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Abstract 
 

Excepting the Peripheral and Central Nervous Systems, the Immune System is the 

most complex of somatic systems in higher animals. This complexity manifests itself at 

many levels from the molecular to that of the whole organism. Much insight into this 

confounding complexity can be gained through computational simulation. Such 

simulations range in application from epitope prediction through to the modeling of 

vaccination strategies. In this review, we evaluate selectively various key applications 

relevant to computational vaccinology: these include technique that operates at 

different scale i.e., from molecular to organisms and even to population level.  

 

Keywords: vaccine research; modelling; computational vaccinology; immune 

system; epitopes; simulations. 

Introduction 
Despite its overwhelming and often confounding complexity, the immune system is 

ultimately a collection of parts working together to effect defence against pathogens 
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and many other homeostatic functions. The problem, of course, when one tries to 

understand the immune system, is the remarkable level of emergent behaviour we 

observe - at many levels - from the formation of supramolecular complexes at the 

Immune synapse; through the action of specific immune cells, such as dendritic cells 

and T-cells; to organs; and, finally, whole organisms. Beyond even the whole animal, 

effects such as herd immunity and infectivity patterns manifest themselves only in 

large, interacting pseudo-social networks. As we see, or allude to, elsewhere, much of 

this can be modelled, and modelled with some success. Yet despite the daunting 

emergent, higher-level behaviour we see, much can still be learned from attempting to 

understand and model the underlying molecular components that comprise the 

immune system. 

Nowadays biological systems are analysed and managed by means of new 

emerging technologies that are revolutionizing biotechnology and information 

technology, producing a huge amounts of data. This data needs to be integrated and is 

quickening the process of knowledge discovery, enabling the study of biological 

systems at various levels i.e., from molecules to organisms and even to the population 

level.  

The human activity entailing the representation, the manipulation and the 

communication of real-world daily life objects is known as modelling. Mathematical and 

computational models are gradually used to assist deduce biomedical data produced 

by high-throughput genomics and proteomics endeavours. The application of advanced 

computer models allowing the simulation of complex biological processes produces 

hypotheses and proposes experiments. Computational models are set to exploit the 

wealth of data stored on biomedical databases through text mining and knowledge 

discovery methods. 

The first immunoinformatics tools for vaccine design were developed in the 1980s 

by DeLisi and Berzofsky and others [56]. Chief among vaccine design informatics tools 

are epitope-mapping algorithms. A new era of vaccine research began in 1995, when 

the complete genome of Haemophilus influenzae (a pathogenic bacterium) was 

published [58]. In parallel with advances in molecular biology and sequencing 

technology, bioinformatics analysis of microbial genome data has allowed in silico 

selection of vaccine targets. Further advances in the field of immunoinformatics have 

led to the development of hundreds of new vaccine design algorithms. This novel 

approach for developing vaccines has been named reverse vaccinology [59] or 

immunome-derived vaccine design [60]. Pharmaceutical companies are starting to use 
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models to optimize/predict therapeutic effects at the organism level, suggesting that 

computational biology can effectively play a key role in this field [57]. 

Along with these techniques, the simulation of the immune system in a detailed way 

to reproduce and predict the effects of artificial immunity elicited by vaccines 

represents a challenge that several people are attempting with success. The immune 

system represents one of the most complex biological system. It is, in fact, an adaptive 

learning system which operates at multiple levels (molecules, cells, organs, organisms, 

and groups of organisms). Immunological research, both basic and applied, needs to 

deal with this complexity [4]. 

In this paper, we analyse and discuss several computational modelling techniques 

applied to vaccinology science. 

Epitopes 

Arguably, the simplest unambiguous component of the immune is the so-called 

epitope. The epitope at its most generally defined is very much the immunological 

quantum that lies central to immune responses and vaccination. It is the ability of the 

immune system to identify, respond to, and remember epitopes that powers natural 

immunity, and thus vaccination. Peptide epitopes are mediated primarily by their 

interaction with Major Histocompatibility Complexes (T-cell Epitopes, or TCEs) and 

antibodies (B-cell epitopes, or BCE).  

Currently, commonly-used prediction of B cell epitopes often remains primitive, or 

depends on an elusive knowledge of protein structure, and both structure- [9] and data-

driven [10] prediction of antibody-mediated epitopes have again been shown to be 

poor. Explaining such sub-optimality may point to a fundamental misinterpretation of 

extant epitope data. PEPSCAN is perhaps the most abundant data available currently 

but may not be what it seems. Experimentally derived epitopes are identified by 

assayed against pre-existing antibodies with affinity for whole antigens. If, for example, 

“epitopes” are mapped back to their original antigen structure, we find them randomly 

located through the structure rather than equating to obvious surface patches, as might 

be expected if they simply reproduced discontinuous epitopes identified by 

crystallography.  In situ antigenic regions are often not exposed and thus accessible to 

binding by antibodies binding but rather completely buried. If we compare the 

conformation of antibody-bound peptides with those from the intact antigen, they are 

usually quite different. However, B-cell epitopes in isolated antigen and in whole 

antigen-antibody complexes are much more similar. Is it possible then, that the isolated 
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peptide adopts a conformation which mimics the surface features of a discontinuous 

epitope or that the preformed antibody recognize denatured antigen in vivo.  

Currently, prediction of T cell epitopes remains largely confined to predictions of 

varying accuracy of peptide binding to Major Histocompatibility Complex. Nonetheless, 

and compared to B-cell prediction, methods for predicting T cell epitopes show 

significant algorithmic sophistication. Prediction of the binding of peptides to class I 

MHCs, at least for well-studied alleles, such as HLA-A*0201, is now at useable 

accuracy [11]. However, comparative studies have shown recently that the prediction 

of class II MHC binding prediction T-cell epitopes is typically poor [12][13][14][15], and 

likewise for structure-driven prediction of class I and class II T-cell epitopes [16].  

All epitope prediction methods remain severely constrained by the data used to 

construct them; this is particularly true of T-cell prediction. It has recently been shown 

that that T-cell epitopes, which were previously thought to be short peptides of 8-10 

amino acids, can be up to 16 amino acids or perhaps even more. The existence of 

such longmer epitopes has significantly enlarged the repertoire of peptides open to 

inspection by T-cells [17]. Many of the cutting edge approaches to epitope discovery 

are trying to address these issues by inducing models of large numbers of alleles 

across many peptide lengths by making assumptions about how separable are the 

sub-sites in the peptide binding groove and how thee can be combined combinatorially 

to generate pseudo-binding profiles [18][19][20].  However, as is well-known, no data-

driven method can go beyond the data used to train it; all methods are likewise much 

superior in their ability to interpolate than their ability to extrapolate. 

Evidence exists that the responsiveness of the immune system to pathogenic 

proteins is only poorly correlated with the possession of T cell epitopes, and that many 

potential epitopes have been deleted in proteins regularly accessible to immune 

surveillance, perhaps as an evolutionary counter measure in the war between host and 

pathogen [21]. Such a deficit, and the significantly sub-optimal prediction of both B-cell 

and T-cell epitopes described above have suggested that methods which rely solely on 

the possession of epitopes are unlikely to be effective at identifying antigens or 

immunogens. This conjecture is confirmed by what information there is, which indicates 

that there is little simple correspondence between antigens selected on this basis and 

experimentally verified antigenic or protective proteins. In turn this has led to the 

development of other approaches to predicting whole antigens within pathogen 

genomes, proteins likely to be antigenic and protective; of which there are three key 

approaches: subcellular location prediction, sequence similarity, and empirical 
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statistical approaches, typified by VaxiJen [22][23] and expert systems such as nerve 

[24]. 

PAMPS and Adjuvants 

Other epitopes exist, notable the so-called Pathogen-Associated Molecular Pattern 

(or PAMP), highly conserved and typically complex molecular moieties recognised by 

pattern recognition receptors (or PRRs) of the innate immune system [25]. Many 

PAMPs, and molecules mimicking the recognition of PAMPs, form the basis of 

adjuvants. Adjuvants potentiate immune responses, reducing the dosing requirements 

needed to induce protective immunity, particularly for weakly immunogenic subunit 

vaccines. Few adjuvants are licensed for human use: principally alum, and squalene-

based oil-in-water adjuvants. Yet there are many types of potential adjuvant, including 

proteins, oligonucleotides, drug-like small-molecules, and liposome-based delivery 

systems.  

So-called Small Molecule Adjuvants (SMAs) are the most underexplored of existing 

adjuvants, despite the observation that many small molecules exhibit overt 

adjuvanticity. SMAs include both complex biologically-derived natural products and 

fully-synthetic drug-like molecules [26]. Notable natural Product SMAs include QS21; 

muramyl dipeptide; various formulations of mannide monooleate, MurNAc-L-Ala-γ-D-

Glu-mDAP (M-TriDAP), and Monophosphoryl-Lipid A (or MPL).  

Fully-synthetic drug-like small molecules are also adjuvants [26]: for example, 

Bestatin (Ubenimex or UBX), Levamisole; Bupivacaine; and 2-(4-Methoxyphenyl)-N-

methylethanamine also known as compound 48/80. Yet easily the best explored of 

SMAs are the so-called Imidazoquinolines, the best known are Imiquimod, 

Resiquimod, and Gardiquimod, these target Toll-like receptors: TLR7 and/or TLR8, 

inducing IFN, TNF and IL-12 secretion.  

SMAs can also be discovered systematically using virtual screening approaches 

[26]: the best example is our discovery of adjuvants functioning as antagonists of the 

CCR4 Chemokine receptor. Inhibiting CCR4 receptors may give rise to adjuvantism as 

the receptor is expressed by regulatory T-cells (or Tregs) that normally suppress 

immune responses [27]. Inhibiting CCR4 function is anticipated to exacerbate vaccine 

responses.  By combining experimental validation with virtual screening, we have 

identified several potential adjuvants, acting through the apparent inhibition of Treg 

proliferation [28][29]. Three-dimensional or structure-based virtual screening (SB-VS), 

which utilises automated protein docking (APD), is an effective means of identifying 
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ligands with great celerity [30][31][32]. VS can identify real, high-affinity ligands with 

unmatched cost-effectiveness and efficiency. APD-based SB-VS can dock 

innumerable ligand molecules into a defined binding site [33]. SB-VS is exceptionally 

logistically efficient, saving time, labour, and resource. Months of robotically-mediated 

experimentation are replaced by weeks of computational analysis, complemented by a 

handful of reliable, hand-crafted assays. At most a few hundred molecules need be 

tested [33]. This handful is put through a hierarchical cascade of highly specific and 

informative assays in vitro, with actives then tested for their whole system adjuvant 

properties in vivo. The molecules we found [28][29] behave appropriately in a variety of 

in vitro assays, and increase the levels of various correlates of protection in vaccinated 

mice, and even show some enhancement in related challenge models observations 

supported by independent analysis [34]; and also shows activity against potential 

cancer antigens [35].  

Higher order systems 

Much of what we have discussed above has focussed on the analysis of 

experimental structures and sequences. Although 3D modelling of epitope MHC and 

epitope-antibody interactions have occasionally been illuminating, other uses of explicit 

3D modelling of immune receptors has been more edifying and successful.   

A key example is provided by the trimeric MHC-peptide-TCR (pMHC-TCR) complex, 

a supramolecular complex at the heart of the cellular immune response [36]. Small 

molecule drugs can block allele specific peptide presentation to T-cells, which is both a 

potential mechanism to exploit therapeutically [37][38] and a pathological mechanism 

leading to so-called Adverse Drug Actions [39][40]. For many Adverse Drug Reactions 

(ADRs), particularly cutaneous ADRs, there is a strong association between the 

reaction to certain drugs (including abacavir, allopurinol, carbamazepine, and other 

antiepileptic drugs) and particular HLA alleles, allowing for the prognostic prediction of 

ADRs. There is likewise a potential relationship between the haplotype of donor and 

recipient and the outcomes of stem-cell and solid organ transplants.  

Establishing relationships for these rare events is complicated by the 3000+ different 

MHC alleles known to exist in the global human population, which in its turn leads to 

the extraordinary potential for distinct peptide specificities within the global patient 

population. Each MHC allele has a unique sequence, and thus unique 3-dimensional 

structure and functional properties, including their binding specificity for peptides and 

TCRs; and it is possible to compare MHC structure as a way to classify them in terms 
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of such important functional interactions. We have recently used poisson-boltzmann 

electrostatic potential as a meaningful arbiter of through-space molecular interactions 

combined with sophisticated data-mining methods to address this. By rigorous state-of-

the-art analysis of projected properties, we identified clusters corresponding to the 

three class I human MHC loci, and sub groups therein. It is notable that this recovers 

the HLA-A; HLA-B, and HLA-C alleles without any prior knowledge of such a division. 

This gives confidence to any assertion we might make regarding the other division of 

the allele population into structurally and functionally similar sub-groups. Supertype 

analysis has potential applications in the classification of MHC specificity for peptide 

and TCR interaction, with implications therefore for epitope prediction, solid organ and 

bone marrow transplantation, mate-choice, and MHC-mediated adverse drug 

reactions.    

Molecular dynamic simulations have long been applied to attempting to unravel the 

many mysteries of the immune system [41]. Powered by the availability of 

supercomputing MD simulations can now tackle very large systems [42]. Yet even the 

largest immunological simulation is small compared to such biomolecular simulations. 

Assisted by rapid advances in experimental imaging and quantitative proteomics, 

simulations begin to approach the mesoscale [43]; and we can look to simulate in a 

reasonably realistic way biologically meaningful cellular events. For example, we have 

simulated at atomic resolution a detailed molecular model of part of the immune 

synapse, comprising CD4, peptide-MHC, TCR, and membrane regions [42]. MD will 

ultimately break free from the many restrictions imposed by the limited data we 

currently have, allowing us the luxury of de novo prediction of equilibrium binding and 

kinetic constants. Beyond that, we can envisage conducting simulations that pose 

biological questions that can only be answered by experiment, which in turn will drive 

the design of experiments. 

Agent based models in computational vaccinology 

Computational models are important for the understanding of biological systems. 

Such models can be applied to enhance or predict therapeutic effects at the organism 

level. The pharmaceutical companies suggest that computational biology can play an 

excellent role in this field [44]. In silico models can afford answers to the general 

behaviour of the immune system, the analysis of cellular and molecular interactions, 

the effects of treatments, and the course of diseases. 

The use of agent based modelling (ABM) is suitable both to perform in silico 
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experiments which lead to formulate and/or validate biological hypotheses and to give 

useful hints for the design of optimal treatment schedules. Moreover, ABM approach 

can be used at cellular level to describe complex systems in a flexible way, including 

the handling of entity heterogeneity and physical space. ABMs aim at recreate and 

predict the cellular interactions simulating the behaviour and the interactions of 

autonomous entities (cells and molecules). The dynamic agents can be described as a 

function of time, a position, and an internal state that includes most important 

properties of the agent, such as age.  

One of the successful applications of ABM in computational vaccinology is 

represented by SimTriplex [1], a specialized cellular automaton able to model 

mammary carcinoma, Triplex vaccine and the immune system competition. Triplex is 

an immunopreventive HER-2/neu breast cancer vaccine [2], which combines the 

specific target antigen, p185(HER-2/neu) with two non-antigen specific adjuvants: IL-12 

and allogeneic major histocompatibility complex (MHC) class I molecules. Four vaccine 

administration schedules (early, late, very late and chronic) have been tested on HER-

2/neu transgenic mice, and the chronic schedule showed that it is the only one that 

provides complete, long- term protection from mammary carcinoma. 

SimTriplex mimics the behaviour of immune cells at the cellular level in both 

vaccinated and in naive mice. The simulator incorporates a variety of cellular and 

molecular entities, including tumour and vaccine cells. Modifications of state (e.g., cell 

activation, cytotoxicity, cell death, etc.) are ruled by a set of policies based on tumour 

immunology. The model coupled with optimization techniques (based on combinatorial 

optimization algorithms as genetic algorithms and simulated annealing [7][8]) allowed 

to search for an optimal vaccination schedule to obtain the same efficacy of the chronic 

protocol with a definitively reduced vaccine administrations. SimTriplex predictions 

have been verified in a in-vivo experiment. Outcomes show that in-silico predicted 

schedule does significantly reduce the tumours multiplicity on the ten mice mammary 

glands even if the vaccination efficacy for the first appearing of tumour was still 

overestimated. Further adjustment of the model is required to include evidence of 

immune aging which appeared from in vivo follow up results [3][4]. 

The Triplex vaccine proved to be effective also as a therapeutic vaccine, showing its 

ability to be used against induced lung metastases [5]. A major goal of biologists is to 

better understand the biological behaviour to improve the efficacy of the therapeutic 

treatment and to try to predict, for example, the outcomes of longer experiments in 

order to move faster towards clinical phase I trials. In a recent work [6], the authors 
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present MetastaSim, an ABM to be used as an in silico virtual lab with the target to 

help answering these questions. MetastaSim has the ability to simulate the cancer 

growth kinetics and multiple different metastatic nodules, each one with its own growth 

rate, in an accurate way. To reproduce the growth in time of nodules, the Gompertz 

growth law is used in its differential form. Simulations results showed that it is possible 

to obtain in silico a reduction of approximately 45% in the number of vaccinations. Most 

of the protocols presented there share a similar vaccination strategy that is composed 

by a boost of three vaccine injections, a period of rest, and then a series of vaccine 

recalls that are somewhat equally spaced. The model suggests that any optimal 

protocol for preventing lung metastases formation should be therefore composed by an 

initial massive vaccine dosage followed by few vaccine recalls. Even if this is a well-

known vaccination strategy in immunology, since it is commonly used for many 

infectious diseases such as tetanus and hepatitisB, it can be still considered a relevant 

result in the field of cancer-vaccines immunotherapy. 

Vaccination strategies can be also used as therapeutics solutions. Immunological 

therapy of progressive tumours, in particular, requires both the activation and 

expansion of tumour specific cytotoxic T lymphocytes, and an efficient migration of 

these effector cells in the tumour tissue.  

In order to investigate in silico the melanoma progression and the effects of a 

therapeutic vaccination strategy against such tumour, an ABM named SimB16 has 

been realized and presented in [45].  

SimB16 has been initially validated using in vivo results, and then used to predict the 

critical role of CD137 expression on tumour vessel endothelium. Thus it allowed to 

analyse the effects of anti-CD137 mAb derived by adoptive transfer of activated OT-1 T 

cells in B16-OVA mice. 

Predictions show that early infiltration of T cells seems to be dependent on CD137 

expression on tumor vasculature, an this represents an important factor that must be 

taken into account in order to understand in vivo results and to design future 

administration strategies. 

In [46] Kim and Lee present a hybrid ABM-delay differential equation (DDE) 

model to reproduce the general behaviour of preventative cancer vaccines (particularly 

cytotoxic T lymphocytes (CTLs)) in order to obtain Anti-Tumour Immunity. The model 

does not tackle a specific in vivo problem, but tries to theoretically understand the 

feasibility of CTL based vaccines. According to the model, an anti-cancer memory CTL 

pool of approximately 3% can successfully eradicate a tumour population under a wide 
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range of biological hypotheses and scenarios, implying that a vaccination approach is 

feasible. Moreover, the model reveals some conditions that may entitle rapid tumour 

destruction, oscillation, and polynomial rather than exponential decline in the tumour 

population. 

Another ABM-based approach to simulate vaccination in cancer immunotherapy 

is given by the VaccImm Server [47]. This online model represents the first tool that 

tries to enable the simulation at a cellular scale of peptide vaccination using real amino 

acid sequences to reproduce molecular binding sites. Simulations can be executed 

directly online, and results allow to analyse the parameter space of the involved entities 

and to reveal the complex and patient-specific nature of peptidic vaccination in cancer 

immunotherapy.  It must be said that VaccImm uses classical molecular prediction 

tools in order to determine the affinity between receptors, so its results highly depend 

on the accuracy of such molecular tools. 

 

Mathematical models in computational vaccinology 

Mathematical models have been used since many years to represent various 

aspects of immune system and related pathologies, however their application to 

describe the effects of vaccines has been quite limited.  

 These models are mainly based on differential equations (ordinary, partial, 

delay, and/or stochastic) and are applied to describe the dynamics of immune system 

entities, cells, pathogens and treatments from a population point of view, rather than 

follow such entities individually, as seen in ABMs. 

They are built on a strong and solid mathematic theory, and for simple models 

(i.e. with a limited number of simple equations) it is possible to find an analytical 

solution. However, for more complex models, the use of computational techniques that 

are focused in finding an approximate solution is mandatory. 

The trade-off between tractability (and solvability) versus biological coherence 

usually tends on the former, thus such models are usually less accurate in describing 

the immunological background than ABMs. However their application to some specific 

problems allows to extract some fundamental properties, to study the parameter’s 

space, and to provide sensitivity analysis. For example, the same problems tackled by 

SimTriplex and SimB16 ABMs have been explored from a qualitative point of view by 

ordinary and delay differential equation (ODE and DDE) based models [48][49][50]. 

In [51] Davis et al. present a mathematical model based on DDE to model shigella 
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immune dynamics. The model does not care into account a specific vaccine, but it is 

used to determine which immune system responses must be stimulated by any 

candidate vaccine. According to the model, antibody-based vaccines targeting only 

surface antigens cannot elicit sufficient immunity for protection. However, boosting anti-

lipopolisaccaride (LPS) B memory cells can help and give protection against shigella. 

Furthermore an extension of the model reveals that targeting both LPS and epithelial 

entry proteins could represent a favourable approach in designing new vaccines.  

Differential equation based models have been mainly applied to cancer 

vaccinology. Papalardo et al. [52] developed an ordinary differential equation (ODE) 

based model to evaluate the number and the frequency of vaccine boosts needed to 

obtain a long-lasting and protecting memory T-cell response.  The model includes both 

activated cytotoxic T lymphocytes and memory T cells, and is used to investigate the 

induction of immunological memory in wild-type mice injected with a dendritic cell-

based vaccine, both in the presence and in the absence of memory T cells. A good 

agreement between ex vivo and in silico experiments underlines how the model is able 

to reproduce the expansion and persistence of antigen-specific memory T cells. 

Moreover statistical sensitivity analysis allowed the identification of a time window in 

which boosts may be detrimental. 

 Parra-Guillen et al. [53] use an approach based on an incremental series of 

steps to develop a mathematical model which describes the tumour response in mice 

after vaccination. The authors investigate its applicability to study cytokine-based 

strategies that can modulate the immune system response. In order to successfully 

describe the different outcomes obtained after vaccine administration different models 

have been integrated and used: (1) A Model of tumour growth in mice without 

treatment using a linear model; (2) A Model of the vaccine effects assuming that the 

vaccine triggers a delayed immune response that leads to cancer cells death (using 

two compartments); (3) A Model to reproduce a resistance effect that decreases the 

vaccine efficiency based on the size of tumour; (4) a mixture model to represent the 

relapse of the tumour, an event that has been observed in a small percentage of 

animals. 

A mathematical model based on ODE has been developed by Wilson and Levy in 

order to gain insights about the combined effects of anti-TGF-β treatments and 

vaccines against tumours. The mathematical model takes into account the dynamics of 

the tumour growth, the concentration of TGF-β, the action of activated cytotoxic 

effector and regulatory T cells.  No treatment, anti-TGF-β treatment, vaccine treatment, 
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and combined anti-TGF-β vaccine treatments scenarios are investigated through 

numerical simulations and stability analysis. The model well reproduces the observed 

experimental results, and could be in principle used to help the design of new 

treatments that include TGF-β. 

Another example of the application of mathematical models to cancer 

vaccinology is represented by the work by Joshi et al. [55].  The authors present 

mathematical model based on ODE of therapeutic vaccination against cancer, and 

focus on the role of antigen presentation and co-stimulatory signalling pathways. The 

effects of different vaccination protocols on the well-documented phenomena of cancer 

dormancy and recurrence have been studied by means of numerical simulations. 

Results suggest a possible explanation of why adoptive immunotherapies can indeed 

sometimes promote tumour growth. Moreover simulations suggest that an elevated 

number of professional APCs well correlate with prolonged time periods of cancer 

dormancy. 

Conclusions 
Complexity is the hall mark of many somatic systems; not least the Immune system. 

Computational approaches are finally beginning to shine an illuminating light on how 

the Immune System functions at many levels, peeling away the obfuscating layers that 

have hitherto obscured our understanding. The functioning and mis-functioning of the 

Immune system lies at the heart of defence against infection and cancer and the 

induction of autoimmune disorders respectively. The ability to interact with the immune 

system through vaccination has created the most efficacious and efficient intervention 

in medical history, saving uncountable millions of lives across hundreds of years. The 

proven ability of computation to design vaccines and adjuvants, and to optimize 

vaccination protocols is beginning to open up a new era of computational vaccinology 

that will in time bring in its wake untold benefits to the burgeoning global population 

both through human vaccination but also in combating climate change and protecting 

livestock and aquaculture.   

At the molecular level, the potent combination of data-driven machine learning 

methods and Molecular Dynamics-based atomistic simulation have allowed the 

development of various approaches that address a variety of key applications. Some 

have proved successful, including T cell-mediated epitope prediction for well-studied 

alleles, while others have yet to deliver on their true potential, such as the prediction of 
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antibody-mediated B-cell epitope prediction, which currently is often more misleading 

than helpful. One of the most promising approaches is the use of large scale dynamics 

simulations of cellular systems that can explore the behaviour of complex systems that 

currently lie beyond the power of experimental biophysics to properly evaluate. While 

we are at least several decades away from simulating a whole eukaryotic cell, it is now 

possible to simulate supramolecular systems of hitherto inconceivable size and 

complexity using multi-scale approaches that combine both atomistic and various 

levels of course-grained simulations.   
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Figure 1 – Graphical abstract. The functioning and mis-functioning of the Immune 

system lies at the heart of defence against infection and cancer and the induction of 

autoimmune disorders respectively. Nowadays, traditional methodologies in vaccine 

research are combined with computational vaccinology i.e., computational strategies 

to design vaccines and adjuvants, and to optimize vaccination protocols. These 

methodologies act at different levels and one the most ambitious goal is to have 

them integrated together to reach a multiscale view and approach.  
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