spatial summation
found at detection threshold (Meese & Summers, 2009)
and above (Meese & Baker, 2011; i.e., binocular
summation for interdigitated signals across the eyes is
very similar to that found for binocular superposition).
Similarly, other studies suggest pooling over time and
orientation (Meese, 2010; Baker, Meese, & Georgeson,
2013; Meese & Baker, 2013). Thus, the emerging
picture is that early stages of vision analyze the image
in terms of its basic properties, and that later stages
pool across those dimensions. However, the details of
how that pooling is controlled remain to be elaborated,
and some dimensions are clearly handled differently
from others. For example, other than at very low
spatial frequencies (Meese & Baker, 2011; Gheirat-
mand, Meese, & Mullen, 2013), it seems that pooling
across the eye is mandatory. In contrast, although the
study here shows that spatial pooling does take place
across LM and CM, separate LM and CM pathways
presumably remain available to the observer, since LM
and CM stimuli are not easily confused. Furthermore,
separate pathways would also be needed for higher
level analysis in which LM and CM information is used
to determine whether luminance changes in the retinal
image derive from changes in illumination or changes
in material (Schofield, Hesse, Rock, & Georgeson,
2006). Similarly, in Experiment 2 we found very little
effect of signal phase on summation ratios and, for
simplicity, we dispensed with the phase term in our
modeling. However, this does not necessarily mean that
the spatial integrator that we have identified pools
indiscriminately over phase; that possibility has not
been tested directly. Indeed, since the phase relation-
ship between LM and CM is valuable for determining
shape from shading (Schofield, Rock, & Georgeson,
2010) this information must be preserved within the
relevant visual module.

We are left with one final puzzle, however. The
scheme in Figure 5 provides a good account of all of
our results here, and involves probability summation
across orientation channels. The cross-oriented stimuli
here were always LM-CM pairings, but since the co-
oriented area summation mechanisms pool over LM
and CM, then the scheme here makes the same
predictions for cross-oriented LM-LM (and CM-CM)
pairings. However, for cross-oriented interdigitated
Battenberg elements, Meese (2010) found summation
ratios closer to 1.5 dB, implying a Minkowski exponent
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of about 2 across orthogonal orientation channels
(following earlier square-law transduction of signal
contrasts), consistent with a second stage of square-law
transduction and linear summation across orientation.
Whether these different conclusions about the final
summation stage owe to subtle differences in the
stimulus type, a model detail relating to LM-CM
pairings that we have overlooked, or something else,
remains unclear. However, we do note the following
possibility. If there were three different classes of co-
oriented area pooling mechanisms: pure LM, pure CM,
and LM-CM mixes, then the inconsistency above could
be resolved by supposing linear summation across only
the orthogonal pure mechanisms of the same type (i.e.,
either both LM or both CM), leaving probability
summation across all other combinations.

Keywords: area summation, second order, cue combi-
nation, computational modeling

Acknowledgments

This work was supported by an Engineering and
Physical Sciences Research Council (EPSRC) UK
grant to TSM and Mark Georgeson (EP/H000038/1).
We would like to thank Mark Georgeson for code to
generate the stimuli and for helpful discussions
regarding the modeling. We also thank Nicolaas Prins
and an anonymous reviewer for helpful comments on
an earlier version of this manuscript. Some of this work
was presented at the European Conference of Visual
Perception, 2012 in Alghero, Sardinia. This work was
performed under the guidelines of the original state-
ment of Helsinki.

Commercial relationships: none.
Corresponding author: Tim S. Meese.
Email: t.s.meese@aston.ac.uk.
Address: Centre for Vision and Hearing Research,
School of Life and Health Sciences, Aston University,
Birmingham, UK.

References

Allard, R., & Faubert, J. (2007). Double dissociation
between first-and second-order processing. Vision
Research, 47, 1129–1141. doi:10.1016/j.visres.2007.
01.010. [PubMed]

Allen, H. A., Hess, R. F., Mansouri, B., & Dakin, S. C.
(2003). Integration of first- and second-order
orientation. Journal of the Optical Society of

America. A, Optics, Image Science, and Vision,
20(6), 974. doi:10.1364/JOSAA.20.000974.
[PubMed]

Baker, D. H., & Meese, T. S. (2011). Contrast
integration over area is extensive: A three-stage
model of spatial summation. Journal of Vision,
11(14):14, 1–16, http://www.journalofvision.org/
content/11/14/14, doi:10.1167/11.14.14. [PubMed]
[Article]

Baker, D. H., & Meese, T. S. (2014). Measuring the
spatial etent of texture pooling using reverse
correlation. Vision Research, 97, 52–58, doi:
10.1016/j.visres.2014.02.004.

Baker, D. H., & Meese, T. S. (2012). Zero-dimensional
noise: The best mask you never saw. Journal of
Vision, 12(10):20, 1–12, http://www.
journalofvision.org/content/12/10/20, doi:10.1167/
12.10.20. [PubMed] [Article]

Baker, D. H., Meese, T. S., & Georgeson, M. A. (2013).
Paradoxical psychometric functions (‘‘swan func-
tions’’) are explained by dilution masking in four
stimulus dimensions. I-Perception, 4(1), 17–35. doi:
10.1068/i0552. [PubMed]

Baldwin, A. S., & Meese, T. S. (2015). Fourth-root
summation of contrast over area: No end in sight
when sensitivity is compensated by a witch’s hat. In
preparation.

Baldwin, A. S., Meese, T. S., & Baker, D. H. (2012).
The attenuation surface for contrast sensitivity has
the form of a witch’s hat within the central visual
field. Journal of Vision, 12(11):23, 1–17, http://
www.journalofvision.org/content/12/11/23, doi:
10.1167/12.11.23. [PubMed] [Article]

Berns, R. S., Motta, R. J., & Gorzynski, M. E. (1993).
CRT colorimetry. Part I: Theory and practice.
Color Research and Application, 18(5), 299–314.
doi:10.1002/col.5080180504.

Bradley, C., Abrams, J., & Geisler, W. (2014). Retina-
V1 model of detectability across the visual field.
Journal of Vision, 14(12):22, 1–22, http://www.
journalofvision.org/content/14/12/22, doi:10.1167/
14.12.22. [PubMed] [Article]

Chubb, C., & Sperling, G. (1988). Drift-balanced
random stimuli: A general basis for studying non-
Fourier motion perception. Journal of the Optical
Society of America A, 5(11), 1986–2007. doi:10.
1364/JOSAA.5.001986. [PubMed]

Dakin, S. C., & Mareschal, I. (2000). Sensitivity to
contrast modulation depends on carrier spatial
frequency and orientation. Vision Research, 40(3),
311–329, doi:10.1016/S0042-6989(99)00179-0.

Foley, J. M., & Legge, G. E. (1981). Contrast detection
and near-threshold discrimination in human vision.

Journal of Vision (2015) 15(1):12, 1–13 Summers, Baker, & Meese 11

Downloaded From: https://jov.arvojournals.org/ on 06/21/2018

http://www.ncbi.nlm.nih.gov/pubmed/17363024
http://www.ncbi.nlm.nih.gov/pubmed/12801165
http://www.ncbi.nlm.nih.gov/pubmed/22178702
http://www.journalofvision.org/content/11/14/14.long
http://www.ncbi.nlm.nih.gov/pubmed/23024357
http://www.journalofvision.org/content/12/10/20.long
http://www.ncbi.nlm.nih.gov/pubmed/23799185
http://www.ncbi.nlm.nih.gov/pubmed/23104816
http://www.journalofvision.org/content/12/11/23.long
http://www.ncbi.nlm.nih.gov/pubmed/25336179
http://www.journalofvision.org/content/14/12/22.long
http://www.ncbi.nlm.nih.gov/pubmed/3210090


Vision Research, 21, 1041–1053. doi:10.1016/
0042-6989(81)90009-2. [PubMed]

Georgeson, M. A., & Schofield, A. J. (2002). Shading
and texture: Separate information channels with a
common adaptation mechanism? Spatial Vision,
16(1), 59–76. doi:10.1163/15685680260433913.
[PubMed]

Gheiratmand, M., Meese, T. S., & Mullen, K. (2013).
Blobs versus bars: Psychophysical evidence sup-
ports two types of orientation response in human
color vision. Journal of Vision, 13(1):2, 1–13, http://
www.journalofvision.org/content/13/1/2, doi:10.
1167/13.1.2. [PubMed] [Article]

Hess, R. F., Baker, D. H., May, K., & Wang, J. (2008).
On the decline of 1st and 2nd order sensitivity with
eccentricity. Journal of Vision, 8(1):19, 1–12, http://
www.journalofvision.org/content/8/1/19, doi:10.
1167/8.1.19. [PubMed] [Article]

Johnson, A. P., & Baker, C. L. Jr., (2004). First-and
second-order information in natural images: a
filter-based approach to image statistics. Journal of
the Optical Society of America. A, Optics, Image
Science, and Vision, 21(6), 913. doi:10.1364/
JOSAA.21.000913. [PubMed]

Landy, M. S., & Bergen, J. R. (1991). Texture
segregation and orientation gradient. Vision Re-
search, 31, 679–691. doi:10.1016/
0042-6989(91)90009-T. [PubMed]
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