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Thesis Summary

Analysing the molecular polymorphism and interactions of DNA, RNA and proteins
is of fundamental importance in biology. Predicting functions of polymorphic molecules is
important in order to design more effective medicines. Analysing major histocompatibility
complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design
and transplantation rejection etc. Most of the existing exploratory approaches cannot
analyse these datasets because of the large number of molecules with a high number of
descriptors per molecule.

This thesis develops novel methods for data projection in order to explore high-
dimensional biological dataset by visualising them in a low-dimensional space. With
increasing dimensionality, some existing data visualisation methods such as generative to-
pographic mapping (GTM) become computationally intractable. We propose variants of
these methods, where we use log-transformations at certain steps of expectation maximisa-
tion (EM) based parameter learning process, to make them tractable for high-dimensional
datasets. We demonstrate these proposed variants both for synthetic and electrostatic
potential dataset of MHC class-I.

We also propose to extend a latent trait model (LTM), suitable for visualising high-
dimensional discrete data, to simultaneously estimate feature saliency as an integrated
part of the parameter learning process of a visualisation model. This LTM variant not
only gives better visualisation by modifying the project map based on feature relevance,
but also helps users to assess the significance of each feature.

Another problem which is not addressed much in the literature is the visualisation
of mixed-type data. We propose to combine GTM and LTM in a principled way where
appropriate noise models are used for each type of data in order to visualise mixed-type
data in a single plot. We call this model a generalised GTM (GGTM). We also propose to
extend GGTM model to estimate feature saliencies while training a visualisation model
and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness
of these proposed models both for synthetic and real datasets.

We evaluate visualisation quality using quality metrics such as distance distortion
measure and rank based measures: trustworthiness, continuity, mean relative rank errors
with respect to data space and latent space. In cases where the labels are known we also
use quality metrics of KL divergence and nearest neighbour classifications error in order to
determine the separation between classes. We demonstrate the efficacy of these proposed
models both for synthetic and real biological datasets with a main focus on the MHC
class-I dataset.

Keywords: Major histocompatibility complex, generative topographic mapping,
Gaussian process latent variable model, latent trait model, feature saliencies
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Chapter 1 INTRODUCTION

In the last couple of decades, advances in bio-medical research and bio-technology

(particularly gene sequencing) have created a tremendous amount of data ranging from

pharmaceutical studies, genomics and, proteomics, gene functions and protein-protein

interactions. This burgeoning growth in datasets has increased more than ever before

the need for analysing them in order to improve our understanding of the underlying

biology and this has also brought some challenges for traditional analytic approaches.

Some of these challenges are because of high-dimensionality and some because of high-

dimensionality with noisy descriptors and some due to heterogeneity of descriptor types.

Analysing these datasets with a latent-variable framework is one useful approach in

order to assist biologists to improve their understanding of these complex datasets. In

the latent-variable framework we map a high-dimensional dataset to a low-dimensional

embedded space: if the embedded space is two- or three-dimensional, the data can be

visualised in a scatter plot. It is observed that due to the high-dimensionality of much

biological data, some existing visualisation models become computationally intractable

(Chapter 4) and sometimes a single two-dimensional plot is also not informative enough

(because of overlapping cluster) and requires to have more than one two-dimensional plots

arranged in a hierarchy to get more detailed insight. In addition, it has been observed that

due to noisy or irrelevant features, the low-dimensional embedded space is not informative

enough: in this thesis, we show how to use integrated feature weighting approaches either

to eliminate or to reduce the impact of noisy features in the parameter learning process of

a model (Chapters 4 and 5). Another issue which is becoming important for the machine

learning experts is to deal with heterogeneous descriptors in datasets (Chapter 6). We

focus on these issues in this thesis in the context of biological datasets.

1.1 The Motivation

All unicellular and multicellular organisms are composed of molecules such as DNA, RNA

and proteins, etc. All these molecules interact with each other to perform functions im-

portant for the existence of life. Most of the diseases occur due to the changes in these

molecules during cells’ lifetime (Aluru, 2005).

In the context of molecular biology, it is important to understand the functions of these

molecules and regulation of pathways for a variety of different cellular processes. Proteins

are the molecules responsible for cellular functions and processes whereas the DNA in the

cell is responsible to encode the information required to produce these proteins. A ‘protein-

coding gene’ is a sequence of nucleotide bases which are important for the encoding of

2



Chapter 1 INTRODUCTION

amino acids necessary for building the proteins (Lees, 2008). Lees states in her thesis that

only a small number of genes become active at a certain time and the process of turning on

and off these genes in a cell’s lifetime is called gene regulation. The interactions between

certain proteins and DNA take place because of gene expression1. These interactions are

fundamentally important for most of the activities within a cell.

In last couple of decades, a significant improvement in experimental methods, par-

ticularly automation to achieve a high-throughput analysis, have emerged and caused

the generation of a tremendous number of large genetic and proteomic datasets. These

technological advances have attracted much of our attention to understand biological pro-

cesses involved at the molecular level and to understand the gene-regulation process and

sequence-level changes important for understanding the causes of disease. For example, the

human genome contains over 30 thousand genes in a sequence of over 3 billion pairs (Lees,

2008); each gene can have alternative forms called the alleles and each allelic form can

be responsible for altering a protein’s activity. Nowadays, thousands of allelic forms are

known for each gene which lead to large datasets. Most of these allelic forms are available

as a primary sequence of amino acids.

For example, a database that maintains primary sequences has grown tremendously

in last two decades (see Figure 1.1 for yearly historical growth of UnitProtKB/Swiss-Prot

protein database) and more specifically in the case of major histocompatibility complexes

class-I (known as the human leukocyte antigen (HLA) in humans), for a single gene HLA-

A there were 2, 579 allelic forms (as of the March 2014 release of IMGT2/HLA) and this

number has doubled in the last four years. The historical growth of known primary se-

quences3 of HLAs is shown in Figure 1.2 and most of these alleles relate to less than a dozen

genes of HLAs. A usual practice for function prediction is to search for the most similar

sequence to the query sequence with a known function. Predicting function from these

sequences is important but in comparison it is believed that three-dimensional represen-

tations are more informative than primary sequences (Chothia and Lesk, 1986; Laskowski

et al., 2005). Because, determining three-dimensional structures experimentally is a time

consuming and costly task, therefore fewer such structures are known compared to primary

sequences of amino acids. For example, in the case of HLAs, only a few hundred three-

dimensional structures are known compared to thousands of known sequences (Berman

et al., 2000). Recent advances in in-silico approaches has made it possible to predict the

1Gene expression is the process to encode an information from a gene in the synthesis process to give
a gene product. Quite often the gene product is protein.

2International ImMunoGeneTics databases.
3A primary sequence or primary structure is the representation of the amino acids in the polypeptide

chain.
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Chapter 1 INTRODUCTION

three-dimensional structures using homology modelling.

Figure 1.1: The number of known primary sequences on a yearly basis and in-
cluded in the UnitProtKB/Swiss-Prot protein database. The recent surge in the
number of submissions received by the database is clearly shown (adapted from
[http://web.expasy.org/docs/relnotes/relstat.html]).

In conclusion, this accumulation of a vast amount of data does not give as much insight

into the biological interpretation as scientists would wish. Interpreting these datasets is

impossible manually, though it will be very much useful to get the immediate value of the

information retrieved from these growing datasets in setting future research; observing

patterns at gene levels and the role of these genes in a disease and development of an or-

ganism (Lees, 2008). For example, in the case of HLAs, it is important to analyse proteins’

allelic forms based on the similarities of their primary sequences and three-dimensional

structural descriptors in order to develop epitope-based vaccines (Doytchinova et al., 2004;

Doytchinova and Flower, 2005) and other functions such as mate choice (Havlicek and

Roberts, 2009), smell recognition (Santos et al., 2005) and an important clinical role in

transplantation rejection (Su et al., 2014), etc.

The major focus of this thesis is to investigate data visualisation techniques which are

ways of representing a high-dimensional dataset in terms of a low-dimensional embedded

space, to investigate datasets in order to improve understanding of any hidden patterns

(i.e. cluster of similar patterns). We also investigate how to determine the impact of

each individual descriptor while training a data visualisation model with an integrated

saliency estimation approach. These data visualisation techniques and combined feature

saliency estimation approaches are mainly used in this thesis for the purpose of analysing
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Chapter 1 INTRODUCTION

Figure 1.2: The number of HLA alleles named each year and included in the IMGT/HLA
database. The recent surge in the number of submissions received by the database is
clearly shown (adapted from (Robinson et al., 2013)).

biological datasets. In the rest of the thesis, we represent each dataset as a matrix with

rows representing data patterns and columns as descriptors.

1.2 Publications from the work presented in this thesis

This thesis involves and complements some work presented in earlier publications. Some

of the publications are pending for the submission. Chapter numbers given explain the

content of published and planned papers related to this thesis.

• S. Mumtaz, I. T. Nabney, and D. R. Flower. Novel visualisation methods for protein

data. In Computational Intelligence in Bioinformatics and Computational Biology

(CIBCB), 2012 IEEE Symposium, pages 198–205, May 2012. San Diego, California,

USA (Chapter 4).

• S. Mumtaz, I. T. Nabney, and D. R. Flower. Multi-level visualisation using Gaus-

sian Process Latent Variable. In Proceedings of the 5th International Conference

Information Visualization Theory and Applications (IVAPP), pages 122–129, jan-

uary 2014, Lisbon Portugal, SCITPRESS.

• S. Mumtaz, I. T. Nabney, and D. R. Flower. Scrutinizing Human MHC Polymor-

phism: Supertype Analysis using Poisson-Boltzmann Electrostatics and Clustering.

Oxford Bioinformatics Journal, (submitted) (Chapter 4).
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• S. Mumtaz and I. T. Nabney, A Generalised Generative Topographic Mapping for

Visualising a mixed-type data and simultaneous feature selection. (in preparation)

(Chapters 5 and 6).

1.3 Notation and Conventions

The convention, from the mathematical notation perspective, will be that scalar values

(such as xnd, z) are represented with an italic typeface whereas vectors are expressed as

bold lower-case letters (such as xn, zn) and matrices are represented as bold capitals (such

as X,Z). Exceptions to these conventions also appear but they are explicitly mentioned.

Other symbols we use are explained in Table 1.1.

Symbol Explanation

N number of data points
n label for a data point
D number of data dimensions (features)
d label for a feature
L number of RBF centres
l label for a RBF centre
K number of latent points
k label for a latent point
M number of latent dimensions
X data matrix of dimension N ×D
Z latent projection matrix of dimension N ×M
I identity matrix
p probability density function
L likelihood
R real values indicator in case of mixed-type data analysis
B binary values indicator in case of mixed-type data analysis
C multi-category values indicator in case of mixed-type data analysis

Table 1.1: Notation with explanation.

1.4 The structure of this thesis

Chapter 2: This chapter reviews the basics of bioinformatics focussing on proteins. Then,

we review methods of computing the electrostatic potential energy of proteins’ struc-

tures and an existing analysis method of this property. We also explain the basics of

the major histocompatibility complex (MHC) protein family by reviewing previous

analysis outcomes in terms of supertype identification and its importance. At the

end, we explain the process that we adapt for modelling three-dimensional structures

of MHC class-I proteins and computation of electrostatic potential energy.

6



Chapter 1 INTRODUCTION

Chapter 3: We review existing visual data mining systems including DVMS, which we

have re-designed and re-developed in order to improve it. We then describe a selec-

tion of data projection algorithms, mainly variants of the Generative Topographic

Mapping (GTM), including GTM with feature saliency, hierarchical GTM and the

latent trait model (LTM) (a generalisation of GTM). We also review other projec-

tion algorithms: principal component analysis (PCA), neuroscale (NSC) and the

Gaussian process latent variable model (GPLVM). At the end we review some of the

visualisation quality metrics we use in this thesis to compare models.

Chapter 4: In this chapter, we propose variants of GTM and its extensions (including

GTM with simultaneous feature saliency and hierarchical GTM) where we adapt

log-transformations to avoid numerical precision problems at certain steps of the

model’s parameter learning process. The effectiveness of these proposed variants is

demonstrated both for synthetic and a real dataset of electrostatic potential values

of MHC class-I. For the purpose of comparison, we also present the visualisation

results of the MHC class-I dataset with other data projection algorithms.

Chapter 5: We extend a framework of estimating feature saliencies while training a vi-

sualisation model for discrete-typed data. This has been used often with GTM-like

algorithms in cases of real-type datasets where the noise model is considered as Gaus-

sian. We extend this approach with LTM-like algorithms where appropriate noise

models are considered in accordance with the type of features (for example Bernoulli

for binary features and multinomial for multi-category features). We demonstrate

experimental results both for synthetic and real datasets in order to show their

effectiveness.

Chapter 6: First, we review existing work for visualising mixed-type data and then pro-

pose the generalised GTM (GGTM) which is based on the assumption of selecting

appropriate noise models for each type of features in a mixed-type dataset to visualise

on a single two-dimensional plot. Then, we then present an extension of GGTM to

simultaneously estimate feature saliencies. At the end, we present the experimental

results and discuss them thoroughly both for synthetic and real datasets.

Chapter 7: This chapter first concludes the outcomes we learnt from each chapter in this

thesis and then discusses possible future extensions of this work.

Appendix A: In this appendix, we explain the process we adapted for modelling three-

dimensional protein structures using homology modelling and calculations of electro-

7
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static potential values using a software tool called the Adaptive Poisson-Boltzmann

Solver (APBS).

Appendix B: This appendix shows an MHC class-I dataset visualisation with Neuroscale

model using different number of basis functions.

Appendix C: In this appendix, we explain the mixture model for the GTM-FS/LTM-

FS visualisation, derivation of EM algorithm of the GTM-FS/LTM-FS and some

additional results of the LTM-FS.

Appendix D: In this appendix, we explain the mixture model for the GGTM-FS, deriva-

tion of the GGTM-FS visualisation model and some additional results of the GGTM

and the GGTM-FS models.
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Chapter 2 BIOINFORMATICS AND MAJOR HISTOCOMPATIBILITY COMPLEXES (MHCS)

This chapter describes a few fundamental concepts in bioinformatics focusing on the

protein family of major histocompatibility complexes (MHCs) in humans (known as human

leukocyte antigens (HLA)). We then briefly explain the potential benefits of analysing

the protein family of MHCs. The dataset we generated for our analysis is related to

the electrostatic potential energy of MHCs. We review here some existing methods for

electrostatic potential energy calculation and its analysis. At the end of the chapter, we

briefly explain the process that was used to generate an electrostatic potential energy

dataset for MHC class-I.

2.1 Bioinformatics

Bioinformatics is the field of studying biological activity of macromolecules using com-

putational technologies. The most important organic macromolecules are carbohydrates,

lipids, proteins and nucleic acids (Campbell and Reeca, 2008). Luscombe et al. (2001)

states that in general there are three aims of bioinformatics. The first aim is to main-

tain a database accessible for researchers to analyse, such as a protein data bank1, for

three-dimensional macromolecules, or the Swiss-prot and TremblIMGT/HLA2 databases

for maintaining HLA sequences. The second aim is to develop tools that are helpful for

analysing these datasets and to understand the functions of macromolecules. The third

aim is to use these analysis tools for extracting biologically meaningful information about

macromolecules. In bioinformatics, systems for analysis are usually developed for partic-

ular biological contexts and these systems are compared with only a few related available

similar systems (Luscombe et al., 2001). However, there is a need to develop more general

analysis systems for common activities across a greater number of datasets.

In the next sub-sections, we will focus on proteins, explaining what proteins are, how

they are constituted in general, which structures of proteins are known, and what are the

associated functions of these different protein structures mainly focusing on the electro-

static interaction of three-dimensional protein structures.

2.1.1 Proteins

Proteins are composed of one or more polypeptide molecules. Each polypeptide molecule

is composed of chains of amino acids linked together by peptide bonds. There are 20

standard amino acids. Each amino acid consists of an amino group (NH2−), the acid

group (−CO2H), a side chain denoted by R, and a central carbon atom (also called the

1http://www.pdb.org/pdb/home/home.do
2http://www.ebi.ac.uk/imgt/hla/
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α-carbon atom) to which the side chain is attached. The general structure of an amino

acid is shown in Figure 2.1(a).

Amino acids are linked to each other with peptide bonds3 and an example of linking

two amino acids making a dipeptide is shown in Figure 2.1(b).

(a) (b)

Figure 2.1: Protein composition components. (a) General structure of an amino acid. (b)
Dipeptide showing peptide bond between two amino acids.

Functions of proteins are related to their structures. Protein structures can be cate-

gorised into four levels (Langel et al., 2010) as follows (see also Figure 2.2).

Primary Structure: The primary structure or protein sequence of a protein represents

the order in which the amino acids are joined together in a polypeptide chain. Usu-

ally primary structures are represented using an abbreviated form of each amino acid

name (e.g. for Glycine three letter form ‘Gly’ or one letter form ‘G’). The protein

sequence is important for finding similarities in the amino acid sequences. If the

amino acid sequences of two proteins are at least 20% similar then they are said to

be homologous (Langel et al., 2010).

Secondary Structure: The secondary structure of a protein is that which is formed

by hydrogen-bonding4 patterns. The secondary structure of proteins is the localized

three-dimensional organization of the polypeptide chain. There are three common

secondary structures: α-helices5, β-sheets6 and turns or bends7.

3A peptide bond is a chemical bond formed between two molecules by a chemical reaction between
the acid group of one molecule with the amino group of the other molecule and thereby releasing a water
molecule (i.e. H2O).

4A hydrogen bond is an attractive interaction between a hydrogen atom and electronegative atoms,
such as nitrogen, oxygen or fluorine, belonging to another molecule.

5An α helix is a spiral conformation where every backbone N -H group donates a hydrogen bond to the
backbone C = O group of amino acids with four earlier residues.

6A β-sheet is a plane composed of strands of polypeptide chains as an extended secondary structure
showing the side chains of amino acids projected alternatively above and below the plane of the sheet.

7Turns or bends are the elements of secondary structures in proteins where the direction of the polypep-
tide changes or reverses.
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Tertiary Structure: The tertiary structure of proteins is the three-dimensional organi-

zation of atoms in a polypeptide chain. In tertiary structure, the global organization

of the polypeptide chain is given by each atom’s exact position in space. There are

two important factors for determining the tertiary structure. One is the primary

structure and the second is the environment8. In this thesis, we use the term three-

dimensional structure to refer to the tertiary structure.

Quaternary Structure: There are some proteins such as myoglobin9 that have a single

polypeptide chain, but many proteins are an assembly of multiple chains. Quaternary

structures are concerned with the organization of polypeptide chains to make multi-

subunit functional proteins (e.g. the quaternary structure of haemoglobin10 is made

up of four chains where two are α-chains and the other two are β-chains where each

is similar to a myoglobin molecule).

Figure 2.2: Levels of protein organization (adapted from
[https://www.genome.gov/glossary/resources/protein.pdf]).

8An environment is treated as a broad concept including the solution composition, all the available
enzyme systems involved in post-translational modifications, and the transport system involved in trans-
ferring protein between different compartments of cells where modifications have been accomplished.

9The myoglobin is a protein mostly found in muscle tissue to act as an oxygen carrier.
10The pigment responsible for carrying oxygen in red blood cells of vertebrates.
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2.1.2 Protein Function Prediction

Recent research in the field of bioinformatics has provided an extensive set of protein

amino acid sequences available in the form of sequence databases such as Swiss-Prot and

TrEMBL11, IMGT/HLA12, etc. The functions of very few protein sequences in these

databases are known today. Generally, protein functions are related to water balancing,

nutrient transportation and contraction of muscles. Some proteins function as enzymes

and hormones, and most immune system molecules are proteins. Therefore, predicting

the functions of protein sequences is important and is often achieved by searching for

the most similar (homologous) sequences with already known functionality. According

to the August 2010 release of Swiss-Prot and TrEMBL database, there are 519, 348 and

11, 636, 205 known sequence entries respectively.

The three-dimensional structure of a protein can also be used for understanding func-

tion by comparing it with already known structures with known function (Thornton et al.,

2000). Gupta et al. (2005) states that two sequences with high similarity in primary se-

quences are expected to have similar three-dimensional structure whereas two similar

three-dimensional structures may not have a strong similarity in their amino acid se-

quences. The known three-dimensional structure of the human α-globin and myoglobin

are very similar in their three-dimensional structure but are quite different in their amino

acid sequences with 26% identity (Langel et al., 2010). Predicting protein function from

structure is known to be a better way than predicting functions from amino acid sequence

similarity, and there are two reasons for this. First, a protein’s three-dimensional structure

is more conserved than the amino acid sequence (Chothia and Lesk, 1986). Second, the

regions where a protein can interact with a ligand13 are determined and can be used for

comparison with other proteins (Laskowski et al., 2005).

X-ray Crystallography (Smyth and Martin, 2000), Nuclear Magnetic Resonance Spec-

troscopy (NMR) (Gronwald and Kalbitzer, 2004) and Electron Microscopy (EM) (Mey-

ers, 2007) are the standard techniques for acquiring three-dimensional protein structures.

These experimental methods are costly and time consuming (Lee and Verleysen, 2007).

For example, Stevens (2003) stated that the average time required to predict a soluble

protein target is approximately one year for a novel structure determination but this can

be achieved much faster at an increased cost. Stevens also stated that cost for drug tar-

get three-dimensional structure determination varies for example for novel drug target of

11Swiss-Prot and TrEMBL details are available at http://www.expasy.org/sprot/
12http://www.ebi.ac.uk/imgt/hla/
13A ligand can be an atom, molecule or ion that can bind to specific binding site of the protein. Binding

is the key to protein function.
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human membrane protein the cost was $2.5 million with only 10% success rate and for

a soluble human protein (e.g. kinases, proteases etc) the cost was $450, 000 with only

35% success rate. Therefore, very few three-dimensional protein structures are known

today in comparison to the large number of known protein amino acid sequences (Langel

et al., 2010). A well-known database that maintains three-dimensional protein structures

is called the Protein Data Bank (Bernsten et al., 1977) and according to the September

2010 release, there are 68, 288 known protein structures.

Due to the time consuming and costly experimental methods, researchers have devel-

oped computational methods such as homology (comparative) modelling for predicting

the three-dimensional protein structures for known amino acid sequences. For predicting

the three-dimensional structure of the protein sequence whose three-dimensional structure

is not known, if the amino acid sequence of the known three-dimensional structure and

target protein sequence are at least 30% similar in their length and percentage of sequence

identity14 then predicting the three-dimensional structure from the known structure is

usually close to being correct (Krieger et al., 2003). The detailed procedure and steps

involved for predicting the three-dimensional structure of MHC class-I proteins using ho-

mology modelling are explained in Appendix A. In this thesis, our focus is study of the

electrostatic potential energy of proteins and in the next two sections, we give a brief

description of electrostatic potential energy of proteins and also discuss existing analysis

tools. We then discuss the protein family known as the major histocompatibility complex

(MHC) and its biological importance.

2.1.3 Electrostatic Potential Energy of Proteins

Protein interactions are important for their physiological functions. These interactions

are based on molecular interaction fields such as the electrostatic potential energy. This

is the energy of an electrically charged particle in an electric field at any point around

a protein structure. Dong et al. (2008) state that computational electrostatic systems

are usually described as ‘explicit-solvent’ or ‘implicit-solvent’ methods. Explicit-solvent

methods treat the solvent with full atomic detail making it computationally intensive.

However, implicit-solvent methods treat the solvent in its average effect on solute and

are thus much faster to compute. The later approach has opened new horizons for the

researchers in the field of drug design and computational structural biology (Azuara et al.,

2006). However, we use an implicit-solvent system in our research.

14A sequence identity is considered as the degree of correspondence between sub-sequences of the amino
acid sequence whose structure is known and the target sequence whose structure we intend to predict using
homology modelling.
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One of the popular method of calculating the electrostatic potential energy of protein

structures is by solving the Poisson-Boltzmann equation (Polozov et al., 2005). This equa-

tion represents the electrostatic potential in a solvent around the protein three-dimensional

structure

−5(ε(r)5 ϕ(r)) = 4π(ρ0(r)) + ρ1(ϕ(r)), (2.1)

where r = (x, y, z) ∈ R3, ϕ represents the electrostatic potential, and ε represents the

dielectric permeability15. and ρ0 represents the charge distribution defined by the molecule

as,

ρ0(r) =
∑
i

eziδ(|r− ri|). (2.2)

Here zi represents the elementary charge of the ith atom of the molecule, ri is the radius

vector of the ith atom, e represents the elementary charge which is the absolute of the

electron charge and δ represents the Dirac delta function.

ρ1(r) =
∑
i

niezi exp(eziϕ(r)/kBT ), (2.3)

where ni represents concentration of ions of the ith kind, zi represents the charge of an

ion as an elementary charge of the ith kind, kB represents the Boltzmann constant and

T is the absolute temperature, which is often assumed to be 300 K. If the electrostatic

potential is small enough (ϕ� kBT/e), then equation (2.1) reduces to its linearized form

−5(ε(r)5 ϕ(r)) + κ2ϕ = 4πρ0(r), (2.4)

where κ2 = 4π2
∑

i niz
2
i /kBT represents the ion density.

Dong et al. (2008) state that no analytical solution of the Poisson-Boltzmann equa-

tion is known whereas numerical solvers are available. They state that the first numerical

method for solving the Poisson-Boltzmann equation was introduced by Warwicker and

Watson (1982) to compute the electrostatic potential of an enzyme’s active site. They also

state that there are three methods (i.e. Finite-Element, Finite-Difference and Boundary-

Element methods) used most often for solving the Poisson-Boltzmann equation, and all

these methods use the concept of discretization by dividing the region of interest into small

sub-regions. Software tools are available that implement such numerical methods. Del-

phi16 and University of Houston Brownian Dynamics (UHBD)17 software tools use finite-

15Permeability is the magnetization degree of a material in a magnetic field response.
16http://wiki.c2b2.columbia.edu/honiglab public/index.php/Software:DelPhi
17http://adrik.bchs.uh.edu/uhbd.html
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difference method, whereas Adaptive Poisson Boltzmann Solver (APBS)18 and Charged

Particle Optics (CPO)19 software tools use the finite-element and the boundary-element

methods respectively.

We use the Adaptive Poisson-Boltzmann Solver (APBS) for calculating electrostatic

potential map for protein structures: detailed steps for its use are explained in Appendix A.

The APBS software tool is based on a number of libraries including the Finite-Element

toolkit (FEtK)20, Parallel algebraic MultiGrid (PMG)21 and Minimal Abstraction Layer

for Object-Oriented C/C++ (MALOC)22 programs. Not many systems exist to analyse

proteins electrostatic potential energy. In the next section, we discuss an existing tool for

the analysis of the electrostatic potential energies of a group of proteins.

2.1.4 Application for Comparing Protein Electrostatic Potential Energies

A web-based tool called WebPIPSA (Ritcher et al., 2008) allows a user to compare elec-

trostatic potential energies for a set of protein three-dimensional structures. WebPIPSA

works by first superimposing the protein structures, and then calculating electrostatic po-

tentials using APBS or UHBD. WebPIPSA is based on a method of comparing protein

structures called Protein Interaction Property Similarity Analysis (PIPSA) which was

proposed by Blomberg et al. (1999). The similarity or dissimilarity of the electrostatic

potential energy for a pair of proteins is calculated using similarity indices and distance

measures for the region of interest on the protein structures. The similarity indices are

calculated using

SI12 =
2(p1, p2)

(p1, p1) + (p2, p2)
, (2.5)

where

(p1, p2) =
∑
i,j,k

φ1(i, j, k)φ2(i, j, k). (2.6)

Here φm(i, j, k) represents the electrostatic potential at grid point (i, j, k) position and m

represents the protein structure index. The electrostatic distance Da,b =
√

2− 2SIa,b is

used as input to a hierarchical clustering algorithm and the result is displayed in the form

of a dendrogram and a coloured matrix (heat map). The sample output of comparing ten

protein structures of the HLA-A gene using this web service is shown in Figure 2.3. These

results are useful for classifying and visualizing the correlation among a set of proteins.

18http://www.poissonboltzmann.org/apbs/
19http://simion.com/cpo/bem.html
20http://www.fetk.org/
21http://www.fetk.org/codes/pmg/index.html
22http://www.fetk.org/codes/maloc/index.html
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This tool has a number of limitations: the first is that it is impractical to compare a few

thousand proteins’ electrostatic potential energy maps with the visualization technique of a

heat map used by the tool and the second is the way the similarity indices are calculated for

a pair of proteins’ electrostatic potential maps that can give a false measure of similarity.

(a)

(b)

Figure 2.3: WebPIPSA results of protein classification for 10 structures of HLA-A proteins.
(a) Colored matrix representation. (b) Dendrogram.
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2.1.5 Major Histocompatibility Complexes (MHCs)

The Major Histocompatibility Complex (MHC) is a group of genes found in most verte-

brates and is related to an immune response. Kindt et al. (2007) states that MHC was

first studied as the genetic complex that has the ability of accepting or rejecting the trans-

planted tissue of an organism from one member to another member of the same species.

MHC molecules bind with peptides and appear on the cell surface where they are recog-

nized by T-Cell Receptor (TCR) bearing T cells. The MHC takes part in the development

process of humoral23 and cell-mediated24 immune responses to cell surface molecules and

these responses are due to the antigens. These antigens are called ‘Histocompatibility

Antigens’.

During the mid 1930s, Gorer identified blood-group antigens while studying inbred

strains of mice and grouped these antigens into four groups from I to IV. During the

1950s, Gorer and Snell collectively conducted experiments on mice and concluded that

genes in the Group-II encoded antigens and these antigens took part in the rejection of

transplanted tissues. Snell called these genes as ‘Histocompatibility Genes’ which are now

called Histocompatibility−2 or H−2. Snell’s work on mice became the basis for the study

of Human Leukocyte Antigen (HLA) which is referred to as the Major Histocompatibility

Complex in humans. Snell received a Nobel prize in 1980 in physiology for this work (Kindt

et al., 2007; Parham, 2000).

The Major Histocompatibility Complex is polygenic (multiple genes) and polymorphic

(multiple alleles). Allelic forms of genes that lie close together are codominant25. A re-

lated group of MHC alleles on a single chromosome that are inherited together is called

haplotype. On the basis of biological properties and chemical structure, MHC proteins

are classified into two classes: Class-I and Class-II. MHC class-I molecules typically ex-

press peptides from proteins synthesized within the cell (endogenous processing pathway).

MHC class-I proteins are encoded by three loci: HLA-A, HLA-B and HLA-C. MHC class-

II proteins are primarily derived from the endocytosed extracellular protein (exogenous

processing pathway). MHC class-II proteins are also encoded by three loci: HLA-DR,

HLA-DQ and HLA-DP.

Both classes differ in their structure. MHC class-I have the heavier α-chain which is

subdivided into three sub-regions (i.e. α1, α2 and α3) and TCR binding domain and a

23Humoral immune response takes place by secreted antibodies which are produced in the B cell.
24Cell-mediated immune response is different from humoral response, as it does not involve antibodies

but involves activation related to macrophages, natural killer cells (NK), antigen-specific cytotoxic T-
lymphocytes and the release of different cytokines in response to antigens (Heinonen and Perreault, 2008).

25Codominant means ‘inherits same number of alleles maternally and paternally’.
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conserved immunoglobin domain which binds CD826. MHC class-II molecules have also

two chains: the α chain and the β-chain. The α-chain is divided into two sub-regions

(i.e. α1 and α2) and the β-chain is also divided into two regions (i.e. β1 and β2). The

major function of MHC class-II proteins is to present extracellular antigenic peptides to

the CD427. Figure 2.4 shows schematic structures of both classes of MHCs.

Figure 2.4: Structures of MHC type molecules (adapted from
[http://what-when-how.com/wp-content/uploads/2012/04/tmp4C9.jpg]).

Only a few three-dimensional structures of alleles of HLAs are known and these were

obtained through experimental techniques like NMR or X-Ray crystallography. How-

ever, in comparison with the three-dimensional structures, a large number of primary

structures (i.e. amino acid sequences) are known, and updated on a regular basis in the

IMGT/HLA database (Robinson et al., 2003). According to the July 2010 release of

IMGT/HLA database, there were 5, 302 allele sequences of the Major Histocompatibility

Complex (MHC) and since then due to advances in measurement devices the number of

known sequences has almost doubled (as of March 2014, there are 10, 533 sequences in the

database). Due to this tremendous increase in the number of protein sequences in the last

26CD8 stands for cluster of differentiation 8. This is a transmembrane glycoprotein which works as a co-
receptor for the T-cell receptor (TCR). Both CD8 and TCR bind themselves to major histocompatibility
complex but CD8 only relates to MHC class-I

27CD4 stands for cluster of differentiation 4. This is a glycoprotein which exists on the surface of immune
cells (e.g. T helper cells, monocytes, macrophages and dendritic cell).
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few years, existing analysis methods face challenges and this gives rise to openings for the

analysts to improve existing methods and to develop new algorithms to analyse such large

datasets.

Peptide28 specificities (characterisation) across this vast set of MHCs are thought to

form distinct clusters or supertypes (Sette and Sidney, 1999). Previous studies, both

experimental (Greenbaum et al., 2011) and computational (Harjanto et al., 2014), have

attempted to define such supertypes. Given the number and diversity of MHCS, the only

tractable approach is a computational one. Our intention is to develop tools to analyse

and cluster alleles of HLAs. In the next section, we briefly explain the importance of MHC

clustering with a review of previous analysis.

2.1.6 Previous work related to MHCs clustering

Doytchinova et al. (2004) state that classification of MHCs into supertypes based on the

similarity in peptide-binding specificities is important for developing epitope29-based vac-

cines. They considered MHC class-I supertype clustering using α1 and α2 sub-regions

of the α-chain (which is defined in the first 180 amino acid residues). They computed

CoMSIA30 fields and analysed them using hierarchical clustering with the Sybyl31 soft-

ware. They also computed Molecular Interaction Fields (MIF)32 and analysed them using

PCA implemented in the GRID software33 with different probes (substances) such as wa-

ter, hydrogen, etc. In their work, both the methods gave 77% consensus (similarities

in grouping) in defining eight supertypes for the available alleles (i.e. 783 MHC class-I

three-dimensional molecules of humans predicted using homology modelling process) in

the IMGT/HLA database (Robinson et al., 2003).

Doytchinova and Flower (2005) identified supertypes for MHC class-II considering only

the first 80 amino acid residues of the α chain type and the first 90 residues of the β chain

type. They used a hierarchical clustering method with CoMSIA fields computed by the

Sybyl software tool. In the CoMSIA field-based analysis amino acids outside the binding

site were ignored. For non-hierarchical clustering, each amino acid in the binding site

28A peptide is a short chain of two or more amino acids that are linked by a connecting carboxyl group
of one amino acid with the amino group of the other amino acid.

29An epitope is defined as the local region on the surface of the antigen responsible for bringing an
immune response and also combines with a certain antibody to counter that response.

30Comparative Molecular Similarity Indices (CoMSIA) fields include properties such as steric bulk,
electrostatic potential, hydrophobicity, hydrogen-bond donor and acceptor.

31http://tripos.com/
32The Molecular Interaction Field (MIF) is a uniform grid of points surrounding the whole protein or

the specific regions over the proteins.
33http://www.moldiscovery.com/soft grid.php

20



Chapter 2 BIOINFORMATICS AND MAJOR HISTOCOMPATIBILITY COMPLEXES (MHCS)

was considered using five z-descriptors: z1 for hydrophobicity34, z2 for steric bulk35, z3

for polarity36 and both z4 and z5 for electronic effects. They used the last four levels

of the hierarchy for supertype identification. A matrix was generated where each row

represents a protein and a number of columns that were equal to the five times more

the number of amino acids in the binding site. K-means clustering was applied using

the MDL-QSAR (Quantitative Structure Activity Relationship)37 software tool by setting

K, the number of clusters, equal to the number of clusters generated by the hierarchical

clustering method. The members of clusters from both the techniques were compared and

based on commonality between the clusters (with 84% consensus from both the methods),

twelve supertypes were defined. Following these studies, several different techniques can

be developed to provide a more detailed analysis of protein structures by considering the

whole structure or different fragments of the molecules.

Ghaffar and Nagarkatti and Cainelli and Vento (2002) state that the MHC contains

a number of genes that control several antigens which are important in transplantation

for rejecting the graft between same species. They also state that the relocation of tissue

between the same species is called ‘Allograft’, between the same species with identical

genetic makeup is called ‘Isograft’ and between different species is called ‘Xenograft’. If

the donor and recipient have maximum similarity in their MHCs there is less chance of

rejection of the graft and maximum duration of the graft survival is in the order of high

to low is in ‘Isograft’, ‘Allograft’ and ‘Xenograft’ respectively.

2.1.7 The electrostatic potential dataset of MHC class-I

A set of protein sequences of HLA class-I were collected from the IMGT/HLA database (Robin-

son et al., 2003) (from the July 2011 release for HLA-A, and from the November 2011 re-

lease for HLA-B and HLA-C). The IMGT/HLA database nomenclature defines six parts of

the HLA allele name. At first, we excluded all those sequences which either have ‘N’ or ‘L’

or ‘Q’ as a suffix at the end of the allele name for the purpose of simplicity. Secondly, from

the rest of the allele set we have considered only those protein sequences that either have

only one known DNA substitution within the coding region or if there is more than one

DNA substitution, only the sequence with maximum length was considered. After, exclud-

ing the sequences based on these criteria we selected 1, 236 sequences of HLA-A, 1, 779

34A molecule’s physical property that is repelled from the mass of water.
35Steric effects are directly related to the space that each atom occupies in a molecule and in cases where

the atoms come too close then they have the effects on the associated cost in energy due to the overlapping
electron clouds and potentially effecting the shape of the molecule.

36Polarity is the capacity of forming distinctive opposing charges from the orientation of bonds in a
molecule and its spatial structure.

37http://mdl-qsar.software.informer.com/
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of HLA-B and 929 of HLA-C. For structure-modelling purposes, a homology-modelling

approach was used to model 3D structures using the Modeller software tool (Sali, 2010)

(details available in Appendix A). We downloaded three known reference protein struc-

tures (i.e. HLA-A*0201 (‘1I4F’ protein data bank code) for HL-A, HLA-B*0801 (‘1AGD’)

and HLA-CW*0401 (‘1IM9’) retrieved from the protein data bank (Bernsten et al., 1977).

The same three reference protein structures were previously used by Doytchinova et al.

(2004) for the purpose of structure modelling. Selected sequences of each gene were aligned

with the corresponding known reference protein structure. A few of the aligned sequences

have shown some extra amino acids either at one or at both ends since there was no match

for them in the reference protein structure, so we optimized alignment by removing these

segments to increase the similarity to the reference protein structure. All structures of

HLA-B and HLA-C type were super-positioned on one of the structure of HLA-A based

on the C-Alpha carbon atom. Side chain placement was performed using SCWRL (Bower

et al., 1997; Krivov et al., 2009).

After structure modelling, the electrostatic potential (EP) was calculated in two steps:

in the first step the transformation from the protein data bank (PDB) format to PQR

format was performed using the software tool PDB2PQR (Dolinsky et al., 2007, 2004):

this prepares structures for continuum electrostatic potential calculation by placing miss-

ing hydrogen atoms (sometimes in the modelled structures from the homology modelling

process, some of the molecules have missing hydrogen atoms). In the second step, the

Adaptive Poisson Boltzmann Solver (APBS) (Baker et al., 2001) is used to calculate elec-

trostatic potentials by surrounding each protein structure with a three-dimensional grid

box with 173 points (where the coarse grid covering the complete protein has lengths 210

angstrom (Â) in all three dimensions and a fine grid with 72, 32 and 52 angstrom (Â) in

the x, y and z dimensions respectively focusing on the target area (i.e. whole area around

the α1 and α2 regions)) grid points. Our interest is in analysing the top region (i.e. α1 and

α2) of proteins and therefore we selected the 9× 172 = 2, 601 grid points which cover this

region (see Figure 2.5). The electrostatic potential outside the van der Waals surface38

is important for interactions with other molecules and therefore we ignored electrostatic

potential at all points that were inside the van der Waals surface resulting in 2, 418 grid

points (see Figure 2.5) which are outside the van der Waals surface of all the modelled

structures. In a data matrix, each row indicates a single protein structure whereas each

column in a row indicates a grid position (descriptor) where an electrostatic potential is

38A van der Waals surface is defined by the union of spherical atoms with van der Waals radius for each
atom in a molecule.
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calculated. In the next chapter, we analyse this dataset using state-of-the-art machine

learning dimensionality reduction methods.

Figure 2.5: An example MHC protein three-dimensional structure with grid box to indicate
region of interest for analysis (where orange dots indicates the top target surface outside
the van-der Waals surface).
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Chapter 3 AN INTEGRATED VISUAL DATA MINING FRAMEWORK

This chapter first reviews some of the existing general purpose visual data mining sys-

tems such as: the VisuMap, the VisRed and the DVMS. We then give theoretical details

of the data projection methods that include Principal Component Analysis (PCA), Neu-

roscale (NSC), generative topographic mapping (GTM), GTM with simultaneous feature

saliency, hierarchical GTM, latent trait model (LTM) and Gaussian process latent variable

model (GPLVM). At the end of the chapter, we give theoretical details of the visualisa-

tion quality evaluation measures, we use in this thesis and these are: KL-divergence, NN

classification error, trustworthiness and continuity, mean relative rank errors with respect

to data and latent space and visualisation distance distortion.

3.1 Introduction

Analysing large datasets requires algorithms and techniques that are more effective than

traditional statistical data summarization and management techniques which have proven

to be insufficient for such complex tasks (Pal and Mitra, 2004). Traditional statistical

methods fail partially because of the increase in number of objects but mostly due to

the immense increase in the number of variables (Imola, 2002). The problems that arise

due to high-dimensionality of data are termed the ‘curse of dimensionality’ (Bellman and

Corporation, 1957). Such issues in the analysis of large and high-dimensional datasets

have not only presented new challenges for researchers but also created new openings for

theoretical developments (Donoho et al., 2000).

Nowadays, this question is becoming very important for biological experts that whether

they will be able to transform tremendously increasing biological datasets into useful in-

formation with existing analytics approaches. Due to the tremendous increase in large and

high-dimensional biological datasets, the need for machine learning analytics approaches

have become an important area of research (Kuonen, 2003). Since, we know it is a difficult

task for a human to visualise data in more than three dimensions therefore one of the effec-

tive way of representing a high-dimensional dataset is data visualisation approach which

is usually considered a useful tool to explore such complex high-dimensional datasets. The

term data visualisation (also known as data projection/dimensionality reduction) is used

here for a mapping of a high-dimensional dataset onto a low dimensional manifold (which

is usually 2D or 3D) to explore intrinsic structures to help a user in understanding data

better. In the last two decades, a lot of focus has been given to the machine learning

approaches in order to identify more effective ways of transforming data into knowledge

but still it requires a lot improvements in the existing methods and development of new
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analysis approaches.

Machine Learning is a field which uses a machine (i.e. computer) to construct a model

from data: it usually comprises of techniques and theory of statistics, optimisation and

algorithms (Kelchtermans et al., 2014). Machine learning tasks fall into three categories:

supervised learning where a a pair of values (xn,zn) with xn as inputs and zn as output are

involved and the goal is to model the relationship between each input vector xn with the

corresponding output zn; reinforcement learning is a process of learning what to do and

how the situations needs to be mapped with actions in order to maximise a reward and in

this method a learner is not told what actions needs to be taken rather it discovers which

actions were responsible for the maximum reward, and unsupervised learning is the process

where we might not have any specific given target but we are interested in understanding

the intrinsic structure of the dataset. One of the well-known unsupervised learning tasks is

data visualisation where the goal is to determine a faithful low-dimensional representation

of the high-dimensional data space.

The main goal of information visualisation is to assist users with interactive visual

tools (e.g. interactive scatter plots, interactive parallel coordinates etc.) which help users

to use domain knowledge in exploring a dataset, gaining detailed insight, understanding

the structure of the data better, and drawing useful conclusions. As argued by Maniyar

and Nabney (2006b), visual representation tools are not good enough on their own to

replace the analytical non-visual mining algorithms for the representation of the high-

dimensional data to get a useful information. Instead it is useful to combine the approaches

of different domains in order to get better understanding of these datasets. Maniyar

et al. (2006) also argued that it is useful to combine approaches from the data mining,

information visualisation and interactivity fields to explore large high-dimensional datasets

by performing tasks such as identifying clusters, analysing data patterns appearing in

different clusters, etc. Such a combined framework is known as Visual Data Mining (Keim,

2002).

According to Ankerst (2001), visual data mining techniques are classified into three

groups. The first group uses visualisation techniques independent of the data mining

methods. The second group uses data mining methods first and then uses visualisation

methods to give a graphical view of the structure of the data. The third group provides an

additional advantage to the second group by supporting interaction with the user during

the mining and visualization process to improve the results. Ankerst also states that most

visual data mining systems are based either on the first or on the second approach. We

briefly review some of existing visual data mining systems (including the one we extended
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in this project) in Section 3.2. All these systems fall into the category of the third type

of visual data mining systems and give strong integration of data mining and information

visualization techniques used at different stages of data exploration to understand overall

structure of the data where a detailed insight can be explored with the interactive features.

Traditional dimensionality reduction methods such as PCA (Pearson, 1901; Hotelling,

1933; Jolliffe, 2002), multidimensional scaling (MDS) (Cox and Cox, 1994), locally linear

embedding (LLE) (Roweis and Saul, 2000), self-organizing map(SOM) (Kohonen, 1982)

etc. are widely used and are reviewed by van der Maaten et al. (2009). Since the late

1990s, probabilistic dimensionality reduction methods are becoming popular and quite of-

ten outperformed traditional methods (Maniyar et al., 2006). Probabilistic dimensionality

reduction methods include probabilistic PCA (Tipping and Bishop, 1999), generative topo-

graphic mapping (GTM) (Bishop and Svensen, 1998), latent trait model (LTM) (Kabán

and Girolami, 2001) and Gaussian process latent variable model (GPLVM) (Lawrence,

2005).

Recently GTM has been extended to estimate feature saliency while training a visu-

alisation model (Maniyar and Nabney, 2006a). It is also possible to compute geometric

properties of the visualisation manifold, for example, we can compute local magnification

factors both for GTM (Bishop et al., 1997) and LTM (Sun et al., 2001) which explain

the stretch level on the visualisation space when mapped back to the data space. For the

GTM, geometric properties such as local directional curvature can also be calculated for

the projection manifold and they are used to monitor the amount of folding and neigh-

bourhood preservation. Some of the results for magnification factor and local directional

curvature are given in Chapter 4. In the GPLVM model, we can compute a mapping

precision which explain how well a neighbourhood is preserved in the visualisation space

compared to that of data space (Lawrence, 2005).

It has been argued that quite often it is difficult to understand the hidden structure

of large datasets using a single two-dimensional plot. In the late 1990s, the concept of

drilling down the probabilistic visualisations using a tree-like hierarchical structure was

introduced by Bishop and Tipping (1998) where the basic building block was probabilistic

PCA and a mixture of PPCA models was used to build the hierarchy. A similar approach

was extended to GTM (Tino and Nabney, 2002) and LTM (Sun et al., 2001) like models.

The structure of the rest of the chapter is as follows: we reviewed some existing general

purpose visual data mining systems in section 3.2. Section 3.3 gives a theoretical review

of the data visualisation methods. At the end of the chapter, in section 3.4, we review the

visualisation quality evaluation measures that we use in the rest of the thesis.
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3.2 Visual Data Mining Systems

We review here three visual data mining systems each of which is based on a combination

of techniques from data mining, information visualisation and interactivity support: the

VisuMap, the VisRed and the DVMS.

3.2.1 VisuMap-A high-dimensional data visualiser

A VisuMap1 is a general purpose visual data-mining system used to visualise high-dimensional

data in a two-dimensional or three-dimensional space. A set of dimensionality-reduction

algorithms like PCA (Pearson, 1901), Sammon Mapping (Sammon, 1969) and Curvilinear

Component Analysis (CCA) (Demartines and Hérault, 1995, 1997) have been implemented

in this system. The Sammon Mapping is an MDS-based2 non-linear method for reducing

the dimensionality of the data. It can use any gradient-based non-linear optimization algo-

rithm. CCA is an improvement of Sammon’s mapping by preserving more short distances

by relaxing the constraints due to the long distance information. CCA uses a gradient

descent optimization algorithm to minimize the stress function.

This software generates standard visualization graphs by representing data on a two-

or three-dimensional scatter plot with more interactive features. This interactivity is

provided with region selection on the scatter plot and other features such as zooming, data

labelling, data point colour change, and data point shape change. VisuMap also supports a

set of clustering algorithms on the visualization space such as K-means (MacQueen, 1967),

Agglomerative clustering, Self-Organizing Map (SOM) (Kohonen, 1982), Self-Organizing

Graph (SOG)(Meyer, 1998), Metric Sampling and Affinity propagation (Frey and Dueck,

2007). However, the dimensionality reduction approaches used in this tool are very basic.

3.2.2 VisRed-Visualisation by space reduction

The VisRed system was developed by Dourado et al. (2007): this software performs data

visualisation by first reducing a high-dimensional data space to a low-dimensional space

(i.e. two- or three-dimensional). Techniques such as linear/non-linear PCA and Multi-

dimensional Scaling (MDS) are used for dimensionality reduction. Non-linear PCA was

implemented using a Bottleneck Neural Network (BNN) (Kramer, 1991). The BNN is a

neural network that has usually one to three neurons in the central layer covered by a

symmetric architecture of hidden, input and output neurons (see Figure 3.1). Here the

1http://www.visumap.net/
2Multidimensional Scaling (MDS) is a collection of statistical approaches based on preserving inter-point

distances in the projected data.
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high-dimensional input data is transformed to a low-dimensional representation at the bot-

tleneck layer and then the inverse representation is performed to re-construct the original

high-dimensional data at the output layer. Classical MDS finds a distribution of points for

Figure 3.1: A non-linear PCA using auto-associative neural network architecture (adapted
from (Kramer, 1991; Bellamine and Elkamel, 2008)).

a D-dimensional space in an M -dimensional space (M << D) where the Euclidean dis-

tance between the dissimilarity matrix of D-dimensional space and M -dimensional space

can be minimized using a least squares method. MDS is an optimisation process with the

purpose of minimizing a distance between the dissimilarity matrices. A set of clustering

techniques on the visualisation space such as hierarchical, k-means, fuzzy k-means and

SOM have also been incorporated in this software. For visualisation purpose, the software

provides two or three-dimensional scatter plots.

3.2.3 DVMS-Data visualisation and modelling system

A well-known framework for information visualization systems is Shneiderman’s mantra

(Shneiderman, 1996): it states ‘Overview first, zoom and filter, then details on demand’.

Based on this mantra, Maniyar et al. (2006) proposed a system called the Data Visu-

alisation and Modelling System (DVMS) that uses principled projection algorithms like

PCA, Neuroscale, GTM, GTM-FS, LTM and hierarchical GTM for dimensionality re-
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duction along with information visualization techniques like scatter plots and parallel

coordinates. DVMS uses the Matlab toolbox Netlab (Nabney, 2002) for the machine-

learning algorithms. DVMS allows the user to perform dimensionality reduction from

a high-dimensional data to a two-dimensional space. The projected data can then be

visualised using scatter plots to get an overview of the structure of the data.

The system provides interactive scatter plots in which the user can select any point from

the region of interest on the plot and a number of neighbouring data points around the se-

lected point: this group of points is visualised using parallel coordinates3 (see Figure 3.2),

providing the user with a more detailed view of a data space. We recently re-designed and

re-developed DVMS to improve its usability using the partially object-oriented facilities

provided in Matlab, and have released this tool on the web4. We included the variants

of the algorithms proposed in this thesis as part of DVMS, as well. We extended this sys-

tem by providing additional interactive features such as highlighting of classes to observe

overlapping structures, generating multiple parallel coordinate plots either based on the

selection regions with nearest neighbourhood points based on the Euclidean distance or

by drawing polygons to select clusters and re-training the models using the data related

to selected regions, etc. The DVMS also supports visualisation of new (or test) data with

the same number and type of descriptors using the previously trained visualisation model.

3Parallel coordinates are usually used for analysis of multivariate data by showing lines on the 2D plot
where on x-axis each vertical line represents feature and on y-axis show the values of selected data rows
where for each data row one colour is assigned.

4http://www.aston.ac.uk/ncrg
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(a) GTM visualisation of oil flow dataset
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(b) Parallel coordinate plot-1
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Figure 3.2: Demonstration of parallel coordinates plots using DVMS. (a) GTM 2D visual-
isation of 12-dimensional ’oil flow’ dataset (Bishop and James, 1993) indicate two selected
regions labelled as 1 and 2 indicating region of interest to generate parallel coordinate
plots shown in (b) and (c) respectively with 10 nearest neighbour data points to help
understand data points of the selected regions in the dataspace.
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3.3 Data Visualisation (Projection) Algorithms

This section reviews some data projection algorithms such as principal component analysis

(PCA), neuroscale (NSC), generative topographic mapping (GTM), GTM with simultane-

ous feature saliency, hierarchical GTM (HGTM), latent trait model (LTM) and Gaussian

process latent variable model (GPLVM).

3.3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) was proposed as a linear data projection method to

map a high-dimensional dataset onto a low-dimensional space (Pearson, 1901; Hotelling,

1933; Bishop, 2006). According to Hotelling (1933), PCA can be defined as an orthogonal

projection of high-dimensional data to a lower-dimensional space in such a way that there

will be a maximum variance in the projected data.

Consider the task of mapping a dataset of vectors xn, where n = 1, 2, . . . , N in a

D-dimensional space, to corresponding vectors zn in an M -dimensional space (usually

M = 2 or M = 3 for the purpose of visualisation). Relative to standard orthonormal

basis {e1, . . . , eD}, xn is represented by the vector {xn1, . . . , xnD} which is equivalent to

xn =
∑D

d=1 xnded. We write the vector xn as a linear combination of D orthonormal

vectors ud

xn =
D∑
d=1

αndud, (3.1)

This represents a rotation of the coordinate system to a new system defined by the ud.

The proposed PCA is to learn the basis {u1, . . . ,uD} to optimise the projection according

to some criteria. According to the orthonormal property,

uTd ud′ = δdd′ , (3.2)

where δdd′ is a Kronecker delta representation. Now, we can define

αnd = xTnud, (3.3)

and so without loss of generality, we can write

xn =
D∑
d=1

(xTnud)ud. (3.4)

Our goal is to map the vectors to an M -dimensional sub-space, so we choose an approxi-
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mation vector x̃n and write it as

x̃n =

M∑
d=1

zndud +

D∑
d=M+1

bdud, (3.5)

where the znd is dependent on the particular nth data point and bd are taken as constants

for all the data points. We are free to choose the ud, the znd and the bd to minimize the

error introduced by dimensionality reduction. The error measure we take is the squared

distance, between the data point xn and its approximation x̃n considering the average of

the whole dataset, for the purpose of minimizing

E =
1

N

N∑
n=1

||xn − x̃n||2. (3.6)

As ud are orthonormal, setting the derivative of E with respect to znd to zero gives

znd = xTnud, (3.7)

where d = 1, . . . ,M . Similarly, now setting the derivative of E with respect to bd to zero

gives

bd = x̄Tud. (3.8)

where d = M + 1, . . . , D. If we substitue znd and bd into equation (3.5) and make use of

the general expression of equation (3.4), we get

xn − x̃n =
D∑

d=M+1

{
(xn − x̄d)

Tud

}
ud, (3.9)

which explains that the displacement vector from xn to x̃n lies in the space orthogonal to

the principal subspace, because this is a linear combination of ud for d = M + 1, . . . , D.

This is to be expected as the projected points x̃ must lie within the principal subspace

which corresponds to be aligned with the eigenvectors corresponding to the largest eigen-

values. Now, the error function (3.6) takes the form

E =
1

N

N∑
n=1

D∑
d=M+1

(xTnud − x̄Tud)
2

=
1

N

D∑
d=M+1

uTdΣud,

(3.10)

where Σ represents the covariance matrix of the data. Applying Lagrange multipliers,
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it is observed that stationary points of E are present at the eigenvectors of Σ showing

that Σud = λdud. Putting such vectors into Equation (3.10), the residual error equation

becomes

E =
1

2

D∑
d=M+1

λd. (3.11)

This indicates that the minimum error is obtained with the selection of the D−M smallest

eigenvalues whereas the data is projected onto the space spanned by the first M eigen-

vectors corresponding to the largest eigenvalues. These eigenvectors are known as the

M principal components. PCA is simple to apply but only useful when there is a linear

structure in the dataset.

3.3.2 Neuroscale (NSC)

A Neuroscale model (Lowe and Tipping, 1996) is a neural-network based data visualisation

(projection) algorithm which is related to Sammon’s mapping (Sammon, 1969) and Multi-

dimensional scaling (Kruskal, 1964). For mapping a high-dimensional observation space

to the projected space, it uses a radial basis function (RBF) network (see Figure 3.3,

adapted from (Lowe and Tipping, 1996)). This algorithm preserves the optimal topo-
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Figure 3.3: The Neuroscale architecture.

graphic structure in the transformed space and the realization of this constraint is that it

attempts to make the inter-point distances in the projected space as similar as possible to

the corresponding inter-point distances in the data space. A common practice is to use

Euclidean distance for this purpose (for data space d∗ij = ||xi−xj || and for projected space

dij = ||zi− zj ||). Neuroscale uses the following stress metric (similar to that of Sammon’s
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mapping) for minimizing the error

E =

N∑
i

N∑
j>i

(d∗ij − dij)2. (3.12)

The RBF network for predicting a latent space point has the following form

z = Φ(x)W, (3.13)

where z is a 1×M projected space vector, Φ(x) is a 1× L basis functions vector and W

is a L×M weight matrix.

The Neuroscale model needs to set the number and locations of basis function centres.

To initialise the basis function centres, we first apply the Gaussian mixture model5 with

spherical covariance to the input data with the number of components equal to the number

of basis functions. The GMM centres are then transferred to the centres of basis function

centres (Nabney, 2002). As a common practice, the number of basis functions are taken

to be close to the number of data points in the training set to represent each data point

by the centre of a basis function. The Neuroscale map is learned by optimizing the RBF

network parameters to minimize the stress metric defined in equation (3.12).

3.3.3 Generative Topographic Mapping (GTM)

The generative topographic mapping (GTM) was proposed by Bishop and Svensen (1998)

as an alternative to the SOM which estimates a generative probability distribution. GTM

is a non-linear method for mapping a low-dimension space to the high-dimensional space.

The primary objective of the latent variable model is to estimate the probability distri-

bution p(x) that represents data x ∈ RD using latent variables z ∈ RM . For a GTM

model, the latent space, H, is covered with an array of K latent space centres, zk ∈ H,

k = 1, 2, . . . ,K. A radial basis function is used as a non-linear mapping function to

map a latent point z in the M -dimensional latent space to a corresponding point x in a

D-dimensional data space (see Figure 3.4) as,

f(z; W) = Φ(z)W, (3.14)

where Φ(z) is the image of z under L basis functions and W is a L×D weight matrix. For

a GTM the latent space is considered to be the bounded Euclidean space [−1, 1]× [−1, 1].

In reality, it is impossible for the data to lie exactly on a low-dimensional manifold, and

5Before training a Gaussian mixture model (GMM), K-means algorithm is used to set the data density.
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Figure 3.4: The GTM schematic representation which shows the latent space to the data
space mapping using a non-linear mapping function f(z; W).

it is therefore appropriate to consider a noise model for the x data vector. We consider

the distribution of data vector x for a given latent point z and a weight matrix W as a

spherical Gaussian with centre f(z; W) and variance β−1:

p(x|z,W, β) =

(
β

2π

)D
2

exp

(
−β

2
||x− f(z; W)||2

)
. (3.15)

The distribution of x with a given weight matrix, W, can be computed by integrating

over the distribution of latent variables, z,

p(x|W, β) =

∫
p(x|z,W, β)p(z) dz. (3.16)

For a dataset consisting of N data points with elements xn (where n = 1, . . . , N), the

parameter weight matrix, W and the inverse variance β can be determined using the log

likelihood

L(W, β) =
N∑
n=1

ln p(xn|W, β). (3.17)

For tractability of the integral, p(z), is taken to be a sum of delta functions: these are

usually placed on the nodes of regular grid in the latent space

p(z) =
1

K

K∑
k=1

δ(z− zk). (3.18)
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We can now map each latent point, zk, to the data space using the mapping functions

given in equation (3.14) each of which acts as the centre of a Gaussian density function

(see Figure 3.4). Note that the model considers that all the components in a mixture share

the same variance β−1 and the fixed mixing coefficient (i.e. πk = 1
K ) (Svénsen, 1998). The

data distribution can now be defined from equations (3.16) and (3.18),

p(xn|W, β) =

K∑
k=1

πkp(xn|zk,W, β). (3.19)

The log-likelihood now takes the form

L(W, β) =

N∑
n=1

ln

K∑
k=1

πkp(xn|zk,W, β). (3.20)

3.3.3.1 Expectation Maximization (EM) for GTM

GTM is based on a constrained mixture of Gaussians, and therefore it is easy to estimate

the parameters of the model using an expectation-maximization (EM) algorithm.

In the E-step, we use the current set of parameters to compute the posterior probabilities

(i.e. responsibilities) for each latent space component for the nth data point using Bayes’

theorem,

rkn = p(zk|xn,W, β)

=
p(xn|zk,W, β)∑K

k′=1 p(xn|zk′ ,W, β)
.

(3.21)

In the M-Step, we use the posterior probabilities, R (computed at the E-step), to re-

estimate parameters of the weight matrix, W, using the following set of linear equations

(detailed derivations are available in (Bishop and Svensen, 1998)),

Ŵ = (ΦTEΦ)−1ΦTRX, (3.22)

where Φ is a K × L matrix with elements, φl(zk), R is a K × N matrix with elements,

rkn, X is an N ×D data matrix and the diagonal matrix E contains the values

ekk =
N∑
n=1

rkn. (3.23)

Equation (3.22) can now be used to determine the updated weight matrix, Ŵ, and Φ re-

mains constant (and can be computed before the optimization starts) and the re-estimation
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formula for the β can now be defined as (a detailed derivation is given in (Bishop and

Svensen, 1998)),

1

β̂
=

1

ND

N∑
n=1

K∑
k=1

rnk||Φ(zk)Ŵ − xn||2. (3.24)

3.3.3.2 Data visualisation using GTM

GTM gives the posterior distribution rkn resulting from Bayes’ theorem. It is difficult to

visualise such a posterior distribution jointly for all the points in a dataset since it gives

too much information (since this would require a distinct 2D plot for each data point),

and it is therefore necessary to use a summary statistic, usually the mean

〈z|xn,W, β〉 =
K∑
k=1

rknzk. (3.25)

Further details of the GTM model are available in (Bishop and Svensen, 1998).

3.3.3.3 Magnification factors (MF) and Directional curvature (DC)

Determining the geometry of the projection manifold is considered as a useful tool. The

advantage of using the GTM based models is that computation of the magnification factor

(MF) (Bishop et al., 1997) and directional curvature (Tino et al., 2001) is analytically

possible. For a GTM projection manifold, MFs can be calculated as the determinant of

the jacobian of the GTM map (Bishop et al., 1997). The magnification factors are useful in

determining the stretch of the manifold in different parts of the latent space and help the

user to understand the data space, outlier detection and separation of clusters. MFs can be

represented in the gray colors where lighter regions indicate more stretch in the projection

manifold (for example see Figure 3.5). A closed-form formula for the directional curvature
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Figure 3.5: An example magnification factor (MF) plot on a log10 scale for the GTM
visualisation model. This plot shows four dark regions indicating less stretches whereas
the edges and centre of this plot are lighter to indicate more stretches.
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of the GTM projection manifold for a latent space point z ∈ H and a directional vector

h ∈ H was derived by Tino et al. (2001). Directional curvature is useful in determining the

direction and amount of folding in the GTM manifold which helps the user in locating the

regions where the projection manifold does not fit the data well. It is possible that a set of

data points which are far apart when projected appear close together due to high-folding in

the manifold. Such neighbourhood preservation can be observed with a strong curvature

band on the related directional curvature plot. The direction of the folding is represented

as a small line for each part of the projection manifold in the directional curvature (for

example see Figure 3.6). For this example and for other curvature plots presented in this

thesis, direction curvature are calculated in 16 specific directions. A maximal curvature

is represented with a small line for each region. The length and shade of the background

colour represents the folding magnitude. The longer line and lighter background indicates

high folding (curvature).
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Figure 3.6: An example directional curvature (DC) plot for the GTM visualisation model
where lighter regions and longer lines indicates more stretched regions.

3.3.4 Generative Topographic Mapping with simultaneous feature selection (GTM-

FS)

To estimate feature saliency with GTM, it is assumed that features are conditionally in-

dependent given the mixture component label (Maniyar and Nabney, 2006a). Specifically

for a mixture of Gaussians, such independence can be achieved using diagonal covariance

matrices. Therefore, GTM-FS uses a mixture of diagonal Gaussians and the probability

density function can be expressed as

p(xn|π, θ) =
K∑
k=1

πk

D∏
d=1

p(xnd|θkd), (3.26)
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where K represents the number of components, as in GTM, πk is a mixing coefficient that

is taken as fixed for each kth component to 1
K , D represents the number of features, xn

represents the nth data point (in RD), and p(xnd|θk) represents the probability density

function of the dth feature for the kth component with the mean and variance parameters

θkd = {f(zk;W ), βd}. It is also assumed that for each dimension, d = 1, . . . , D, βd is the

same for all the components in the mixture. The dth feature is considered as irrelevant

only if the distribution of the feature is independent of the mixture component labels and

is then modelled by a common density of the form q(xnd|λd) which is considered as a

diagonal Gaussian with λd parameters. We use Ψ = (ψ1, . . . , ψD) to denote a set of binary

values where ψd is equal to 1 for a relevant feature and 0 for an irrelevant feature. With

these definitions, the probability density function is defined as

p(xn|∆) =

K∑
k=1

πk

D∏
d=1

[
p(xnd|θkd)

]ψd
[
q(xnd|λd)

](1−ψd)
, (3.27)

where ∆ = {πk, θkd, λd, ψd}.

The concept of feature saliency is represented as follows.

• The ψds are treated as missing variables in the EM algorithm.

• The probability of the relevant feature is represented as ρd = p(ψd = 1).

Now the resultant model can be written as

p(xn|Ω) =

K∑
k=1

πk

D∏
d=1

[
ρdp(xnd|θkd) + (1− ρd)q(xnd|λd)

]
, (3.28)

where Ω = {πk, θkd, λd, ψd} represents the set of all parameters of the model. An intuitive

way is to represent
[
p(xnd|θkd)

]ψd
[
q(xnd|λd)

](1−ψd)
as
[
ψdp(xnd|θmd) + (1ψd)q(xnd|λd)

]
because ψd is a binary indicator variable. A detailed derivation of equation (3.28) from

equation (3.27) is given in Appendix C.1 (this is adapted from the derivation given in (Law

et al., 2004)).

A schematic representation of the GTM-FS visualisation model is presented in Fig-

ure 3.7. This shows a three-dimensional feature set where the first two features (i.e. x1 and

x2) are relevant and the third feature (i.e. x3) is irrelevant. Fitting a constrained mixture

model with four diagonal-covariance components using equation (3.26), (represented as a

two dimensional manifold, H), there are larger variances along features x1 and x2 whereas

for the feature x3 the variance is close to zero. The shared distribution q(.|λ) used to

represent irrelevant feature x3 is an ellipsoid in the centre of the data. The log-likelihood
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Figure 3.7: The GTM-FS schematic representation where x1 and x2 have highest saliencies
and x3 has low saliency.

is defined as,

L(Ω) =

N∑
n=1

ln p(xn|Ω), (3.29)

where N represents the total number of data points.

3.3.4.1 Expectation Maximization (EM) for GTM-FS

Latent variable structure of GTM can also be exploited to estimate feature saliency, where

parameters of the model can also be computed using the expectation-maximization (EM)

algorithm. For this, we consider flipping of a biased coin where each feature has the

probability of head as ρd; if we get the head then we consider the fact that the feature

is generated from the mixture component, p(.|θkd), otherwise the component, q(.|λd), is

responsible. A component label, y, is taken as a missing variable and then in the E-step

using the current set of parameters, Ω, we can compute the posterior probabilities (i.e.

responsibilities), rnk = p(yn = k|xn), of each nth data point that it belongs to kth mixture

component using Bayes’ theorem,

rnk =

∏D
d=1 ρdp(xnd|θkd) + (1− ρd)q(xnd|λd)∑K

k=1

∏D
d=1 ρdp(xnd|θkd) + (1− ρd)q(xnd|λd)

. (3.30)

The responsibility matrix, R, is used to compute unkd = p(ψd = 1,yn = k|xn) which

explains how relevant the nth data point is for relating to the kth component when the

dth feature is considered and vnkd = p(ψd = 0, yn = k|xn) shows the irrelevance (noise) of
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the nth data point relating to the kth component when the dth feature is considered and

these measures can be computed as follows

unkd =
ρdp(xnd|θkd)

ρdp(xnd|θkd) + (1− ρd)q(xnd|λd)
rnk, (3.31)

vnkd = rnk − unkd. (3.32)

In the M-step, we can use U to re-estimate the weight matrix W following a set of linear

equations for each dth feature,

ŵd = (ΦTEdΦ)−1ΦTUdxd, (3.33)

where Φ is a K ×L matrix, Ud is a K ×N matrix computed using equation (3.31), xd is

a N × 1 data vector and a diagonal matrix Ed can take the values

ekkd =
N∑
n=1

unkd. (3.34)

Now, we can straightforwardly re-estimate parameters of the mixture model using the

re-estimated weight matrix, Ŵ: then first we re-estimate the centres of mixture model in

the data space (see equation (3.35)) and then we use these re-estimated centres to update

the diagonal Gaussian width in each direction (for each dth feature) (see equation (3.36))

M̂ean θk = m̂k = Φ(zk)Ŵ, (3.35)

where m̂k is a 1×D vector.

1

β̂d
=

∑
k

∑
n unkd(xnd − m̂kd)

2∑
k

∑
n unkd

. (3.36)

Common density parameters, λd, can be updated as follows,

M̂eanλd =

∑
n(
∑

k vnkd)xnd∑
nk vnkd

(3.37)

V̂arλd =

∑
n(
∑

k vnkd(xnd − M̂eanλd)
2∑

nk vnkd
(3.38)

The feature saliency parameters for the continuous features set can be updated using

ρ̂d =

∑
nk unkd∑

nk unkd +
∑

nk vnkd
. (3.39)
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If we take the Dirichlet-type, but improper, prior for the feature saliencies (the same is

used by Law et al. (2004) for clustering data with simultaneous feature saliency),

p(ρ1, · · · , ρD) ∝
D∏
d=1

ρ
−KP

2
d (1− ρd)−

T
2 . (3.40)

then the feature saliency measure can be updated by

ρ̂d =
max(

∑
nk unkd −

KP
2 , 0)

max(
∑

nk unkd −
KP

2 , 0) + max(
∑

nk vnmd −
T
2 , 0)

, (3.41)

where P and T are the number of parameters in θkd and λd respectively.

3.3.4.2 Computational considerations for GTM and GTM-FS models

Considering the process required to update the parameters (for example winning nodes

or responsibilities), we observe that the distance calculation between data points and

mixture of reference vectors (used while calculating p(xn|Ω)) is the same both for GTM

and GTM-FS models. While updating parameters both GTM (in equation (3.22)) and

GTM-FS (in equation (3.33)) requires a matrix inversion of an L × L matrix, where L

indicates the number of basis functions, followed by a matrix multiplication. The matrix

inversion scales as O(L3), whereas the matrix multiplication scales as O(KND)6, where

K indicates the number of latent space grid points. GTM-FS model requires to process an

extra loop for D features to update weight vector ŵd in the parameter learning process.

3.3.5 Hierarchical Generative Topographic Mapping (HGTM)

The hierarchical GTM (HGTM) is a tree-like structure, T , which is composed of GTMs

and their two-dimensional visualisation plots (for example see schematic representation in

Figure 3.8) (Tino and Nabney, 2002). The first node in the tree at level-1 is called the

Root node. A node N at Level(N ) = l has children at level l + 1 (i.e. Level(M) = l + 1

for all M ∈ Children(N )). Except the Root model in the hierarchy, each model M has

the parent-conditional mixture coefficient prior π(M|Parent(M)). The priors are non-

negative and also fulfil the consistency condition (i.e.
∑
M∈Children(N ) π(M|N ) = 1). The

unconditional prior for the root level is taken to be π(Root) = 1 whereas for all other

6To be exact, such a matrix multication scales as O(KLD+KND), where usually the number of basis
functions L are less than that of number of data points N .
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Figure 3.8: The HGTM schematic representation.

models they are computed recursively as,

π(M) =

Level(M)∏
i=2

π(Path(M)i|Path(M)i−1), (3.42)

where Path(M) = (Root, · · · ,M) contains the nodes on the path from the Root to the

node M in the tree, T . The distribution of the data vector x given a tree can now be

represented as,

p(x|T ) =
∑

M∈Leaves(T )

π(M)p(x|M). (3.43)

This gives a soft assignment of the input space to the leaf models of the HGTM. The model

is trained using a variant of the EM algorithm to maximise the likelihood with respect

to the given data X. The hierarchy of GTMs is trained in a recursive way where we use

interactivity to select regions of interest on the visualisation at any level plot. Details of

HGTM are given in (Tino and Nabney, 2002).

3.3.6 Latent Trait Model (LTM)

A generalisation of GTM was proposed by Kabán and Girolami (2001) to model different

types of data under a unified generative latent variable formalism, by considering non-

Gaussian distributions from the exponential family for modelling noise. Their main focus

was to visualise discrete data in a continuous latent visualisation space and they called

this model the latent trait model (LTM).
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The functional form of the exponential family of distributions can be defined by

pG(x|θ) = exp
{
xθ − G (θ)

}
p0(x). (3.44)

In our case, the conditional exponential family of distribution for a data point xn given

latent point zn and a weight matrix W can be defined as,

pG(xn|zk,W) = exp
{

xnf(zk,W)− G
(
f(zk,W)

)}
p0(xn), (3.45)

where G(.) is the cumulant function and is defined as

G
(
f(zk,W)

)
= log

(∫
exp(xf(zk,W))p0(x) dx

)
. (3.46)

The natural parameter θ of the exponential family of the distribution is taken to be a

linear mixing of the latent vectors with respect to the weight matrix W

θk = f(zk; W) = Φ(zk)W, (3.47)

where W is the weight matrix of the trait model. The gradient of the cumulant function

with respect to the natural parameter (i.e. f(zk; W)) is

mk = g(f(z; W)) = ∇f(zk;W)G(f(zk; W)), (3.48)

where∇ represents the gradient operation and the function g(.) is the link function (Kabán

and Girolami, 2001). Like GTM, the distribution in the latent space is modelled as a

regular grid of latent points with elements zk (where k = 1, · · · ,K) and the prior for this

latent space can be taken from the equation (3.18) (i.e. 1
K ) for each of the latent component.

The log-likelihood for the density of mixture under the exponential family can be defined

as,

L =

N∑
n=1

log

 K∑
k=1

pG(xn|zk,W)p(zk)


=

N∑
n=1

log

πk K∑
k=1

pG(xn|zk,W))

 .

(3.49)

3.3.6.1 An EM algorithm for LTM

Kabán and Girolami (2001) derived a general EM algorithm for the exponential family in
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the latent variable formalism of GTM-like models. In the E-step, posterior probabilities

(i.e. responsibilities) can be computed using the current set of parameters using

rkn = pG(zk|xn,W) =
πkpG(xn|zk,W)∑K
k′ πk′pG(xn|zk′ ,W)

. (3.50)

In relation with EM algorithm, Kabán and Girolami (2001) used maximisation of the

relative likelihood instead of maximizing the log-likelihood, which does not contain the

log of sum. The relative log likelihood between old and new set of parameters can be

calculated as,

Q =
N∑
n=1

K∑
k=1

rkn log
{
pG(xn|zk,W)p(zk)

}
=

N∑
n=1

K∑
k=1

rkn

{
xnf(zk,W)− G

(
f(zk,W)

)
+ log(p0(xn)) + log(p(zk))

} (3.51)

In the M-step it is now straightforward to maximize the function Q with respect to

W,
∂Q

∂W
= ΦT

[
RX−Eg(ΦW)

]
, (3.52)

where Φ is a K × L matrix, R is a K ×N matrix calculated using equation (3.50), X is

an N ×D data matrix and the diagonal matrix E contains the values

ekk =
N∑
n=1

rkn. (3.53)

In case of an isotropic Gaussian with unit variance, the matching function g(.) becomes

the identity and setting the derivative equal to zero, we obtain the closed form M-step of

standard GTM (i.e. equation (3.22)) (Bishop and Svensen, 1998) model as,

Ŵ = (ΦTEΦ)−1ΦTRX, (3.54)

In general a non-linear optimization approach may be required (e.g. iterative least-square

methods can be employed for this purpose). However, a Generalised EM (GEM) (McLach-

lan and Krishnan, 1997) algorithm is a more appropriate choice because of the fact that

the convergence to the local maximum is guaranteed on increasing without maximizing

the relative likelihood (Kabán and Girolami, 2001). A simple gradient-base update can

be obtained for W from the equation (3.52) as,

∆W ∝ ΦT
[
RX−Eg(ΦW)

]
, (3.55)
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where this can be used as an inner loop in the M -step and the weight matrix Ŵ update

involves matrix multiplication which scales as O(LND+LK(N +D+K)). In this thesis,

we employed a gradient inner loop M -step and the correlations between dimensions of φl

responsible for preserving the neighbourhood are required for a topographic organization.

We explain here how the natural parameter θ modifies under the gradient update of the

weight matrix W as,

θk = φkŴ = φkW + η
N∑
n=1

K∑
k′=1

rk′nφkφ
T
k′(x−mk′). (3.56)

This is considered analogous to the Self Organizing Map (SOM) (Kohonen, 1995) update.

The neighbourhood relationship width maintained by ΦΦT is also controlled by the re-

sponsibility matrix, rkn, as previously discussed in (Kabán and Girolami, 2001; Bishop

and Svensen, 1998).

For example the Bernoulli density is

p(x|m) = mx(1−m)1−x. (3.57)

To convert equation (3.57) to the general exponential form (equation (3.44)) we re-write

it as

p(x|m) = exp

{
log
(
mx(1−m)1−x

)}
= exp

{
x logm+ (1− x) log(1−m)

}
= exp

{
x log

m

1−m
+ log(1−m)

}
,

(3.58)

where θ = log m
1+m , G(θ) = − log(1−m), and p0(x) = 1.

3.3.7 Gaussian Process Latent Variable Model (GPLVM)

The Gaussian process latent variable model (GPLVM) is a non-linear extension of proba-

bilistic PCA and uses a smooth mapping from the latent space to the data space. In the

GPLVM instead of optimizing weights they are marginalized out and instead of marginal-

izing over the latent space it is optimized (i.e. the position of each point in the latent

space is optimized). A conjugate prior over the weights is chosen, taking the form of a

spherical Gaussian distribution for each dimension

p(W) =

D∏
i=1

N(wi|0, I), (3.59)
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where wi is the ith row vector of the weight matrix W and the likelihood after marginal-

izing the weights is

p(X|Z, β) =
D∏
d=1

p(x(:,d)|Z, β), (3.60)

where p(x(:,d)|Z, β) = N(x(:,d)|0,ZZT+β−1I) represents a distribution over a single feature

in the data space. GPLVM uses the following log likelihood function to optimize the latent

variables (similar to the likelihood used in (Tipping and Bishop, 1999))

L = −DN
2

log(2π)− D

2
log(detK)− 1

2
tr(K−1XXT ). (3.61)

If K = ZZT + β−1I is a linear kernel, then it is similar to PPCA. But for the GPLVM a

non-linear RBF kernel is used

k(zi, zj) = θrbf exp−(
γ

2
(zi − zj)T ((zi − zj)))

+ θbias + θwhiteδij ,

(3.62)

as explained in Lawrence (2005, 2004). Then the optimization of the latent points can be

achieved by first taking the gradient of the log likelihood with respect to the kernel

∂L

∂K
= K−1XXTK−1 −DK−1 (3.63)

and then combining this with ∂K
∂zn,j

using the chain rule. The gradient calculation uses the

inverse of the kernel matrix (see equation (3.63)); it has O(N3) complexity thereby making

it less practical for large datasets. Due to this computational complexity, a GPLVM is

usually trained using sparse approximations where a small subset of data points of size

k << N known as ‘inducing points’ or the ‘active set’ is used to reduce the complexity

from O(N3) to O(k2N). The number of data points in the active set is set by the user. In

earlier work with GPLVM the information vector machine (IVM) (where data points are

chosen sequentially based on the reduction of the posterior process‘s entropy (Lawrence

et al., 2003)) was used. Further algorithmic details can be found in (Lawrence, 2005,

2004).

Improvements in approximations for Gaussian process regression based on the unified

view proposed by Quionero-Candela et al. (2005) suggested new methods for their use

with GPLVM which improved the results compared to IVM-based approximation. Further

details of these new approximations applied to the GPLVM can be found in (Lawrence,

2008).
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3.3.7.1 Dissimilarity and local-distance preservation with GPLVM

The standard GPLVM uses a smooth7 mapping from the latent space to the data space.

Hence, this mapping does not constrain points which are close in the data space to be close

in the latent space: rather, it ensures that the points which are distant in the data space

cannot be mapped from points which are close in the latent space. Otherwise there would

be a discontinuity in the mapping. Hence, the standard GPLVM can be considered as a

dissimilarity-preserving approach. It is also unfortunate that for dimensionality reduction,

often it is difficult to accurately maintain both local distances and dissimilarities. When

users visualise data, it is the local structure that is most relevant to their analysis (for

example, when they identify clusters).

Therefore, we use a variant of GPLVM where a constrained smooth mapping is em-

ployed to overcome the problem of local distance preservation because the data points

z are no longer freely optimized (as in equation (3.60)). Instead they are the image of

points x in the data space under the non-linear function like a Radial Basis function

(RBF) kernel or multi-layer perceptron (MLP) (i.e. znj = fj(xn; w)). This constrained

mapping (also known as a back-constraint) ensures that the data points which are close

in the visualisation space that are also close in the data space. We used an MLP kernel

as a back-constraint in our experiments.

Other approaches such as Kernel PCA and Neuroscale (Lowe and Tipping, 1996) also

perform a smooth mapping from the data space to the latent space (i.e. the reverse

direction to that of GPLVM). Further details on preserving local distances with GPLVM

can be found in (Lawrence, 2006).

3.4 Visualisation Quality Evaluation Methods

Dimensionality reduction methods are usually studied in the context of unsupervised learn-

ing so evaluating the quality of visualisation is not an easy task. However, for some

datasets, class labels are given for data points and typically we are interested to show

better separation between those classes on the visualisation plots. The class information

is not used while training a visualisation model though it is only used for better presen-

tation (i.e. with colours or marker style or both). From the visualisations with such a

colour plots, we can only observe the effectiveness of a projection however it is hard to

compare visualisations resulting from different visualisation approaches. In this thesis,

7The term smooth is used here to explain that the points which are close in the latent space to the
points which are also close in the data space. We can employ many different covariance functions to use
with Gaussian process for this purpose.
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we exploit the use of two such measures to work in the presence of known labels such as

the Kullback-Leibler divergence which we use to determine the separation between classes

and nearest-neighbour-classification error. We also use some other visualisation quality

evaluation measures which do not require the labels. These can be divided into two cate-

gories: the first is the distance distortion measure and the second is the class of rank-based

measures which includes trustworthiness, continuity, and mean relative rank errors with

respect to data space and/or latent space. Each of these is explained in the following

sub-sections.

3.4.1 Kullback-Leibler (KL) divergence

It is useful to analytically measure the separation between different classes in the pro-

jected space. For obtaining such an analytic measure, we first apply a Gaussian mixture

model (GMM) (Bishop, 1995a) to each class on the projected space and then calculate the

Kullback-Leibler (KL) divergence (Cover and Thomas, 1991) between the fitted GMMs

using

DKL(pa||pb) =
∑
x

pa(x) log
pa
pb
, (3.64)

where pa and pb are GMMs of the classes a and b respectively. KL-divergence is an

asymmetric measure, therefore we calculate DKL for each class pair in both directions

and sum up all the values to get a symmetric measure SKL using

SKL =

C∑
a=1

C∑
b=1

DKL(pa||pb) (3.65)

where C indicates the number of classes. Higher values of the KL divergence sum indicate

better separation between the classes.

3.4.2 Nearest Neighbour (NN) classification error

Another measure of the quality of a visualisation is the quality of a classifier trained on

the projected data. A simple form of this can be achieved if we classify each data point

according to its class with the class of nearest neighbour on the visualisation results of the

data projection algorithm.

3.4.3 Trustworthiness and Continuity

In the information visualisation domain, two well-known visualisation quality measures

based on comparing neighbourhoods in the data space X and projection space Z are
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trustworthiness and continuity (Venna and Kaski, 2001). Trustworthiness measures the

fraction of data points distant in the data space that become neighbours in the projection

space and continuity measures the fraction of neighbouring data points in the data space

that become distant in the projection space. Both for trustworthiness and continuity,

there is no way to select automatically the number of neighbourhood points (i.e. the value

of k) to be used. Therefore, later in this thesis, we use range of neighbourhood sizes to

compute these measures and then take the average over the corresponding values of k.

Suppose that RX
i,j is the rank of the jth data point from the corresponding ith data

point with respect to the distance measure in the high-dimensional data space X, and

Uk(i) represents the data points in the k-nearest neighbourhood of the ith data point in

the latent space Z but not in the data space X. Trustworthiness with k neighbours can

be calculated as

1− 2

γk

N∑
i=1

∑
j∈Uk(i)

(RXi,j − k). (3.66)

For measuring the continuity, we define RZ
i,j to be the rank of the jth data point from the

ith data point with respect to the distance measure in the visualisation space Z and Vk(i)

to be the set of data points in the k-nearest neighbourhood of the ith data point in the

data space X but not in the visualisation space Z. The continuity with k neighbours can

be calculated as

1− 2

γk

N∑
i=1

∑
j∈Vk(i)

(RZi,j − k). (3.67)

Both for trustworthiness and continuity, we take the normalising factor (γk) as

γk =


Nk(2N − 3k − 1) if k < N/2,

N(N − k)(N − k − 1) if k > N/2,
(3.68)

where the γk ensures that the value of trustworthiness and continuity lie between 0 and 1.

The higher the measure the better the visualisation as this implies that local neighbour-

hoods are better preserved by the projection.

3.4.4 Mean Relative Rank Errors

Two more quality measures which work on the same principle as trustworthiness and

continuity are mean relative rank errors (MRREs) with respect to data space and latent
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space respectively (Lee and Verleysen, 2008). Using the same notation, the MRREs are

defined with respect to data space as

MRREX(k) =
1

τk

N∑
i=1

∑
j∈NX

k (i)

|(RZi,j −RXi,j)|
RXi,j

, (3.69)

and with respect to latent space as

MRREZ(k) =
1

τk

N∑
i=1

∑
j∈NZ

k (i)

|(RXi,j −RZi,j)|
RZi,j

. (3.70)

where the the normalisation factor τk for both types of MRREs is τk = N
∑k

k′=1
|N−2k′|

k′ .

However, in this case, the lower the MRRE is, the better the projection quality is.

3.4.5 Visualisation Distance Distortion

The visualisation distance distortion (VDD) measure is used to compare the distances

between the points in the data space X and the projection space Z between each data

point and its k nearest neighbours. Functions such as Distx and Distz are taken as

distance functions for computing distance between any pair of elements between the data

space X and the projection space Z. For a given point x ∈ X, a number k is considered as

1 < k < N of nearest neighbours. Let ix,0, · · · , ix,k represent the sorted nearest neighbours’

list where the first element index ix,0 is the index of the data point x. Now the vector of

nearest neighbours in data space X can be considered as,

DistXx,k = 〈DistX(x,X[ix,1]), · · · , DistX(x,X[ix,k])〉. (3.71)

If we take the point z ∈ Z as the projection of the point x ∈ X then we can define a vector

comprised of distances between a data point z and the projection of k nearest neighbours

in the data space X as

DistZx,k = 〈DistZ(z,Z[ix,1]), · · · , DistZ(z,Z[ix,k])〉. (3.72)

Using these distance vectors, the V DD measure for the xth data point with k nearest

neighbours can be calculated as

V DD(x, k) =

∥∥∥∥∥∥∥
DistXx,k∥∥∥DistXx,k∥∥∥ −

DistZx,k∥∥∥DistZx,k∥∥∥
∥∥∥∥∥∥∥ . (3.73)

52



Chapter 3 AN INTEGRATED VISUAL DATA MINING FRAMEWORK

This visualisation distance distortion measure is also known as a projection precision score

(PPS) (Schreck et al., 2010). V DD is calculated as the norm of the difference vectors

between the scaled distances in the data space and the visualisation latent space. The

scaled distances are used to make the distance comparable between the data space and the

latent visualisation space. The average visualisation distance distortion (AVDD) factor

can be calculated using

AVDD(X, k) =
1

N

N∑
n=1

V DD(xn, k), (3.74)

whereN is the number of data points. The lower the AVDD value the better the proximity

is preserved.

3.5 Summary

In this chapter we first reviewed some general purpose visual data mining systems. We

then explained briefly the software engineering work that we caried out on the Data Visual-

isation and Modelling System (DVMS) in order to make it easier to integrate new data pro-

jection algorithms. We then reviewed the projection algorithms that are supported by this

system: principal component analysis (PCA), Neuroscale (NSC), generative topographic

mapping (GTM) and its variants such as GTM with simultaneous feature saliency, hier-

archical GTM, latent trait model (generalisation of GTM that was developed for discrete

data) and the Gaussian process latent variable model (GPLVM). In the remaining chapters

of the thesis we will exploit and extend some of these appraoches for analysing complex

datasets. Data projection methods are considered as unsupervised learning methods and

therefore measuring and comparing their performance is difficult. We also reviewed here

some of the methods that we used in the rest of the thesis to evaluate the visualisation

quality.
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Chapter 4 EFFECTIVE VISUALISATION FOR HIGH-DIMENSIONAL DATASETS

In this chapter, we propose variants of non-linear data visualisation methods (Genera-

tive Topographic Mapping (GTM), Hierarchical GTM (HGTM) and GTM with simultane-

ous feature saliency (GTM-FS)) that are adapted to be effective on very high-dimensional

data. The adaptations use log-space values to avoid numerical problems that are observed

usually at certain steps of the expectation-maximization (EM) algorithm and in the visu-

alisation process while dealing with high-dimensional dataset. The proposed algorithms

are tested both for synthetic and real high-dimensional datasets. The real dataset, we use

is related to Major Histocompatibility Complex (MHC) class-I proteins. The experiments

show that the adaptation worked successfully with data of more than 2000 dimensions

and we also compare the results with other linear/non-linear projection methods: princi-

pal component analysis (PCA), Neuroscale (NSC) and the Gaussian process latent variable

model (GPLVM).

4.1 Introduction

Nowadays, there is a frequent practical need to analyse datasets with high-dimensions in

the bioinformatics domain related to ‘omics’: proteomics, genomics and metabolomics.

With existing algorithms, we often find it difficult to analyse such datasets due to limited

computational resources and numerical precision issues. We, in this chapter, address the

issue of numerical precision which causes the algorithms to fail while working with the high-

dimensional dataset. We consider the generative topographic mapping (GTM) (Bishop

and Svensen, 1998) and two of its extensions: GTM with simultaneous feature saliency

(GTM-FS) (Maniyar and Nabney, 2006a) and hierarchical GTM (HGTM) (Tino and Nab-

ney, 2002). The GTM visualisation algorithm was proposed as an alternative to the SOM

to estimate a generative probability distribution. The GTM-FS was proposed to esti-

mate feature saliencies as an integral part of the training process whereas HGTM was

proposed to visualise a set of GTMs in a tree like structure. The standard versions of

GTM, GTM-FS and HGTM suffers numerical precision problems while working with high-

dimensional dataset (Schroeder, 2009) and therefore, we here propose that these problems

can be avoided by using log-space transformations at certain steps of the training process

to make them work effectively with high-dimensional datasets. We briefly explain the

log-transformations that we require to use while extending these models.
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Figure 4.1: Learning curves and projections of the standard GTM and the GTM with
log-space (LogGTM) on synthetic high-dimensional dataset.

4.2 Log-transformations

Because GTM is a constrained mixture of Gaussians, the E-step is the same as for a stan-

dard Gaussian mixture model. Thus the likelihoods computed for very high-dimensional

datasets can be zero for all components (due to rounding error). This implies that the

EM algorithm fails to converge to a sensible solution (i.e. the learning curve of stnadard

GTM using 500-dimensional synthetic dataset appears as a flat line over all the iterations,

see Figure 4.1(a)) and often leads to a visualisation plot with all the points mapped to

the centre of the plot (see Figure 4.1(c))).

We propose here to use log-transformations at certain steps in the GTM training

process to avoid such numerical problems. Instead of working with probability density

value ti, the log value log ti is used instead. This gives greater precision for the very small

values that often occur in high-dimensional data.

To make this effective, we also have to modify the EM algorithm to use the transformed

values by using two identities. The first identity is well known: the product of real-space
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values is equivalent to the sum of log-space values.

log

∏
i

ti

 =
∑
i

log ti. (4.1)

The second identity is used less frequently and shows how a sum of probabilities can be

computed in log-space (Bishop, 2006)

log

∑
i

ti

 = η + log

∑
i

exp(log ti − η)

 = S
i
(log ti), (4.2)

where η = maxi log ti in order to avoid numerical precision errors and S is the operator for

representing log over sum operator. The operator S is also used for adding two matrices

(like S(−,−)) with elements on the log scale.

4.3 GTM with Log-Space Probabilities

In this section we demonstrate how the log transformation can be applied to a mixture of

spherical Gaussians in the log-space (as shown in equation (4.3)) and hence be used with a

GTM to compute the probability that a data point xn is generated by the kth component.

log p(xn|zk,W, βk) = log

(βk
2π

)D
2

exp

{
−βk

2
||xn − f(zk,W)||2

}
= −βk

2
||xn − f(zk,W)||2 +

D

2
log

(
βk
2π

)
.

(4.3)

The posterior probabilities (i.e. component responsibilities), p(zk|xn,W, β) = rkn, in the

log-space are computed first and then converted back to real space using

rkn = exp
(
log p(zk|xn,W, β)

)
= exp

((
log p(xn|zk,W, βk) + log(πk)

)
−
(
S
k

(
log p(xn|zk,W, β) + log(πk)

)))
(4.4)

Once we obtain the component responsibilities (i.e. rkn) from equation (4.4) then the

rest of the EM algorithm of GTM remains the same (i.e. as explained in equations 3.22-

3.24). Figures 4.1(b) and 4.1(d) also demonstrates the improvement in the learning process

and visualisation plot respectively when log-space transformations are used with GTM

model. In this case using a 500-dimensional four class synthetic dataset with 3200 data
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points shows that all the points are visualised close together on the centre of latent space

(indistinguishably to the eye) using the standard GTM whereas the use of the log-space

spreads them across the 2D space (see FigurestandardGTMError). However the fact that

the points tend to be located on the Gaussian centres giving a ‘grid-like’ appearance to the

visualisation with the log-space GTM variant. This can be the subject of further research

in order to improve the visualisation results.

4.4 GTM-FS with Log-Space Probabilities

Like GTM, GTM-FS also faces numerical precision issues while working with high-dimensional

datasets. We propose, in the following subsection, a variant of the EM algorithm for GTM-

FS that uses the log-space values to avoid any such numerical problems.

4.4.1 An EM Algorithm for GTM-FS using Log-Space

We present here a variant of the EM training algorithm for GTM-FS that uses log-space

and is able to deal high-dimensional data both for visualization and feature saliency esti-

mation purposes.

In the EM algorithm of GTM-FS, the dth feature is considered to be relevant with

probability ρd = (ψd = 1): in that case, a mixture component p(.|θkd) is used to generate

its value; otherwise a common density represented by q(.|λd) is used. The EM algorithm

for standard GTM-FS has already been explained in section 3.3.4.1.

We take y (the hidden component labels) and ψd to be the missing variables. In the

E-Step using the current parameter set Ω, log-space posterior probabilities (i.e. log rnk =

log p(yn = k|xn)) can be calculated for the kth Gaussian component for each data point

as

log rnk =

log πk +
D∑
d=1

(
S
(
(log ρd + log p(xnd|θkd)),

(log(1− ρd) + log q(xnd|λd))
))]

− S
k

log πk +

D∑
d=1

(
S
(
(log ρd + log p(xnd|θkd)),

(log(1− ρd) + log q(xnd|λd))
))]

.

(4.5)
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Some of the terms used in equation (4.5) are defined in equations (4.6) and (4.7).

log p(xnd|θkd) = −βkd
2
||xnd − µkd||2

+ log(
√
βkd)− log(

√
2π),

(4.6)

log q(xnd|λd) = −βd
2
||xnd − µd||2

+ log(
√
βd)− log(

√
2π).

(4.7)

Based on the responsibility matrix, R, (as shown in equation (4.5)), the value unkd =

p(ψd = 1, yn = k|xn) can be calculated which explains how relevant the nth data point is

to the kth component when the dth feature is considered and vnkd = p(ψd = 0, yn = k|xn)

shows the irrelevance (noise) of the nth data point relating to the kth component when

the dth feature is considered.

unkd = exp[log rnk + {log ρd + log p(xnd|θkd)

− S(log ρd + log p(xnd|θkd), (log(1− ρd) + log q(xnd|λd))}],
(4.8)

vnkd = exp(log rnk)− unkd. (4.9)

Now, in the M−step these posterior probabilities (i.e. responsibilities) are used for esti-

mating the weight matrix W by solving the following set of linear equations for the dth

feature,

ŵd = (ΦTEdΦ)−1ΦTUdxd, (4.10)

where Φ is a K×L matrix, ŵd is an L×1 weight vector, Ud is a K×N matrix calculated

using equation (4.8), xd is an N × 1 data vector, and Ed is a K ×K matrix with elements

ekkd =
N∑
n=1

unkd. (4.11)

Now, using the re-estimated matrix Ŵ, the centres of the mixture components in the data

space can be updated using the mapping function

M̂ean θk = µ̂k = ΦkŴ, (4.12)

where µk represents a 1 × D updated mean vector. After updating the centres for the

mixture components in the data space, the variance of the Gaussian for the dth feature
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can be calculated

1

β̂d
= exp

(
S
k
S
n

(
log unkd + log[(xnd − µkd)2]

)
− S

k
S
n

(log unkd)

)
. (4.13)

The parameters λ of the common density q(xnd|λd) and feature saliencies are updated

using a similar formula as in the original GTM-FS algorithm (using equation (3.37) for

the mean of the common density, equation (3.38) for the variance of the common density

and equation (3.41) for the feature saliencies updates).

4.5 Hierarchical GTM (HGTM) with Log-Space Probabilities

A hierarchical GTM is a tree-structured visualisation model which attempts to improve

the visualisation by adding more levels in a hierarchy. The fundamental building block of

HGTM is a GTM, and like standard GTM it also suffers from numerical problems when

working with high-dimensional datasets. We propose that using log-transformations at

certain steps of HGTM training process will also help to avoid such numerical problems.

4.5.1 An EM Algorithm for HGTM using Log-Space

The detailed derivation of the original HGTM expectation maximization (EM) training

algorithm is given in (Tino and Nabney, 2002) and here, we explain the main steps in

the summarised form where we propose to use log-transformations to avoid numerical

precision errors.

E-Step:

In the E-step of HGTM training process, posteriors over all hidden variables are estimated

using the current parameters set of HGTM using the log-space transformation to avoid

numerical errors. For a given data point xn we compute model responsibilities which

define the competitive relationship among models that belong to the same parent node in

the tree using

log p(M|Parent(M),xn) =
(
log π(M|Parent(M)) + log p(xn|M)

)
−

(
S

N∈[M]

(
(log π(N|Parent(M)) + log p(xn|M)

)) (4.14)

where [M] = Children(Parent(M)). We also recursively compute unconditional (on

parent) model responsibility using

log p(M|xn) = log p(M|Parent(M),xn) + log p(Parent(M)|xn) (4.15)
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and now for the Mth model, responsibilities of the latent space centres (i.e. zk with

k = 1, . . . ,K) are computed in the log-space using

log(RMkn) = log p(zMk |xn,WM, βM)

=
(

log p(xn|zMk ,WM, βM) + log(πk)
)
−
(
S
k

(
log p(xn|zk,W, βM) + log(πk)

))
(4.16)

The responsibilities can be rescaled in the log-space form using equations (4.15) and (4.16)

and these are then converted back to real-space

(RM)kn = exp
(

log p(M|xn) + log(RMkn)
)

(4.17)

M-Step:

Now the parameters can be re-estimated using the posteriors computed at the E-step. At

first parent-conditional mixture coefficient are evaluated using

π(M|Parent(M)) = exp

(
S
n

(
log p(M|xn)

)
− S

n

(
log p(Parent(M)|xn)

))
(4.18)

The weight matrix, ŴM, for each Mth model can be updated using the following set of

linear equations

ŴM = (ΦT
MEM)−1ΦT

MRMX (4.19)

where ΦM is a KM ×LM matrix with elements, (ΦM)kl = φl(z
M
k ), RM is KM ×N and

these scaled responsbilites are updated in the E-Step using equation 4.17, X is an N ×D

data matrix and EM is KM ×KM with elements

(EM)kk =
N∑
n=1

(RM)kn (4.20)

Finally the inverse variance β can be re-estimated using

1

β̂M
= exp

log

 N∑
n=1

K∑
k=1

(RM)kn||WMφ(xMk )− xn||2
− (log(D) + S

n

(
log p(M|xn)

)) .

(4.21)
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4.6 Experiments

We have carried out a series of experiments in order to demonstrate the effectiveness of

our proposed GTM variants on high-dimensional synthetic and real datasets. In these

experiments, we initialised the weight matrix, W, using PCA. We took a latent grid of

size 8× 8 for both real and synthetic datasets and used an RBF grid of size 6× 6 for the

synthetic dataset and 4 × 4 for the real dataset. For the dataset of MHCs, we compared

visualisation results of LogGTM and LogGTM-FS with other visualisation algorithms

such as PCA, Neuroscale and GPLVM. Label information was only used to colour the

data points on the visualisation space and to measure the visualisation quality metrics of

KL-divergence and NN classification error. We also computed other visualisation quality

measures as explained in Chapter 3 to evaluate the quality of visualisations.

4.6.1 Synthetic dataset

The synthetic dataset we generated is of 3, 200 data points from an equiprobable mixture

of four two-dimensional Gaussians, N (mk, I) with k = 1, . . . , 4 with the following mixture

means: m1 =
(

0
3

)
, m2 =

(
1
9

)
, m3 =

(
6
4

)
and m4 =

(
7
10

)
. We then generated 498 noisy

features (where each feature is sampled from N (0, I) density) and appended these to the

data leading to a 500-feature dataset with 3, 200 data points.

Visualisation results of the LogGTM and LogGTM-FS are presented in Figure 4.2(a)

and 4.2(b) respectively: the background gray colour indicates stretch level in the visu-

alisation manifold (i.e. the lighter the colour the more the stretch in the visualisation

manifold). Feature saliencies estimated from the LogGTM-FS are given in Figure 4.2(c).

Visualisation results from the LogHGTM are shown in Figure 4.3 with the magnification

factors for both levels in the hierarchy.

4.6.1.1 Discussion

As discussed earlier in section 4.3, with the visualisation of high-dimensional data (usually

with greater than a few hundred dimensions) using GTM with log-space values (i.e. Log-

GTM), tight clusters around the centres of the latent visualisation grid were observed (see

Figure 4.2(a)). However, we were still able to observe separation of the four classes in the

visualisation space with some parts overlapping across class boundaries. The issue of tight

clusters around the grid centres with GTM like models require further research in order

to improve visualisation and better understand the hidden structure in the dataset. In

the particular case of synthetic dataset here only two features have four clusters whereas
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Figure 4.2: Demonstration of visualisation of 500 dimensional synthetic dataset in the
presence of irrelevant (‘noisy’) features using the LogGTM (see (a)) and the LogGTM-FS
(see (b)) variants. The figure (c) show saliencies estimated from the LogGTM-FS model.

the remaining 498 are just the noisy features added in the dataset for the purpose of

demonstrating usefulness of GTM-FS model with log space values (i.e. LogGTM-FS).

As expected, on the LogGTM-FS manifold there are four coherent (compact) clusters

(see Figure 4.2(b)) (compared to LogGTM visualisation where each class was observed to

be more spread across the latent space (see Figure 4.2(a)) with tight clusters of projected

data points onto the centres of latent space grid). This compactness is achieved with the

LogGTM-FS by reducing the impact of irrelevant (‘noisy’) features in the model learning

process by modelling them with a shared distribution q(.|λ). The saliencies estimated with

LogGTM-FS proved that there were only two informative features whereas the remaining

498 features are irrelevant with saliencies equal to zero (see Figure 4.2(c)).

The results of LogHGTM are also interesting with four sub models (initialised interac-

tively on the root-level visualisation (see Figure 4.3(a))) where each sub-model is showing

data points of each class (see Figure 4.3(b)) with a few points from other classes (due to

the noisy features). The LogHGTM results at each level in the hierarchy also appeared as

tight clusters on the centres of the latent grid. Extending LogHGTM to simultaneously
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Figure 4.3: Demonstration of a high-dimensional synthetic dataset visualisation using log-
based hierarchical GTM model (where (a) and (b) for level-I and level-II visualisations
respectively) and magnification factor (MF) plots on log10 to demonstrate stretches on the
visualisation plots (where (c) and (d) are magnification factor plots for level-I and level-II
respectively).

estimate feature saliencies would be an interesting extension to model high-dimension

datasets in the presence of noisy features. The extension is non-trivial because a par-

ent GTM is a mixture of its child GTMs, so it would be necessary to enforce the same

saliencies over the whole tree of models.

4.6.2 Electrostatic potential dataset of MHC class-I

A real dataset related to MHC class-I, as described in Section 2.1.7, was used to demon-

strate the effectiveness of our proposed variants. We aim to identify similarities in HLA-A,

HLA-B and HLA-C genetic alleles based on an electrostatic potential map around the top

surface covering the α1 and α2 regions (where the electrostatic potential calculated at

each grid point over the target area is taken as a descriptor).

The visualisation results obtained with PCA, Neuroscale, LogGTM , LogGTM-FS and
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GPLVM are shown in Figure 4.4. The background grey colour in Figures 4.4(c) and 4.4(d)

indicates magnification factors (on a log10 scale) for the visualisation (projection) mani-

folds (i.e. the lighter the colour the more stretch in the visualisation manifold) whereas the

background colour in Figure 4.4(g) indicates mapping precision (i.e. the lighter regions

show better precision in mapping). Directional curvature plots for the GTM variants (i.e.

for LogGTM and LogGTM-FS) are also presented in Figure 4.4 (where longer lines and

lighter background indicates high folding (curvature)). We also observed that only 182

descriptors have a saliency of less than 0.5 so 2, 236 descriptors are selected as important

from the original total of 2, 418 descriptors.

The visualisation results obtained from LogGTM and LogGTM-FS appeared better

than that of PCA and NSC visualisation methods but not better than GPLVM. As dis-

cussed with structural biologists, the GPLVM visualisation was useful for the purpose

of identifying clusters of alleles among all three gene classes. The visualisation quality

evaluation metrics are computed and are presented in Figure 4.5. Visualisation results

obtained from the LogHGTM with two level hierarchy along with magnification factors

are also presented in Figure 4.6. LogHGTM results have improved separation between

classes at lower levels but still suffer the problem of tight cluster of projected data points

around the latent grid centres (see Figure 4.6(a)).

4.6.2.1 Comparison to previous supertype analysis of MHC class-I

Although our analysis is generated using different means, it is instructive to compare our

results briefly to previous work (Doytchinova et al., 2004). It should be stressed that our

results do not use any identifying characteristic of the MHC proteins other than their elec-

trostatic potential map data. Moreover, the present analysis differs from previous work,

which focused on the peptide binding site only (Doytchinova et al., 2004), so we should

not expect a large overlap in the results; yet all are reasonably similar, and these common-

alities between observed clusters are reassuring. With the exception of a few individual

alleles, our current analysis effected a near complete separation of HLA-A, B, and C loci.

Exceptions to this were clusters 8 and 12 (Figure 4.4(g) of GPLVM visualisation), which

may be indicative of some commonality of structural properties corresponding to conver-

gent evolution of HLA-A and HLA-B alleles. Even here, alleles were almost completely

separated but in a continuous distribution (i.e. in terms of electrostatic potential map)

that is hard to separate further without prior knowledge. It is interesting that HLA-C

forms six well separated clusters, which contrasts sharply with previous results, and is

perhaps suggestive of the greater variability in the extended surface analysed here relative
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to HLA-A and B. This is functionally consistent with the interactions made by HLA-C

with a wider range of receptors other simply TCRs.

By rigorous state-of-the-art visual analysis of data (using GPLVM visualisation), we

have identified clusters corresponding to the three class I human MHC loci, and sub-

groups therein. It is notable that the analysis recovers the HLA-A, HLA-B, and HLA-C

alleles using only their property distributions, without prior knowledge of a division by

loci; the latter information was used only when labelling the result plots. This gives confi-

dence to any assertion we might make regarding the division of the allele population into

structurally and functionally similar sub-groups. This information will inform accurate

identification of T-cell epitopes, a crucial step when developing epitope ensemble vaccines.

The three different class I HLA loci are possessed of functional differences, such as

binding NK receptors, system differences, such as the breadth of anti-HIV responses of

different HLA loci (Kiepiela et al., 2004), as well as structural ones, including the ob-

servation that different loci have peptide repertoires that are distinct in their size and

specificity (Paul et al., 2013). Thus our ability to distinguish the three loci so unequivo-

cally is notable. It implies that the differences are sufficiently strong to be obvious at the

level of projected properties alone, and this gives credence to our identification of further

subsets within the individual loci.

4.6.2.2 Discussion

The visualisation results we got from the PCA and Neuroscale are very similar and ap-

peared like a blob with most alleles from all three classes overlapped and did not improve

our understanding of the grouping structure. GPLVM and our proposed variant LogGTM

have shown better results, compared to PCA and Neuroscale, both in terms of visual

inspection and in terms of visualisation quality evaluation measures such as trustworthi-

ness, mean relative rank errors with respect to data (in case of LogGTM, only for cases

when neighbourhood k is less than 50), nearest-neighbour-classification error and KL di-

vergence. We note that visualisation results from GPLVM are much better than LogGTM

because LogGTM has a problem of tight clusters of projected data points around latent

grid centres.

Each mapping algorithm makes a tradeoff between trustworthiness and continuity1:

algorithms like PCA and Neuroscale often have higher continuity than trustworthiness

whereas GTM and GPLVM with back-constraints have higher trustworthiness than con-

1A mapping is said to be trustworthy if k-neighbourhood in the visualised space matches that in the
data space but if the k-neighbourhood in the data space matches that in the visualised space it maintains
continuity.
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tinuity as they focus on preserving local distances (Venna and Kaski, 2005). When users

visualise data, it is the local structure that is most relevant to their analysis (for exam-

ple, when they identify clusters) and therefore trustworthiness is considered to be the

better measure than continuity when comparing the visualisation models. The other two

quality evaluation measures are mean relative rank errors with respect to data and latent

space, which are similar to trustworthiness and continuity but differ because they use

rank differences in the k-neighbourhood. In a visualization context, trustworthiness and

mean relative rank error with respect to data are more important than continuity and

mean relative rank error with respect to latent space as they ensure data points in the

k-neighbourhood of visualization space are also neighbours in the data space (Kaski et al.,

2003) so any cluster structure that is seen in the latent space is genuine.

The distance distortion measure was also computed and Neuroscale was expected to

have better distance distortion with lower values because of the fact that this algorithm

attempts to ensure that points which are distant in the data space are projected to points

that are distant in the latent space (i.e. attempts to maintain proximity of data space

in the visualisation latent space) whereas algorithms like LogGTM, LogGTM-FS and

GPLVM with back-constraints were expected to have higher values of distance distortion.

Neuroscale is non-linear, but if the projection is defined as a linear mapping then the stress

metric yields PCA, so the two algorithms are related. Because PCA and Neuroscale have

very similar results in terms of trustworthiness, continuity, mean relative rank errors and

distance distortion (with overlapping values on the graphs) to conclude that this is wide

evidence for non-linearity in topographic mappings. Therefore for the purpose of clarity

we plot results for these only for one of those (i.e. Neuroscale). The Neuroscale results

presented here use 60 basis functions and we also repeated experiments with different

number of basis function but the results did not vary significantly (see Appendix B).

The proposed variant LogGTM-FS results have shown better preservation of exact

ranks in terms of mean relative rank errors with respect to data and latent space and this

variant has also shown better KL-divergence whereas for measures such as trustworthiness,

continuity and nearest-neighbour-classification error the results were not satisfactory.

We observe that using LogHGTM visualisation for MHC dataset, we get better sep-

aration between classes but it still suffers from the problem of projected data points in

tight clusters on the centres of latent grid components. It is also observed that first three

sub-models of LogHGTM model have shown high-level of stretches for the second level

visualisation manifolds by showing the magnification factor plots almost as white (see

Figure 4.6(d)).
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Figure 4.4: Demonstration of visualisation of the MHC class-I dataset. Cyan circles (‘o’)
for HLA-A, red plus sign (‘+’) for HLA-B and blue squares (‘�’) for HLA-C. (c) and (d)
show LogGTM and LogGTM-FS visualisations respectively with simultaneous magnifica-
tion factors (MF) plots on a log10 scale. The lighter grey background regions on MF plots
show more stretches in the projection manifold. The (e) and (f) show directional curva-
ture plots for LogGTM and LogGTM-FS respectively where the lighter regions with longer
lines show high folding (curvature). The (g) show GPLVM visualisation with grey back-
ground indicating mapping precision (the lighter regions correspond to better precision in
mapping).
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Figure 4.5: Visualisation quality evaluation metrics for the MHC class-I dataset. The
trustworithiness, continuity and KL divergence, the higher the better the visualisation
whereas MRREdata, MRRElatent, distance distortion and NN-error the lower the better
the visualisation.
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Figure 4.6: Demonstration of the MHC class-I dataset visualisation using log-based hier-
archical GTM model (where (a) and (b) for level-I and level-II visualisations respectively
and here legend same as in Figure 4.4) and magnification factor (MF) plots on log10 to
demonstrate stretches on the visualisation plots (where (c) and (d) are magnification fac-
tor plots for level-I and level-II respectively). In (d), the first three MF sub-plots show
high-level of stretches with light grey (nearly white) and the fourth MF sub-plot show
low-level stretches for the corresponding visualisations plots respectively.
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4.7 Conclusion

Due to the recent advances in the generation process of bioinformatics datasets, large

high-dimension datasets are becoming available, bringing a new challenge for the analysts

to perform analysis due to the limited computational resources with the existing analysis

methods. It is important to modify these methods to make them workable to analyse such

datasets within the existing resources and not to suffer any computational issues. The

visualisation algorithm GTM and two of its extensions (i.e. GTM-FS and hierarchical

GTM) are very useful tools to project multivariate datasets onto the latent visualisation

space but issue is that they suffer from some numerical problems while visualising high-

dimension datasets with dimensions greater than a few hundred (i.e usually greater than

400).

We are successful in deriving variants of these algorithms (i.e. GTM, GTM-FS and

hierarchical GTM) where we use log-transformations at certain steps of the EM param-

eter learning process in order to avoid the numerical problems that were observed with

the standard algorithms. The proposed variant LogGTM is tested successfully with a few

thousand dimensions, although we observed data projected in tight clusters around the la-

tent grid centres. The other successful proposed variant is LogGTM-FS. It is observed that

this proposed variant provided good visualisation results (with no tight clusters around

the grid centres like in LogGTM) in the presence of a large number of irrelevant (‘noisy’)

features in the high-dimensional datasets. In this chapter, usefulness of LogGTM-FS over

LogGTM is clearly observed in case of the synthetic dataset but in case of the real dataset

not many features are observed to be irrelevant and therefore not much improvement is

observed. The LogHGTM variant is also tested successfully on both synthetic and real

datasets but suffered the problem of tight clusters of projected data points around the

latent grid centres.

Visualisation of the ‘MHC class-I’ dataset with PCA, Neuroscale and GTM algorithms

have not shown clear separation of the alleles of each HLA loci but instead the alleles of all

three loci overlap (as shown in Figure 4.4). But applying non-linear visualisation methods

such as GPLVM with MLP as a back constraint have clearly shown better separation

between alleles of each gene.
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Chapter 5 DISCRETE DATA VISUALISATION WITH SIMULTANEOUS FEATURE SELECTION

Both data visualisation and feature selection methods are widely used as two distinct

methods for analysing complex large and high-dimensional datasets. A combined data

visualisation and feature saliency estimation model was proposed by Maniyar and Nabney

(2006a) suitable only for continuous data and here we extend this approach for handling

discrete data. We derive a visualisation model based on the latent trait model (LTM)

suitable for discrete data to simultaneously estimate feature saliencies as an integrated part

of the parameter learning process. This combined approach not only attempts to improve

visualisation by reducing the impact of irrelevant (noisy) features but also estimate the

saliency of each feature, which is valuable information in its own right. The saliency value

lies in a range of 0 to 1 reflecting the importance level of a feature. The effectiveness of

the proposed combined approach is demonstrated on synthetic and real datasets.

5.1 Introduction

The datasets we focus on in this chapter have discrete type features. Compared to con-

tinuous features datasets, less attention is given in the literature to work with discrete

features datasets under the latent variable framework. Analysing these multivariate large

discrete features datasets is gaining a lot attention of machine learning experts to develop

models that help users to get better understanding of the complexity.

In principle, the machine learning algorithms assume to perform well in cases where we

have more information about data instances. This suggests that the use of more features is

important for the learning algorithms. However, in practice it is observed that not all the

features are important. It is therefore important to select a subset of features which are

important thereby ignoring the irrelevant (noisy) features which compromise performance

of the learning algorithm. In addition, an understanding of which features are relevant

is valuable in its own right. In the exploratory phases of analysis (which is when data

visualisation is most used) it is usual to measure as many variables as is feasible, since it

is not known which are relevant to the task. Feature selection then plays an important

role in simplifying the task and making data collection cheaper and faster.

Feature selection (FS) has been widely used in supervised learning problems where

the search is guided by the known target values. FS methods can be categorized into

four classes (Silvestre et al., 2013; Alelyani et al., 2013): filters, wrappers, hybrid and

embedded.

Filter approaches determine the importance of a feature or a subset of features from

the intrinsic characteristics of the data independent of the learning algorithm. Filter

73



Chapter 5 DISCRETE DATA VISUALISATION WITH SIMULTANEOUS FEATURE SELECTION

approaches are usually fast to compute and can be used as part of a two-step process in

conjunction with a learning method: in the first step features are selected independently

of the learning algorithm and in the second step the learning algorithm is applied on the

selected subset of features.

Wrapper approaches use interaction between subsets of features and the learning al-

gorithm. A subset of features is selected from several candidate feature subsets in a se-

quential way (either using a forward selection approach where a search starts considering

an empty set of features or a backward selection approach where a search starts taking all

the features into consideration (Kohavi and John, 1997)) in order to improve the quality

of the learning algorithm. Wrapper approaches are slower than filter approaches. Hybrid

approaches take advantage of both the approaches in a two-stage process by taking a

computational efficiency of filter approaches and accuracy of wrapper approaches. Hybrid

methods are computationally faster than wrapper methods but slower than filters.

Embedded methods use feature selection as integrated part of a learning algorithm thus

ensuring that the selected features are those relevant to the specific learning algorithm. In

embedded methods, instead of using a selected subset of features, all features are exploited

in the learning process to compute their saliencies where the important features have higher

saliency values and less important features have lower saliency values. Performance of

embedded methods depends on the learning algorithm but are reported to be faster than

wrapper approaches (Vinh et al., 2012).

Feature selection for unsupervised learning algorithms is a difficult and a challenging

task as there are no target values known to guide the search. In the literature, not much

attention is given to this problem. Very few attempts have been made to estimate the

importance of features in the unsupervised learning algorithms. A brief review of feature

selection in a clustering perspective is given by Alelyani et al. (2013).

In the model based clustering perspective, Law et al. (2004) proposed an approach

where they use Gaussian mixture models for clustering and estimate saliencies of all the

features (in a range of 0 to 1) as an integrated part of the clustering algorithm training

process. They also use a minimum message length (MML) criterion for model selection.

Most of the work on feature selection with simultaneous clustering is done on continuous

data using the Gaussian mixture model, whereas work on discrete (binary and multi-

categorical) data clustering with simultaneous feature selection is relatively rare. Wang

and Kabán (2005) and Bouguila (2010) extend the similar approach proposed by Law

et al. (2004) for clustering binary data with simultaneous feature selection using a mix-

ture of Bernoulli distributions. Bouguila (2010) also uses a Bayesian Information Criteria
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(BIC) for model selection purpose, while Silvestre et al. (2013) also extends a similar

approach for clustering categorical data with simultaneous feature selection using a mix-

ture of multinomial variables. Law et al. (2004) and Bouguila (2010) use a maximum

a posteriori (MAP) approach for parameter learning, whereas Wang and Kabán (2005)

and Silvestre et al. (2013) use a maximum likelihood approach for learning parameters of

the model.

Our focus here is on data visualisation which is usually considered to get a new trans-

formed extracted low-dimensional feature space for the representation of high-dimensional

data space. However, an approach of extracting a low-dimensional embedded space with

simultaneously considering the importance of each feature in the learning process was

adapted for GTM by Maniyar and Nabney (2006a) and such an approach can be termed

an embedded approach of feature selection. Adapting the approach proposed by Maniyar

and Nabney (2006a), we propose here an extension to an LTM (a visualisation model for

discrete data) to simultaneously estimate feature saliencies while training a visualisation

model.

5.2 Related Work

The most closely related work to address this problem was proposed by Maniyar and

Nabney (2006a) which extended a GTM to simultaneously estimate feature saliencies.

GTM-FS visualisation model is an extension of the approach proposed by Law et al.

(2004) and is explained in chapter 4. Mumtaz et al. (2012) extended GTM-FS to adapt

log-transformations at certain steps of EM training to avoid numerical problems that are

observed usually while working with datasets of more than 300-dimensions.

Vellido et al. (2006) also proposed a variant of the GTM to handle missing values

and outliers in a robust way using a mixture of Student t-distributions (also known as t-

GTM) and they also extended t-GTM to simultaneously estimate feature saliencies while

training a visualisation model. Vellido et al. (2006) also extended the computation of

feature saliency using Gaussian-GTM (the standard GTM) as proposed in (Vellido, 2006,

2005). Approaches proposed by Maniyar and Nabney (2006a) and Vellido (2006, 2005)

are very similar. A variational GTM was proposed by Caparroso (2008) and it was also

extended to estimate feature saliencies while training a visualisation model using a similar

principle as proposed by Maniyar and Nabney (2006a); Vellido et al. (2006); Vellido (2006,

2005).

To our knowledge no approach currently exists for multivariate discrete data visual-
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isation with simultaneous feature selection. We propose here an extension to the LTM

to simultaneously estimate feature saliencies (LTM was developed as a generalisation of

GTM to handle different type of data mainly focusing on multivariate discrete data visu-

alisation).

5.3 Discrete Data Visualisation

Kabán and Girolami (2001) proposed a visualisation model, similar in principle to GTM,

with the use of the exponential family of distributions to model the noise in the data. The

model was proposed to handle different types of data mainly focusing on discrete datasets

and is known as the latent trait model (LTM) (because of the multivariate discrete data

visualisation on the continuous latent space). LTM uses the Bernoulli distribution for

modelling binary data and the multinomial distribution for modelling multi-categorical

data. Like GTM, LTM also uses a continuous two-dimensional latent space, M×K (where

M = 2), with uniform grid points (representing Bernoulli/Multinomial distribution means)

for visualisation. A single data centre zk in the latent space, H, can be mapped back to

a data space, D, using the corresponding link functions as explained in the following sub-

sections. Detailed derivation of LTM model is available in (Kabán and Girolami, 2001).

5.3.1 Mapping function for binary data

The link function for the binary feature dataset for the kth latent point zk is the expected

value (i.e. the probability of weighted sum of success) obtained by applying a logistic

sigmoid function composed with the mapping function f(zk,W) = Φ(zk)W,

mk = g(f(zk,W)) =
exp(Φ(zk)W)

1 + exp(Φ(zk)W)
, (5.1)

where Φ(zk) =
{
φl(zk), . . . , φL(zk)

}
is a set of fixed non-linear basis function (we use here

a radial basis function), W is an L×D matrix of weights.

5.3.2 Mapping function for multi-categorical data

Each dth categorical feature is encoded into a 1-of-Sd binary encoded set (i.e. where

Sd represents the number of categories in the dth feature). The link function for the

multi-category feature dataset for any kth latent point zk is the expected value (i.e. the

probability of weighted sum of relating to each category) which is obtained by applying
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the softmax function in composition with the mapping function f(zk,wsd) = Φ(zk)wsd ,

mksd = g(f(zk,wsd)) =
exp(Φ(zk)wsd)∑Sd

s′d=1
exp(Φ(zk)ws′d

)
, (5.2)

where Φ(zk) =
{
φl(zk), . . . , φL(zk)

}
is a set of fixed non-linear basis function (we use here

a radial basis function), wsd is an L × 1 vector of weights for the sth binary encoding of

the dth feature.

5.3.3 Mixture model density function

The Bernoulli and multinomial probability distribution are given in equation (5.3) and (5.4)

respectively

p(xn|mk) =
D∏
d=1

mxnd
kd (1−mkd)

1−xnd , (5.3)

where mkd is the mean of the dth variable of the kth Bernoulli distribution.

Considering a dataset X = {x1, · · · ,xN}, where each data point xn = {xn1, · · · , xnD}

contains D features with discrete values. More specifically, we consider that each dth

feature can have Sd discrete values (i.e. xnd ∈
{
γ1, · · · , γSd

}
). We here assume that each

feature xd can be modelled taking the multinomial distribution. We take msd = p(xd =

γsd) and
∑Sd

sd=1msd = 1. Now assuming that the features are independent, the probablility

density function for a data vector xn for a given mk is defined as,

p(xn|mk) =
D∏
d=1

Sd∏
sd=1

m
xnsd
ksd

, (5.4)

where xnsd = I(xnd, s) and I(xnd, s) is a binary encoding function which is 1 if xnd = γsd

otherwise it is 0.

The mixture model probability density function for the latent trait model (LTM) can

now be represented as a sum of Bernoulli/Multinomial distributions

p(xn|π,m) =

K∑
k=1

πkp(xn|mk), (5.5)

where K is a number of mixture components, πk is the mixing coefficient of the kth

component in the mixture with a p(xn|mk) as a Bernoulli/multinomial distribution.
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5.4 Discrete Data Visualisation with Simultaneous Feature Selec-

tion (FS)

For the purpose of estimating feature saliencies, features are assumed to be independent

of the component label and a mixture model can be represented as,

p(xn|π,m) =
K∑
k=1

πk

D∏
d=1

p(xnd|mkd), (5.6)

where p(.|mkd) is the probability density function for the dth feature of the kth component

and πk is taken as a mixing co-efficent of the kth component.

We assume Ψ = {ψ1, ψ2, . . . , ψD} to be a set of binary indicators where ψd = 1 for a

relevant feature and ψd = 0 otherwise. We take an assumption here that if the feature is

irrelevant then it follows a common shared density represented as a Bernoulli/multinomial

distribution q(.|λ) and is also independent of the class label (Bouguila, 2010; Wang and

Kabán, 2005; Silvestre et al., 2013). Now the mixture density is represented by

p(xn|π,Ψ,m, λ) =
K∑
k=1

πk

D∏
d=1

[p(xnd|mkd)]
ψd [q(xnd|λd)]1−ψd . (5.7)

We treat ψd as a missing (or latent) variable. We then estimate the feature saliency as

ρd = p(ψd = 1), the probability of the dth feature being relevant. The resulting model

can now be represented as

p(xn|Ω) =
K∑
k=1

πk

D∏
d=1

[ρdp(xnd|mkd)] + [(1− ρd)q(xnd|λd)], (5.8)

where Ω = (πk, ρd,mkd, λd) represents the set of all the parameters of the model. ψd is

a binary indicator variable so we can re-write [p(xnd|mkd)]
ψd [q(xnd|λd)]1−ψd from equa-

tion (5.7) as ψd[p(xnd|mkd)] + (1− ψd)[q(xnd|λd)] in equation (5.8) (see Appendix C.1 for

detailed derivation (this is adapted from the derivation given in (Law et al., 2004))).

The log-likelihood can now be written as

L(Ω) =
N∑
n=1

ln p(xn|Ω). (5.9)

5.4.1 An EM algorithm for LTM-FS

We can exploit the latent structure of LTM, in a similar way as for GTM-FS, to simul-

taneously estimate feature saliency and estimate the parameters of the model using an
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expectation-maximization (EM) algorithm. We flip a biased coin for each feature where

the probability of a head for the dth feature is ρd; if we get the head then we consider that

the feature is generated from the mixture component p(.|mkd) otherwise the component

q(.|λd) is used. We assume that the latent component label, y, is a missing variable and

then in the E-step, we use the current parameters, Ω, to compute posterior probabilities,

rnk = p(yn = k|xn), for each nth data point for each of the kth Bernoulli/Multinomial

components using Bayes’ theorem as,

rnk =
πk
∏D
d=1

{
ρdp(xnd|mkd) + (1− ρd)q(xnd|λd)

}∑K
k=1 πk

∏D
d=1

{
ρdp(xnd|mkd) + (1− ρd)q(xnd|λd)

} . (5.10)

We use the responsibility matrix, R, to compute unkd = p(ψd = 1, yn = k|xn) which

measures the importance of the dth feature for the nth data point belonging to the kth

component and vnkd = p(ψd = 0, yn = k|xn)

unkd =
ρdp(xnd|mkd)

ρdp(xnd|mkd) + (1− ρd)q(xnd|λd)
rnk, (5.11)

vnkd = rnk − unkd. (5.12)

M-Step for Bernoulli case:

In the M-step for the Bernoulli case, we use the simple gradient-based approach used

in (Kabán and Girolami, 2001) as an inner loop to update the weights (a detailed derivation

is given in Appendix C.1)

∆wd ∝ ΦT
[
Udxd −Edg(Φwd)

]
, (5.13)

where Φ is a K × L matrix, wd is a L× 1 weight vector, Ud is a K ×N matrix obtained

from equation (5.11), xd is a N × 1 data vector, and Ed is a K ×K diagonal matrix with

elements

ekkd =
N∑
n=1

unkd. (5.14)

Once we obtain the re-estimated ŵd for each dth feature from equation (5.13), we can

then straightforwardly update mk for each Bernoulli component using equation (5.1) as

follows,

m̂k = g(Φ(zk)Ŵ), (5.15)
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and the parameter λd of the common shared density for each dth feature can be updated

using

λ̂d =

∑
n(
∑

k vnkdxnd)∑
nk vnkd

. (5.16)

Usually the feature saliency parameter is updated by

ρ̂d =

∑
nk unkd∑

nk unkd +
∑

nk vnkd
. (5.17)

If we take the Beta distribution as a prior (a conjugate prior for Bernoulli distribution)

for the feature saliency (the same is used by Bouguila (2010) for clustering binary data

with simultaneous feature saliency estimation),

p(ρd) =
Γ(αd + βd)

Γ(αd)Γ(βd)
ραd−1
d (1− ρd)βd−1, (5.18)

then the feature saliency measure can be updated using

ρ̂d =
max(

∑
nk unkd + αd − 1, 0)

max(
∑

nk unkd + αd − 1, 0) + max(
∑

nk vnkd + βd − 1, 0)
. (5.19)

Here we use hyperparameters (i.e. α, β), for the prior distribution over the feature saliency,

both set to be 2 (i.e. the same is used by Bouguila (2010) in the binary data clustering

perspective where they also estimate saliencies of features).

M-Step for multinomial case:

The weight sub-matrix (where each sub-matrix represents weights for one encoded feature)

for the multinomial case can be updated using

∆WSd
∝ ΦT

[
UdXSd

−Edg(ΦWSd
)
]
, (5.20)

where Φ is a K × L matrix, WSd
is a L × Sd weight sub-matrix, Ud is a K ×N matrix

obtained from equation (5.11), XSd
is a N×Sd data matrix (dth feature encded to 1-of-Sd),

and Ed is a K ×K diagonal matrix with elements

ekkd =
N∑
n=1

unkd. (5.21)

Once we obtain the re-estimated ŴSd
for each dth feature from equation (5.20), we can

then straightforwardly update mkSd
for each dth feature of the multinomial component

using equation (5.2) as follows,
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m̂kSd
= g(Φ(zk)ŴSd

), (5.22)

and the parameter λd of the common shared density for each dth feature can be updated

using

λ̂Sd
=

∑
n(
∑

k vnkdxnSd
)∑

nk vnkd
. (5.23)

Usually the feature saliency parameter is updated using

ρ̂d =

∑
nk unkd∑

nk unkd +
∑

nk vnkd
. (5.24)

If we take the Dirichlet-type prior (which is a natural conjugate prior for the multino-

mial) for the feature saliencies (the same is used by Silvestre et al. (2013) for clustering

categorical data with simultaneous feature saliency)

p(ρ1, · · · , ρD) ∝
D∏
d=1

ρ
−Kcd

2
d (1− ρd)

cd
2 . (5.25)

then the feature saliency measure can be updated by

ρ̂d =
max

(∑
nk unkd −

K(cd−1)
2 , 0

)
max

(∑
nk, unkd −

K(cd−1)
2 , 0

)
+ max

(∑
nk vnkd −

(cd−1)
2 , 0

) , (5.26)

where cd represents the number of categories for the dth feature. Algorithm 5.4.1 sum-

marises LTM-FS. Like standard LTM model (as discussed in Section 3.3.6.1), parameters

update for the LTM-FS model scales as O(LND+LK(N +D+K)). However, it requires

to process an extra loop for the D features to update weight vector ŵd in the parameter

learning process.

5.5 Experiments

An LTM-FS was tested on synthetic and real datasets (both for binary and multinomial

variables). Visualisation results of LTM-FS are compared with standard LTM. We ini-

tialised the weight matrix, W, using principal component analysis (PCA). We used labels

for better understanding of the distribution of data points of different classes on the vi-

sualisation results. Label information is also used for measuring the visualisation quality

using KL divergences and nearest neighbour (NN) classification error. We used 8 × 8

latent and 4×4 RBF grids both for LTM and LTM-FS model training for binary datasets
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Algorithm 5.4.1: LTM-FS algorithm summary

Input:Training dataset.

OutPut:Trained LTM-FS visualisation model with feature saliency for all the

features.

begin

Generate the latent grid points zk ∈ H, k = 1, · · · ,K;

Generate the basis function grid, Φ(zk), centres {νl}, l = 1, · · · , L;

Select the basis functions, Φ(zk);

Compute the design matrix of basis function activations, Φ;

Initialise weight matrix (W), randomly or using PCA;

Apply the mapping function (using equation (5.1) for binary data or

equation (5.2) for multi-categorical data) to initialise means of the mixture

components;

Initialise feature saliency, ρd, for each dth feature, to 0.5;

Initialise the mixing coefficient, πk, with 1
K for each kth component in the grid;

Set the initial mean for the shared distribution, q(.|λ), as the mean of the data;

repeat
E-Step:

Compute R, U and V using equation (5.10)), (5.11) and (5.12), using

current parameters, Ω;

M-Step:

for d=1 toD do

repeat

Re-estimate the weight vector, wd, (for binary case), using

∆wd ∝ ΦT
[
Udxd −Edg(Φwd)

]
, using equation (5.13)

OR

Re-estimate the weight matrix, Wsd , (for multinomial case)

∆WSd
∝ ΦT

[
UdXSd

−Edg(ΦWSd
)
]
, using equation (5.20);

until convergence;

end

Re-estimate the mean, mk, for each kth component of the mixture using

equation (5.15) for Bernoulli case or using equation (5.22) for multinomial

case;

Re-estimate the mean of the shared distribution using equation (5.16) for

binary data or equation (5.23) for multi-categorical data;

Re-estimate the feature saliency, ρd, using equation (5.19) for binary data or

equation (5.26) for multi-categorical data;

until convergence;

end
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(both for synthetic and an MHC datasets). We also performed experiments with different

latent and RBF grid sizes both for standard LTM and LTM-FS (for binary data case) and

observed that the results were consistently similar both in terms of visualisation results

and estimated feature saliencies (see Appendix C.3). Whereas in the multinomial case,

the LTM-FS is observed to be sensitive to the latent and RBF grid sizes: further details

are given in Section 5.6.

5.5.1 Synthetic binary datasets

We generated synthetic binary datasets with different numbers of feature sets. We use two

synthetic binary datasets here to demonstrate LTM-FS: the first dataset is of 18 features

with 9 informative features with four true clusters and 9 uninformative features and the

second dataset is of 100 features with 40 informative features with four true clusters and

60 uninformative features (a similar synthetic dataset is used by Wang and Kabán (2005)).

We randomly added ones of different densities in the uninformative features with different

proportions such as no ones, all ones, 0.2, 0.4, 0.6, and 0.8: i.e. effectively an uncorrelated

Bernoulli random variable with p = 0, 1, 0.2, 0.4, 0.6, and 0.8 respectively. We also add

1s of 5% of the total number of points (to create a small spread in each class in the data

space) in the informative features. We present here one of the results with random ones

added in uninformative features whereas results with different densities of randomly added

ones are given in Appendix C.4.

Visualisations obtained from standard LTM and LTM-FS are presented in Figures 5.1

and 5.2 for both synthetic binary datasets respectively. Estimated feature saliencies are

presented in Figures 5.1(c) and 5.2(c) respectively. Further discussion on results is given

in Section 5.6.

5.5.2 Synthetic multi-categorical datasets

We generated a synthetic multi-categorical dataset with three features (where the first

feature has 1-to-3 categorical values, the second feature has 1-to-6 categorical values and

the third feature has 1-to-9 categorical values). We then generated two sets of synthetic

datasets from this dataset by adding different numbers of noisy features (in the first

dataset we added two noisy (uninformative) features with a random distribution of 1-to-3

categorical values (for the first noisy feature) and 1-to-6 categorical values (for the second

noisy feature)) whereas for the second dataset we added one more noisy feature in the first

dataset with 9 randomly distributed categorical values. Similar synthetic datasets have

previously been used by Silvestre et al. (2013) to demonstrate estimating feature saliencies
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(a) standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.1: The LTM and the LTM-FS visualisations of the binary synthetic dataset-I.
The LTM-FS visualisation in (b) show better results with compact cluster for each class
compared to the LTM visualisation in (a) and (f) shows the estimated feature saliencies
from the LTM-FS.

with simultaneous clustering using mixtures of multinomial distributions.

Visualisations obtained from LTM and LTM-FS, using a mixture of multinomials for

modelling the noise, are presented in Figures 5.3 and 5.4 respectively. We also present the

comparative evaluation of the visualisations in Table 5.1. Estimated feature saliencies for

both datasets are presented in Figures 5.3(c) and 5.4(c) respectively. Further discussion

of the results is given in Section 5.6.

5.5.3 Major histocompatibility complexity class-I binary dataset

To demonstrate the effectiveness of our proposed approach, we used a real binary dataset

generated from the primary sequences of protein family of Major Histocompatibility Com-

plex (MHC) for class-I of humans (also known as Human Leukocyte Antigen (HLA)). The

MHC class-I sequences has already been divided into three classes (e.g. HLA-A, HLA-B

and HLA-C) based on a similarity measure of the sequences. As explained in Chapter 2, we

used 3840 aligned sequence’s (1236 for HLA-A, 1777 for HLA-B and 827 for HLA-C) with
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(a) Standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.2: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II.
The LTM-FS visualisation in (b) show better results with compact cluster for each class
compared to the LTM visualisation in (a) and (f) shows the estimated feature saliencies
from the LTM-FS.

most conserved region over 182 length of amino acids for each class to generate a binary

dataset. We initially generated a consensus sequence based on the maximum occurrence

of amino acids at certain position in all the aligned sequences. Each aligned sequence is

then matched with a consensus sequence to generate binary dataset by putting 1 if the

amino acid of the target sequence is matched with the corresponding positioned amino

acid in the consensus sequence and 0 otherwise.

Visualisations obtained using LTM and LTM-FS, with a mixture of Bernoulli distri-

butions for modelling the noise, are presented in Figure 5.5. Estimated feature saliencies

are presented in Figure 5.5(c). To demonstrate the effectiveness of the feature saliency

estimation approach, we re-trained the visualisation model with the selected features only

(with saliencies > 0.5 in Figure 5.5(c)) both with LTM and LTM-FS (see Figure 5.6).

Further discussion of the results is given in Section 5.6.
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(a) Standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.3: The LTM and the LTM-FS visualisations of the multi-category synthetic
dataset-I. The LTM-FS visualisation in (b) show better results with compact cluster for
each class compared to the LTM visualisation in (a) and (f) shows the estimated feature
saliencies from the LTM-FS.

5.5.4 Wisconsin breast cancer categorical dataset

To demonstrate LTM-FS for multi-category data we used the Wisconsin breast cancer

dataset downloaded from the UCI data repository (Bache and Lichman, 2013). The

dataset contains 699 records, but 16 records have missing values. For simplicity, we ig-

nored those records containing missing values, leaving 683 records consisting of 444 benign

patients and 239 malignant patients. The dataset has 10 categorical features1 where each

feature can have up to ten categories. We use 1-of-Sd binary encoded scheme for each of

the dth categorical feature.

Visualisations obtained from LTM and LTM-FS, with the assumption of mixture of

multinomial for modelling the noise, are presented in Figure 5.7. Estimated feature salien-

cies are presented in Figure 5.7. Further discussion on results is given in Section 5.6.

1List of features for Wisconsin breast cancer dataset: Clump Thickness, Uniformity of Cell Size, Unifor-
mity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal
Nucleoli and Mitoses
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(a) Standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.4: The LTM and the LTM-FS visualisations of the multi-category synthetic
dataset-II. The LTM-FS visualisation in (b) show better results with compact cluster for
each class compared to the LTM visualisation in (a) and (f) shows the estimated feature
saliencies from the LTM-FS.

Datasets KL Divergence
LTM LTM-FS

Binary
Synthetic-I 334.1249 415.2572
Synthetic-II 282.9710 334.8833
MHC Class-I 178.6538 198.0998

Multinomial
Synthetic-I 96.2732 144.1746
Synthetic-II 105.5500 143.2366
Breast Cancer Wisconsin 31.9634 26.4662

Table 5.1: Visualisation quality evaluation metrics of KL divergence to compare the LTM
and the LTM-FS models. The higher the value of the KL divergence the better the
separation between the classes on the visualisation plots. Generally the LTM-FS model
have shown better the KL divergence values except for the breast cancer wisconsin dataset.
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(a) Standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.5: The LTM and the LTM-FS visualisations of the MHC class-I sequence-based
binary dataset. The data points shown as cyan circles represent alleles of the HLA-A,
red plus signs for the HLA-B and blue squares for the HLA-C. Both the LTM and the
LTM-FS visualisations (i.e. (a) and (b) respectively) have shown clear separation between
three classes of the MHC class-I hence it is difficult to visually observe better clustering
structure from both. Feature saliencies estimated from the LTM-FS are shown in (c) on
a scale of 0-to-1.

88



Chapter 5 DISCRETE DATA VISUALISATION WITH SIMULTANEOUS FEATURE SELECTION

(a) Standard LTM (b) LTM-FS
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(c) Estimated Saliences

Figure 5.6: The LTM and the LTM-FS visualisations for the MHC class-I, sequence-based
binary dataset, using selected features with estimated saliencies>= 0.5 from the saliencies
shown in Figure 5.5(c)). In (a) and (b) both visualisation methods have also shown clear
separation between three classes of the MHC using only 82 selected features instead of 182
features suggesting small set of features is good enough to get better separation between
the classes of MHC class-I genes. The (c) show estimated saliencies from the LTM-FS
using this small number of selected features. Legend same as in Figure 5.5.
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(a) standard LTM (b) LTM-FS
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(c) Estimated saliencies

Figure 5.7: The LTM and the LTM-FS visualisations of the breast cancer multi-category
dataset. The data points showed as cyan circles represent benign and red plus for malig-
nant. The visualisation results both from the LTM and the LTM-FS are not significantly
different because saliencies estimated shown in (c) from LTM-FS for all the features are
higher except for one feature (i.e. the 9th feature which is ‘Mitosis’) which has shown
lower saliency value.
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5.6 Discussion

Visualisations of the synthetic binary and multi-category datasets using both LTM and

LTM-FS visualisation algorithms have shown clear separation among the four classes of

data. However, LTM-FS based visualisations have shown more compact clusters (for ex-

ample see sub-figures c and d of Figures 5.1, 5.2, 5.3, 5.4) (with less spread of data points

for each class) compared to LTM visualisation (for example see sub-figures a and b of

Figures 5.1, 5.2, 5.3, 5.4) (where the data points have more spread for each class). The

greater compactness in LTM-FS visualisations is because of the separate shared multivari-

ate distribution, q(.|λ), that models the noise in the data. The other potential advantage

of using LTM-FS over standard LTM is its ability to estimate feature saliencies while

training a visualisation model. This suggests that LTM-FS not only gives more compact

clusters appearing on visualisations but also estimates feature saliencies which are valuable

for improving our understanding of the data. For both types of synthetic datasets (i.e.

binary and multi-categorical), we also observed from the visualisation quality measure of

KL divergence (see Table 5.1) that the LTM-FS have shown better results. For synthetic

binary and multi-category datasets (where the data is generated from four distinct classes),

nearest neighbour classification error was computed and observed to be usually zero both

for LTM and LTM-FS.

Visualisation of the MHC class-I binary dataset using LTM-FS was also better than

LTM in terms of the KL-divergence quality measure. For the MHC class-I binary dataset,

NN classification error, both for LTM and LTM-FS was computed and observed to be 1

usually. The potential advantage of using LTM-FS over LTM is its capability of estimating

feature saliencies while training a visualisation model. We re-trained both LTM and

LTM-FS with the selected subset of features (with estimated saliencies greater than 0.5

in Figure 5.5(c)). The visualisations using this selected subset of features have shown the

fact that we can still get better separation among clusters of three classes (as shown in

Figure 5.6(b)). This suggests that small sets of features are good enough to get effective

visualisations of the dataset in terms of separation between the classes.

The LTM-FS model for multi-categorical data is observed to be very sensitive to both

the latent and RBF grid sizes. For synthetic categorical datasets, for comparison purpose

both for LTM and LTM-FS, we used a 6×6 latent and 4×4 RBF grid. LTM-FS results are

encouraging for synthetic multi-categorical datasets (with respect to visualisation results

and also in terms of visualisation quality measure of KL divergences (see Table 5.1) and

NN-classification), whereas for the real dataset it still faces some challenges for the selection
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of latent and RBF grid sizes. For the breast cancer dataset, we used a latent grid of size

3 × 3 and an RBF grid of 5 × 5. However for the real multi-categorical dataset, results

were better with the standard LTM compared to LTM-FS in terms of visualisation quality

measures of KL divergence (see Table 5.1) and NN classification error (for LTM 29 and for

LTM-FS 37). Visualisation results both for LTM and LTM-FS are not very much different

and estiamted saliencies using LTM-FS are higher except for one feature (i.e. Mitosis)

(see Figure 5.7(c)).

5.7 Conclusion

Analysing multivariate large high-dimensional discrete datasets is a challenging task in

the presence of inherent noise. Usually both data visualisation and feature selection are

used as two separate approaches in proteomic, genomics and other bioinformatics areas.

Joining both the approaches in a single framework is logical and can play an important

role as the benefits from one technique can be exploited for the other technique to get

more useful understanding.

We were successful in modifying a feature selection approach for the unsupervised task

of visualising a multivariate discrete dataset onto a low-dimensional latent space with the

assumption that the data is generated from probabilistic mixture models. Our proposed

algorithm, LTM-FS, not only attempts to improve the visualisation quality by modelling

the irrelevant noisy features as a shared distribution but also estimates saliencies for all

the features which help the user to understand the importance of each feature. LTM-FS

results for binary datasets (both synthetic and real) and synthetic multi-category results

are satisfactory and encouraging whereas for real multi-category datasets the proposed

algorithm still faces some challenges.
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6.1 Introduction

Type-specific data analysis has been well studied in the machine learning1. In the recent

couple of decades, the need for analysing mixed-type data is gaining a lot of attention from

machine learning experts because of the fact that real world processes often generate a

data of mixed-type. An example of such a mixed-type data could be a hospital’s patients’

dataset where typical fields include age (discrete or continuous), gender (binary), test

results (binary or continuous), height (continuous) etc.

In practice a number of ad-hoc solutions are used to handle mixed-type data in analysis.

For example, if there is a mixture of continuous and discrete variables, then either all the

discrete variables are converted to some numerical scoring equivalent or on the other hand

all the continuous variables are considered as discrete variables adopting some grouping

criteria. Alternatively, both types of variables are analysed separately and then the results

are combined using some criteria. According to Krzanowski (1983), “All these options in-

volve some element of subjectivity, with possible loss of information, and do not appear

very satisfactory in general”. The ideal general solution for analysing such heterogeneous

data is to specify a model that builds a joint distribution with the assumption of an appro-

priate noise distribution for each type of feature set (for example a Bernoulli distribution

for modelling binary features, a multinomial distribution for modelling multi-category fea-

tures and a Gaussian distribution for modelling continuous features) and then fitting the

model to data where the parameter estimates are used to draw inferences (de Leon and

Chough, 2013).

In the literature there is no multivariate distribution that can model random variables

of different types. However, one possible way of jointly modelling discrete and continuous

features is using a latent variable approach to understand the correlation between features

of different type in combination. For example, a dataset consisting of continuous, binary

and categorical features can be modelled in a latent variable model using the conditional

distribution as a product of Gaussian, Bernoulli and multinomial distributions in the data

space. Such a latent variable model follows a conditional independence criterion for each

type of the observed variable to find a correlation between observed features and latent

variables in a unified framework.

A generative topographic mapping (GTM) is a probabilistic non-linear visualisation

model for modelling the relationship between observed continuous features and continuous

latent variables. As explained earlier in Section 3.3.6, as a generalisation of GTM, a latent

1http://letdataspeak.blogspot.co.uk/2012/07/mixed-type-data-analysis-i-overview.html
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variable model called the latent trait model (LTM) was proposed with a goal of handling

different types of data by considering the exponential family of distributions (Kabán and

Girolami, 2001). However an LTM model was proposed to handle only one variable type

in a given dataset with a main focus on discrete type data only whereas we in this chapter

propose to extend such a model to handle mixed-type data (i.e. a dataset with variables

of more than one type).

Influenced from the generalisation of GTM given by Kabán and Girolami (2001), we

propose here a probabilistic non-linear latent variable model by combining a generative

topographic mapping (GTM) (appropriate for continuous data) and a latent trait model

(LTM) (appropriate for discrete data) in a principled way to visualise mixed-type data

on a single continuous latent space under a unified proposed framework of conditional

independence criteria: we shall refer to this model a generalised GTM (GGTM).

We also propose an extension of GGTM to simultaneously estimate feature saliency

(we call it as GGTM-FS). The potential advantage of GGTM-FS is to improve the latent

space visualisation of mixed-type datasets by reducing the impact of noisy features using

a probabilistic approach as discussed in chapters 3, 4 and 5 (where we apply a similar

approach to estimate feature saliency while visualising one type of data (i.e. continuous

or binary or multi-category)): this extension also gives feature saliency values which can

be used to understand the importance of each feature in the dataset (for more informative

clusters).

6.2 Related Work

Bishop and Svensen (1998); Bishop et al. (1998); Tipping (1999) discuss the idea that

if the multivariate dataset contains mixed-types then it can be modelled with GTM-

like (Bishop and Svensen, 1998; Bishop et al., 1998) and Probabilistic PCA-like latent

variable models. However, these papers did not implement any models and argued that

this can be achieved by just taking the product of likelihoods based on the conditional

independence assumption for the latent variable model formalism. Our interest here is

mainly to use a GTM-like visualisation non-linear model for this purpose. We briefly

explain the evolution of GTM-like models in the following paragraph.

Initially GTM was developed with the assumption of a mixture of Gaussian distri-

butions as a generative model of continuous data. Later on, Kabán and Girolami (2001)

proposed a generalisation of GTM in order to make it more general by using an appropriate

noise model based on the type of the dataset. They derived a general EM algorithm based
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on the fact that the noise model is taken from the exponential family of distributions. For

discrete datasets they used a Bernoulli distribution for binary features and a multinomial

distribution for multi-category features with a one-of-N encoding. All these variants of

GTM are only able to model one type of feature at a time in the latent variable model

framework. Kabán and Girolami (2001) also discussed a possible way of handling mixed-

type data using the approach discussed and suggested by Bishop and Svensen (1998);

Bishop et al. (1998); Tipping (1999). However, this idea of handling mixed-type dataset

with GTM like non-linear models has been only discussed but not implemented and tested.

However, about a decade ago this idea was implemented with a linear model by Yu

and Tresp (2004) to visualise a mix of continuous and binary features data on a single

continuous latent space by extending probabilistic principal component analysis (PPCA).

He called this model a generalised PPCA (GPPCA): it was influenced by the generalisation

of PPCA to binary data (Tipping, 1999). GPPCA is a linear probabilistic model and uses

a variational EM algorithm for parameter estimation, whereas our proposed probabilistic

latent variable model is a non-linear variant and we use a variant of the EM for parameter

estimation (similar to that proposed by Kabán and Girolami (2001)). In the literature

there are few other latent variable models for mixed-type datasets but as of our knowledge

they are all linear models (like GPPCA) (Moustaki, 1996; Sammel et al., 1997; Dunson,

2000) and they either use numerical integration or a sampling approach to handle the

intractable integration for fitting a latent variable model of this type.

As discussed in the related work section of Chapter 5, feature saliency estimation

is usually applied to clustering algorithms (for example, Bouguila (2010) discusses the

possibility of computing feature saliency while clustering data vectors with a mix of con-

tinuous and discrete variables but did not implement it) and only a few attempts have

been made in general to apply simultaneous feature saliency to the latent variable model

framework and they are usually with the Gaussian assumption to hanlde only continuous

type datasets. We proposed, in Chapter 5, a combined parameter-learning and feature-

saliency estimation algorithm for discrete type datasets (where we used a Bernoulli noise

model for binary features and a multinomial noise model for multi-category features) and

have shown its effectiveness on synthetic and real datasets.

To the best of our knowledge, there is no similar approach in the literature for esti-

mating feature saliency when modelling the data with joint probability distribution both

for clustering and latent variable model framework (and we have also not found any dis-

cussion of latent variables models for mixed-type data with simultaneous feature saliency

estimation).
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6.3 A Generalised Generative Topographic Mapping (GGTM) Model

The main goal of a latent variable model is to find a low dimensional manifold, H, with

M -dimensions (usually M = 2) for the distribution p(x) of high-dimensional data space,

D, with D-dimensions. Latent variable models like GTM (appropriate for continuous

datasets) or LTM (appropriate for discrete datasets), have been developed to handle a

dataset where all the features are of the same type (either continuous or binary or multi-

categorical).

We consider here the task of modelling a D-dimensional data space defined by |R|

continuous, |B| binary and/or |C| multi-categorical (where for each d ∈ |C|, we use 1-of-Sd

encoded binary features) number of features respectively. The link functions defined for

mapping between the latent space and the data space for continuous, binary and multi-

category features are defined in equations (6.1), (6.2) and (6.3) respectively

mR = Φ(z)WR. (6.1)

mB = gB(Φ(z)WB)

=
exp(Φ(z)WB)

1 + exp(Φ(z)WB)
.

(6.2)

mCsd = gC(Φ(z)wCsd)

=
exp(Φ(z)wCsd)∑Sd

s′d=1
exp(Φ(z)ws′d

)
.

(6.3)

These link functions map a latent point z ∈ H to the point in the data space (i.e. mR

is a centre of Gaussian (appropriate for continuous features), mB is a centre of Bernoulli

(which is the probability of weighted sum of success in case of binary-typed data), and

mC is centre of multinomial (which is the probability of weighted sum of relating to each

category in case of multi-category type data) in the data space respectively). We write

each observation vector, xn in terms of sub-vectors xRn , xBn and xCn for continuous, binary

and multi-category features respectively. In the rest of this chapter we use superscript

R for continuous features, superscript B for binary features and superscript C for cat-

egorical features representation. The likelihood of each type subset of features (where

each subset take one type of feature) in an observation given the latent variables and

the model parameters, based on the corresponding distributional assumption, are given in
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equations (6.4), (6.5) and (6.6) respectively as,

p(xRn |z,WR, β) = p(xRn |mR, β)

=

(
β

2π

) |R|
2

exp

(
−β

2
||mR − xRn ||2

)
.

(6.4)

p(xBn |z,WB) = p(xBn|mB)

=

|B|∏
d=1

(
mBd

)xBnd
(

1−mBd
)(1−xBnd)

.
(6.5)

p(xCn|z,WC) = p(xCn|mC)

=

|C|∏
d=1

Sd∏
sd=1

(
mCsd

)xCnsd .
(6.6)

For modelling the mixed-type datasets under the latent variable formulism, we compute

the product of the likelihoods of Gaussian (equation (6.4)), Bernoulli (equation (6.5)) and

multinomial (equation (6.6)) distributions and then the data distribution of, x, with the

given weight matrix, W, can be achieved taking an integration over the distribution of

latent variables, z, as

p(x|Ω) =

∫
p(xRn |z,WR, β)

p(xBn|z,WB)p(xCn|z,WC)p(z) dz.

(6.7)

where Ω = (WR, β,WB,WC) is a set containing all the parameters of the model. We

consider prior distribution, p(z), as a sum of delta functions on the nodes of regular grid

in latent space (the same prior distribution was used for standard GTM (Bishop and

Svensen, 1998) and LTM (Kabán and Girolami, 2001)) as

p(z) =
1

K

K∑
k=1

δ(z− zk). (6.8)

The data distribution can now be defined from equations (6.7) and (6.8) (where mixing

co-efficient are taken as fixed for all components (i.e. πk = 1
K )),

p(x|Ω) =
K∑
k=1

πkp(x|zk,Ω). (6.9)
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The log-likelihood now takes the form

L(Ω) =

N∑
n=1

ln

K∑
k=1

πkp(xn|zk,Ω). (6.10)

6.3.1 Distributional Assumptions over the Noise Model

The distributional assumption over the noise model is important for the type of the data

the model can handle and also for the link function required for modelling different types

of data (Kabán and Girolami, 2001). It has been argued in (Kabán and Girolami, 2001;

Bishop et al., 1998) that modelling continuous data can be achieved with the assumption

of noise as independent and identically distributed (i.i.d.) Gaussian, that gives a tractable

analytical solution, which is considered not to be suitable for the discrete type datasets.

For example for the Gaussian case that is appropriate for the continuous feature set,

the link function is considered as a linear regression function of the latent vectors with

weight matrix (see Equation (6.1)). However for the purpose of simplicity and generality,

an exponential family of distributions is assumed for noise modelling purpose to handle

different type of features in a dataset during the derivation of the LTM algorithm (a model

developed with a main focus on datasets with discrete type features). The similar idea of

using exponential family of distributions is adopted here for mixed-type data modelling

under the latent variable framework (where we apply the same for each type subset of

features (i.e. xR or xB or xC)). For the purpose of simplicity we use xM where superscript

M can be replaced with either R or B or C to indicate type of subset of features for a data

point x. The functional form of the exponential family of distributions can be defined by

pG(xM|θM) = exp

{
xMθM − G

(
θM
)}

p0(xM). (6.11)

In our case, the conditional probability distribution of a data point xMn given latent point

zk and a weight matrix WM can be defined as,

pG(xMn |zk,WM) = exp

{
xMn Φ(zk)W

M − G
(
Φ(zk)W

M
)}

p0(xMn ),

(6.12)

where G(.) is the cumulant function and is defined as

G
(
Φ(zk)W

M
)

= ln

(∫
exp(xMΦ(zk)W

M)p0(xM) dxM
)
. (6.13)
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The natural parameter θM of the exponential family of the distribution is taken to be a

linear mixing of the latent vectors with respect to the weight matrix WM,

θMk = Φ(zk)W
M, (6.14)

where WM is the weight matrix of size L× |M|. The gradient of the cumulant function

with respect to the natural parameter (i.e. Φ(zk)W
M) is

mMk = gM(Φ(zk)W
M) = ∇θMk G(Φ(zk)W

M), (6.15)

where∇ represents the gradient operation and the function g(.) is the link function (Kabán

and Girolami, 2001).

With the first moment identity for the log-likelihood functions applied to the expo-

nential family of distribution (Barndorff-Nielsen, 1978), we know that mMk represents the

mean of the kth class under the distribution p(xMn |zk),

mMk = E{xM|zk}, (6.16)

where xM represent the observation vectors and E{.} represent the expectation operator.

We also know that the second moment identity functions for the log-likelihood functions

applied to the exponential family distributions explains that the expected value of the

Hessian of the cummulant function with respect to the natural parameters (i.e. θMk =

Φ(zk)W
M) represents the covariance matrix of the kth class for the distribution (i.e.

p(xM|zk)), (i.e. the Fisher information matrix). Such a matrix is represented as GMk ,

GMk = ∇θMk mMk = V ar{xM|zk}, (6.17)

6.3.2 An expectation maximization (EM) algorithm for GGTM

Our proposed model is based on mixture distributions where each component is a product

of Gaussian, Bernoulli and/or multinomial distribution. Parameters of the mixture model

can be determined using an expectation-maximization (EM) algorithm.

An EM algorithm can be formulated as: in the E-step, we use the current parameter

set, Ω, to compute the posterior probabilities (i.e. responsibilities) of each latent space

component for each of the nth data point using Bayes’ theorem as,

rkn = p(zk|xn,W) =
πkp(xn|zk,W)∑K
k′ πk′p(xn|zk′ ,W)

, (6.18)
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where

p(xn|zk,W) =p(xRn |zk,WR, β)

p(xBn|zk,WB)p(xCn|zk,WC).
(6.19)

In the context of EM algorithm methodology, we can use the maximization of the relative

likelihood (McLachlan and Krishnan, 1997; Kabán and Girolami, 2001; Bishop, 1995b;

Dempster et al., 1977) (instead of maximizing the log-likelihood) which does not require

the computation of the log of a sum. The relative likelihood between old and new set of

parameters can be calculated as,

Q =
N∑
n=1

K∑
k=1

rkn log
{
p(xn|zk,W)p(zk)

}

=

N∑
n=1

K∑
k=1

rkn



{
xRn θ

R
k − G

(
θRk

)
+ log(p0(xRn ))

}
+

{
xBnθ

B
k − G

(
θBk

)
+ log(p0(xBn))

}
+

{
xCnθ

C
k − G

(
θCk

)
+ log(p0(xCn))

}
+
{

log(p(zk))
}



(6.20)

where θMk = Φ(zk)W
M.

M-step for Gaussian noise model parameters

The posterior probabilities, R (computed at the E-step), are then used to re-estimate

parameters of the weight matrix, WR, using the following set of linear equations (the

detailed derivations for this formula are available in (Bishop and Svensen, 1998))

ŴR = (ΦTEΦ)−1ΦTRXR, (6.21)

where Φ is a K × L matrix with elements φl(zk), R is a K × N matrix with elements

rkn, XR is an N × |R| data matrix of real values and the diagonal matrix E contains the

values

ekk =
N∑
n=1

rkn. (6.22)

Equation (6.21) can now be solved to determine the update weight matrix, ŴR, and Φ

remains constant (and can be computed before the optimization starts). The re-estimation

formula for the β can now be defined as

1

β̂R
=

1

N |R|

N∑
n=1

K∑
k=1

rnk||Φ(zk)Ŵ
R − xRn ||2. (6.23)
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M-step for Bernoulli and multinomial noise model parameters

The parameters of a Bernoulli distribution weight parameter matrix, WB, can be updated

using a gradient-based approach (detailed derivation of this approach is given in (Kabán

and Girolami, 2001)),

∆WB ∝ ΦT
[
RXB −EgB(ΦWB)

]
, (6.24)

where XB is an N×|B| data matrix containing binary values. A similar approach can also

be used to update the parameter submatrix for each dth binary encoded multi-categorical

feature using

∆WC
Sd
∝ ΦT

[
RXCSd

−EgC(ΦW CSd
)
]
, (6.25)

where XCSd
is an N × SCd binary-encoded data submatrix of dth multi-category feature.

6.3.3 Experiments

The generalised GTM was evaluated using both synthetic and real datasets. The weight

matrix, W, was initialised using principal component analysis (PCA). The results of

GGTM are compared with the standard GTM visualisation. For evaluating the quality of

visualisations, we use the same quality measures as in other experiments in this thesis as:

the data space is assumed to be of mixed-type, therefore we compute pair-wise distances

using Hamming distances for the binary features and Euclidean distances for the continu-

ous features and we divide each column in the distance matrix by its standard deviation

in order to make both distance matrices on an equivalent scale.

Experiments were repeated with different latent and RBF grid sizes as explained in

Table 6.3.3. We present here the visualisation results with a latent grid of size 8×8 and an

RBF grid of size 4×4 both for training and test datasets. Visualisation quality evaluations

metrics are shown with all latent grid and RBF grid sizes (in 1-to-6 settings) as explained

in Table 6.3.3.

Latent Grid Size RBF Grid Size

1

12× 12

8× 8
2 4× 4
3 2× 2

4
8× 8

16
5 2× 2

6 4× 4 2× 2

Table 6.1: Latent and RBF grid sizes.
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6.3.3.1 Synthetic dataset-I (continuous and binary features)

We generated a training dataset of 2, 000 data points from an equiprobable mixture of two

Gaussians, N (mk, I) (with k = 1, 2) with means m1 =
(

2.0
3.5
3.5

)
, and m2 =

(
3.5
4.5
4.5

)
. We then

generated a binary dataset of four classes with 9 binary features. The label variable we

used indicates the four binary classes. We combined both datasets to make a dataset with

2, 000 data points and a total of 12 features. The test dataset of 800 data points with 12

features was also generated from the same distributions.

Visualisation results of standard GTM and the GGTM are shown in Figure 6.1. The

visualisation quality evaluation metrics are given in Tables 6.2, 6.3 and 6.4.

(a) Standard GTM (training set) (b) Standard GTM (test set)

(c) GGTM (training set) (d) GGTM (test set)

Figure 6.1: Demonstration of the mixed-type data visualisations using the standard GTM
and the GGTM models for synthetic dataset-I (i.e. consisting of continuous and binary
features). GGTM visualisations in (c) and (d) has shown more compact blob like a separate
cluster for each class compared to the standard GTM visualisations as shown in (a) and
(b). Whereas in (b) few data points between red pluses and cyan circles classes overlap in
case of the standard GTM.
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Trustworthiness Continuity
Training Test Training Test

1
GTM 0.9706 0.9431 0.9568 0.9491
GGTM 0.9623 0.9575 0.9753 0.9664

2
GTM 0.9805 0.9680 0.9691 0.9615
GGTM 0.9687 0.9708 0.9834 0.9777

3
GTM 0.9524 0.9555 0.9855 0.9791
GGTM 0.9617 0.9677 0.9836 0.9782

4
GTM 0.9762 0.9674 0.9705 0.9644
GGTM 0.9715 0.9757 0.9868 0.9809

5
GTM 0.9523 0.9554 0.9846 0.9787
GGTM 0.9616 0.9673 0.9831 0.9778

6
GTM 0.9462 0.9499 0.9691 0.9682
GGTM 0.9617 0.9672 0.9831 0.9775

Table 6.2: The standard GTM and the GGTM comparison using quality evaluation metrics
of trustworthiness and continuity (synthetic data I).

MRREd MRREl
Training Test Training Test

1
GTM 0.0258 0.1113 0.0303 0.1097
GGTM 0.0301 0.1073 0.0279 0.1121

2
GTM 0.0292 0.0957 0.0305 0.1025
GGTM 0.0298 0.0955 0.0271 0.1010

3
GTM 0.0324 0.0978 0.0266 0.1028
GGTM 0.0316 0.0995 0.0269 0.1066

4
GTM 0.0317 0.1094 0.0319 0.1108
GGTM 0.0293 0.0886 0.0267 0.0980

5
GTM 0.0335 0.1005 0.0271 0.1043
GGTM 0.0317 0.1004 0.0270 0.1072

6
GTM 0.0348 0.1295 0.0306 0.1225
GGTM 0.0315 0.1001 0.0269 0.1067

Table 6.3: The standard GTM and the GGTM comparison using quality evaluation metrics
of the mean relative rank errors with respect to the data space and the latent space
(synthetic data I).
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AVDD NLL
Training Test Training Test

1
GTM 0.7853 0.7034 0.4281 2.4839
GGTM 0.6705 0.6703 0.5817 0.6446

2
GTM 0.7776 0.7077 2.9739 3.5763
GGTM 0.5905 0.6305 0.5970 0.6225

3
GTM 0.5111 0.5380 7.7252 8.0322
GGTM 0.5674 0.6228 0.7656 0.7929

4
GTM 0.8010 0.7012 3.9768 4.4205
GGTM 0.5521 0.5842 1.4003 1.4211

5
GTM 0.5417 0.5526 7.7309 8.0449
GGTM 0.5735 0.6255 1.4976 1.5255

6
GTM 0.8295 0.7415 7.9432 8.2174
GGTM 0.5781 0.6296 2.8040 2.8320

Table 6.4: The standard GTM and the GGTM comparison using the quality evaluation
metrics of the distance distortion and the negative log-likelihood per point (synthetic data
I).

6.3.3.2 Synthetic dataset-II (continuous, binary and multi-category)

We used the same set of binary and real features dataset as generated in Section 6.3.3.1.

Here we added two multi-category features both for training and test datasets with 8 and

16 categories in the first and second multi-category features respectively.

Visualisation results of standard GTM and GGTM are shown in Figure 6.2. The

visualisation quality evaluation metrics are given in Tables 6.5, 6.6 and 6.7.
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(a) Standard GTM (Training set) (b) Standard GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

(e) Standard GTM (Training set) (f) Standard GTM (Test set)

(g) GGTM (Training set) (h) GGTM (Test set)

Figure 6.2: The standard GTM and the GGTM visualisations for the mixed-type synthetic
dataset-II (i.e. continuous, binary and multinomial features). Subfigures (a), (b), (c) and
(d) are assigned colours from 4 classes defined in the binary features whereas subfigures
(e), (f), (g) and (h) are assigned colours from 8 classes (categories) based on the first
multi-categorical feature.
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Trustworthiness Continuity
Training Test Training Test

1
GTM 0.9652 0.9460 0.9254 0.9163
GGTM 0.9757 0.9762 0.9753 0.9778

2
GTM 0.9713 0.9756 0.9638 0.9676
GGTM 0.9804 0.9873 0.9870 0.9903

3
GTM 0.9204 0.9410 0.9468 0.9470
GGTM 0.9689 0.9837 0.9766 0.9867

4
GTM 0.9626 0.9611 0.9389 0.9396
GGTM 0.9769 0.9867 0.9840 0.9892

5
GTM 0.9194 0.9401 0.9440 0.9459
GGTM 0.9676 0.9834 0.9762 0.9867

6
GTM 0.9162 0.9352 0.9320 0.9387
GGTM 0.9665 0.9831 0.9762 0.9867

Table 6.5: The standard GTM and the GGTM comparison using quality evaluation metrics
of the trustworthiness and the continuity (synthetic data II).

MRREd MRREl
Training Test Training Test

1
GTM 0.0258 0.0655 0.0309 0.0840
GGTM 0.0306 0.0849 0.0266 0.0992

2
GTM 0.0332 0.0841 0.0246 0.1122
GGTM 0.0304 0.0757 0.0248 0.0932

3
GTM 0.0417 0.1094 0.0253 0.0958
GGTM 0.0403 0.1054 0.0297 0.1132

4
GTM 0.0363 0.0877 0.0268 0.1144
GGTM 0.0340 0.0863 0.0264 0.1001

5
GTM 0.0406 0.1109 0.0253 0.0935
GGTM 0.0408 0.1065 0.0298 0.1155

6
GTM 0.0376 0.1096 0.0259 0.0930
GGTM 0.0419 0.1073 0.0294 0.1168

Table 6.6: The standard GTM and the GGTM comparison using quality evaluation metrics
of the mean relative rank errors with respect to the data space and the latent space
(synthetic data II).
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AVDD NLL
Training Test Training Test

1
GTM 0.7906 0.7744 -10.6870 -6.6810
GGTM 0.6720 0.7444 -1.5930 -1.5877

2
GTM 0.7223 0.7492 -1.8250 -0.6415
GGTM 0.6036 0.6740 -1.5643 -1.5815

3
GTM 0.5442 0.6629 8.1947 7.9889
GGTM 0.7159 0.8178 -1.0488 -1.0645

4
GTM 0.7790 0.7969 0.3964 1.2724
GGTM 0.6513 0.7267 0.0284 0.0087

5
GTM 0.5950 0.6774 8.3146 8.1828
GGTM 0.7121 0.8127 0.4604 0.4427

6
GTM 0.7812 0.7844 9.3161 9.1896
GGTM 0.7151 0.8052 2.8838 2.8653

Table 6.7: The standard GTM and the GGTM comparison using quality evaluation metrics
of the distance distortion and the negative log-likelihood per point (synthetic data II).
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6.3.3.3 Hypothyroid dataset

The first real dataset we used to demonstrate the effectiveness of the proposed GGTM

is the hypothyroid disease dataset downloaded from the UCI data repository (Bache and

Lichman, 2013). The dataset consists of mixed types, with 15 binary features and 6

continuous features, and contains three classes: primary thyroid, compensated thyroid,

and normal. The dataset is divided into a training set of 3, 772 data points (93 with

primary hypothyroid, 191 with compensated hypothyroid and 3488 normal) and a test set

of 3, 428 data points (73 with primary hypothyroid, 177 with compensated hypothyroid

and 3178 normal).

Visualisation results both for training and test datasets using standard GTM and the

GGTM are shown in Figure 6.3. The visualisation quality evaluation metrics are given in

Tables 6.8, 6.9 and 6.10.

(a) Standard GTM (Training set) (b) Standard GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

Figure 6.3: The standard GTM and the GGTM visualisations of the thyroid disease
mixed-type dataset. Cyan circles (‘o’) for primary hypothyroid, red plus sign (‘+’) for
compensated hypothyroid and blue squares (‘�’) for normal.
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Trustworthiness Continuity
Training Test Training Test

1
GTM 0.7625 0.7331 0.8307 0.8102
GGTM 0.7143 0.6819 0.8585 0.8405

2
GTM 0.7360 0.7172 0.8122 0.7935
GGTM 0.6869 0.6636 0.8265 0.8073

3
GTM 0.6789 0.6625 0.8175 0.8037
GGTM 0.7235 0.7105 0.8897 0.8774

4
GTM 0.7355 0.7195 0.8315 0.8160
GGTM 0.7039 0.6822 0.8467 0.8296

5
GTM 0.6724 0.6583 0.8145 0.8003
GGTM 0.7244 0.7115 0.8898 0.8778

6
GTM 0.6530 0.6404 0.7904 0.7761
GGTM 0.7224 0.7115 0.8875 0.8763

Table 6.8: The standard GTM and the GGTM comparison using quality evaluation metrics
of the trustworthiness and the continuity (for the thyroid disease dataset).

MRREd MRREl
Training Test Training Test

1
GTM 0.0166 0.0184 0.0151 0.0167
GGTM 0.0181 0.0201 0.0142 0.0156

2
GTM 0.0177 0.0198 0.0143 0.0159
GGTM 0.0182 0.0200 0.0140 0.0156

3
GTM 0.0180 0.0200 0.0141 0.0155
GGTM 0.0194 0.0216 0.0140 0.0155

4
GTM 0.0182 0.0199 0.0146 0.0162
GGTM 0.0187 0.0205 0.0141 0.0156

5
GTM 0.0174 0.0195 0.0143 0.0158
GGTM 0.0194 0.0216 0.0140 0.0155

6
GTM 0.0167 0.0184 0.0143 0.0157
GGTM 0.0192 0.0214 0.0140 0.0156

Table 6.9: The standard GTM and the GGTM comparison using quality evaluation metrics
of the mean relative rank errors with respect to the data space and the latent space (for
the thyroid disease dataset).
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AVDD NLL
Training Test Training Test

1
GTM 0.7856 0.7839 3.8824 6.8544
GGTM 0.7298 0.7287 3.0192 3.5480

2
GTM 0.8156 0.8178 5.8714 7.3545
GGTM 0.7566 0.7685 3.5234 3.8907

3
GTM 0.8601 0.8640 9.5835 11.0325
GGTM 0.6677 0.6801 4.8464 5.1038

4
GTM 0.8055 0.8089 6.7331 7.9179
GGTM 0.7548 0.7561 4.4990 4.8337

5
GTM 0.8628 0.8639 10.2171 11.5110
GGTM 0.6696 0.6820 5.6612 5.9187

6
GTM 0.9304 0.9306 11.6134 12.5628
GGTM 0.6850 0.6987 7.0969 7.3406

Table 6.10: The standard GTM and the GGTM comparison using quality evaluation
metrics of the distance distortion and the negative log-likelihood per point (for the thyroid
disease dataset).
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6.3.3.4 Bioassay dataset

The second real dataset we used to demonstrate the effectiveness of the GGTM is one of

the bioassay datasets downloaded from the UCI data respository (Bache and Lichman,

2013). The dataset consists of mixed types, with 113 binary features and 31 continuous

features, and contains two classes: active and inactive. The dataset is divided into a

training set and test set with 3423 and 856 data points respectively.

Visualisation results for training and test datasets using standard GTM and the GGTM

are shown in Figure 6.4. The visualisation quality evaluation metrics are given in Ta-

bles 6.11, 6.12 and 6.13. Results for two similar datasets (i.e. bioassays ‘AID1608’ and

‘AID456’) are given in Appendix D.4.

(a) Standard GTM (Training set) (b) Standard GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

Figure 6.4: The standard GTM and the GGTM visualisations of bioassays dataset
‘AID362’. Cyan circles (‘o’) for active compounds and red plus (‘+’) for inactive com-
pounds.
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Trustworthiness Continuity
Training Test Training Test

1
GTM 0.9044 0.8532 0.8973 0.8574
GGTM 0.9073 0.8572 0.8875 0.8517

2
GTM 0.8812 0.8552 0.8806 0.8504
GGTM 0.8913 0.8642 0.8918 0.8534

3
GTM 0.8430 0.8406 0.8959 0.8719
GGTM 0.8552 0.8535 0.9146 0.8929

4
GTM 0.8779 0.8565 0.8864 0.8583
GGTM 0.8837 0.8576 0.8881 0.8502

5
GTM 0.8391 0.8338 0.8956 0.8727
GGTM 0.8390 0.8390 0.9070 0.8873

6
GTM 0.8005 0.8191 0.8773 0.8614
GGTM 0.8338 0.8371 0.9004 0.8815

Table 6.11: The standard GTM and the GGTM comparison using quality evaluation
metrics of the trustworthiness and the continuity for the bioassy dataset ‘AID362’.

MRREd MRREl
Training Test Training Test

1
GTM 0.0204 0.0758 0.0178 0.0784
GGTM 0.0191 0.0731 0.0175 0.0766

2
GTM 0.0198 0.0817 0.0170 0.0806
GGTM 0.0191 0.0798 0.0168 0.0802

3
GTM 0.0194 0.0897 0.0167 0.0802
GGTM 0.0192 0.0882 0.0161 0.0778

4
GTM 0.0204 0.0858 0.0171 0.0832
GGTM 0.0197 0.0814 0.0168 0.0799

5
GTM 0.0195 0.0915 0.0165 0.0808
GGTM 0.0193 0.0908 0.0161 0.0781

6
GTM 0.0187 0.0962 0.0158 0.0815
GGTM 0.0192 0.0911 0.0162 0.0811

Table 6.12: The standard GTM and the GGTM comparison using quality evaluation
metrics of the mean relative rank errors with respect to the data space and the latent
space for the bioassy dataset ‘AID362’.
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AVDD NLL
Training Test Training Test

1
GTM 0.8620 0.7840 11.4491 16.0178
GGTM 0.8409 0.7723 30.3105 31.3519

2
GTM 0.8757 0.8302 33.4452 34.6705
GGTM 0.8526 0.8096 37.5442 37.8452

3
GTM 0.8303 0.8236 55.9538 57.5050
GGTM 0.8007 0.7998 43.5324 43.6197

4
GTM 0.8940 0.8292 36.0574 37.2367
GGTM 0.8610 0.7985 38.7942 39.0690

5
GTM 0.8412 0.8215 57.0091 58.7741
GGTM 0.8126 0.7992 44.5537 44.6649

6
GTM 0.9110 0.8545 62.1582 63.9599
GGTM 0.9242 0.8767 46.5073 46.5737

Table 6.13: The standard GTM and the GGTM comparison using quality evaluation
metrics of the distance distortion and the negative log-likelihood per point for the bioassy
dataset ‘AID362’.
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6.3.3.5 MHC class-I dataset

The MHC class-I dataset we consider here consists of 182 binary features derived from the

primary sequences (from the α − 1 and α − 2 regions only) of MHC class-I by matching

each sequence with the consensus sequence (as previously explained in Section 5.5.3). We

combined this binary dataset with the electrostatic potential values dataset of MHC class-I

with 2418 continuous features (as previously explained in Section 2.1.7) yielding a dataset

with a total of 2600 features of mixed type for a total of 3944 proteins. We divided

the dataset of 3944 proteins into training and test sets with 3157 and 787 data points

respectively. As discussed earlier in chapter 4, the GTM type model had problems of tight

clusters of points around the centres of the latent grid, implying that it is not suitable

for visualising such high-dimensional datasets. However, our focus here is to compare the

standard GTM and proposed GGTM model to see whether the GGTM model improves

the visualisation results.

Visualisation results both for training and test datasets using standard GTM and the

GGTM are shown in Figure 6.5. The visualisation quality evaluation metrics are given in

Tables 6.14, 6.15 and 6.16.

Trustworthiness Continuity
Training Test Training Test

1
GTM 0.9307 0.8825 0.9222 0.8671
GGTM 0.9463 0.9200 0.9248 0.8941

2
GTM 0.9311 0.9134 0.9071 0.8397
GGTM 0.9332 0.9047 0.9192 0.8665

3
GTM 0.8862 0.8684 0.8740 0.8231
GGTM 0.8950 0.8806 0.9122 0.8790

4
GTM 0.9131 0.8923 0.9032 0.8438
GGTM 0.9156 0.8938 0.9056 0.8625

5
GTM 0.8606 0.8649 0.8717 0.8210
GGTM 0.8869 0.8833 0.8942 0.8703

6
GTM 0.8087 0.8417 0.8534 0.8051
GGTM 0.8376 0.8558 0.8600 0.8382

Table 6.14: The standard GTM and the GGTM comparison using quality evaluation
metrics of the trustworthiness and the continuity for the MHC class-I dataset.
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MRREd MRREl
Training Test Training Test

1
GTM 0.0214 0.0847 0.0209 0.0929
GGTM 0.0214 0.0811 0.0207 0.0911

2
GTM 0.0219 0.0897 0.0195 0.0925
GGTM 0.0219 0.0884 0.0198 0.0931

3
GTM 0.0209 0.0912 0.0186 0.0947
GGTM 0.0211 0.0970 0.0186 0.0904

4
GTM 0.0224 0.0953 0.0189 0.0955
GGTM 0.0223 0.0937 0.0193 0.0942

5
GTM 0.0218 0.0955 0.0179 0.0925
GGTM 0.0210 0.0954 0.0183 0.0973

6
GTM 0.0204 0.1023 0.0167 0.0877
GGTM 0.0200 0.1034 0.0174 0.0922

Table 6.15: The standard GTM and the GGTM comparison using quality evaluation
metrics of the mean relative rank errors with respect to the data space and the latent
space for the MHC class-I dataset).

AVDD NLL
Training Test Training Test

1
GTM 0.8197 0.7477 1432.1519 1524.2093
GGTM 0.8407 0.7607 47.2628 47.8952

2
GTM 0.8728 0.8305 1649.0974 1669.0851
GGTM 0.8451 0.7633 52.9972 52.5008

3
GTM 0.8397 0.8259 1887.3501 1908.1627
GGTM 0.7840 0.7854 65.7375 62.0124

4
GTM 0.8511 0.7850 1748.2107 1766.4025
GGTM 0.8389 0.7746 55.0430 54.1448

5
GTM 0.8225 0.7913 1958.4099 1972.6974
GGTM 0.8047 0.7764 64.0500 61.1906

6
GTM 0.8630 0.7769 2142.9356 2155.5489
GGTM 0.8730 0.7798 64.9483 62.4839

Table 6.16: The standard GTM and the GGTM comparison using quality evaluation
metrics of the distance distortion and the negative log-likelihood per point for the MHC
class-I dataset.
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(a) Standard GTM (Training set) (b) Standard GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

Figure 6.5: The standard GTM and the GGTM visualisations of the MHC class-I dataset
(i.e. mixed of continuous electrostatic potential and binary sequence based features).
Legend same as in Figure 4.4
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6.3.4 Discussion

Visualisation of the mixed-type synthetic dataset-I (i.e. with only continuous and bi-

nary features) has shown good separation between classes using both standard GTM and

GGTM visualisation algorithms both for training and test sets (with the exception of a few

points from two classes that overlapped in case of standard GTM for the test dataset). As

expected, the visualisation results suggested that GGTM performs better (for example see

Figure 6.1) for all the considered latent and RBF grid sizes and the quality metrics were

usually better for the GGTM than standard GTM (see Tables 6.2, 6.3 and 6.4). Experi-

ments for synthetic dataset-II (i.e. with continuous, binary and multi-category features)

have shown that the GGTM outperformed standard GTM in terms of visualisation con-

sidering the class separation (with labels assigned using binary classes and classes defined

by multi-category features): see Figure 6.2. We also observed that GGTM outperformed

GTM in terms of quality measures such as trustworthiness and continuity (see Table 6.5)

with all considered latent and RBF grid sizes settings whereas the results are more mixed

for other quality measures (see Tables 6.6 and 6.7).

For a real dataset of hypothyroid disease, visual inspection of results revealed that

the GGTM visualisations were better than those of standard GTM in terms of separation

between classes (see Figure 6.3). Like the synthetic datasets, we repeated the experiments

with different latent and RBF grid sizes and observed that GGTM outperformed standard

GTM both for training and test sets in terms of quality measures such as continuity, mean

relative rank errors with respect to latent space, distance distortion (per point) and neg-

ative log-likelihood (per point) (see Tables 6.8, 6.9 and 6.10) whereas mean relative rank

errors with respect to data always appeared slightly better for standard GTM and trust-

worthiness varied with different latent and RBF grid settings (i.e. were not consistently

better for one model).

In the case of a bioassay dataset, GGTM visualisations revealed better structure com-

pared to GTM visualisations (see Figure 6.4) and in terms of quality metrics with different

latent and RBF grid settings quite often results for GGTM are again better compared to

those for standard GTM (see Tables 6.11, 6.12 and 6.13).

We also observed that, for the MHC class-I dataset (with a mix of binary and con-

tinuous features), visualisations uing GGTM model appeared to be better compared to

standard GTM (see Figure 6.5(c)) in separating three gene classes but the problem of tight-

clusters around the latent grid centres was observed (the same is discussed in chapter 4).

GGTM always performed better in terms of trustworthiness, continuity and negative log-
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likelihood whereas in terms of other measures (such as mean relative rank errors with

respect to latent and data space and distance distortion) GGTM usually performed better

than standard GTM with different latent and RBF grid sizes.

Overall, the GGTM generally gave better results than GTM on mixed data, considering

both visual inspection and objective quality measures.

In practice it has been observed that many high-dimensional datasets contain some

irrelevant (‘noisy’) features and removing those features or reducing their impact could

play an important role in improving the visualisation results. In the next section we

therefore propose an approach to determine the importance of feature as an integrated

part of the model’s parameter learning process.

6.4 A GGTM with Simultaneous Feature Saliency (GGTM-FS)

We extend GGTM visualisation model proposed in Section 6.3 to simultaneously estimate

feature saliencies (we call this extension a GGTM-FS). For estimating feature saliency

values under the GGTM visualisation model, we assume that each feature is independent

of the component label under the appropriate noise model distribution. As a special case

for the Gaussian noise model (appropriate for continuous features subset in the GGTM

model settings), the feature independence assumption is modelled by adopting diagonal

covariance matrices (as used in (Law et al., 2004; Maniyar and Nabney, 2006a)) instead

of spherical covariance (as used in (Bishop and Svensen, 1998) and GGTM). Now the

probability density function of the GGTM-FS model takes the form,

p(xn|π,Θ) =
K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

p(xMnd |ΘMkd )


 , (6.26)

where p(.|ΘMkd ) is the probability density functions of the dth feature for the kth component

and πk is the mixing coefficient of the kth component and is taken to be fixed to 1
K for all

the components in the mixture model.

We take Ψ = {ΨR,ΨB,ΨC} and take the assumption that ΨM = (ψM1 , · · · , ψM|M|)

(where M ∈ {R,B, C}), is the set of binary indicators ψMd = 1 for a relevant feature and

ψMd = 0 otherwise. Now the probability density of our mixture model takes the form as

p(xn|π,Θ, λ,Ψ) =

K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[p(xMnd |ΘMkd )]ψ
M
d [q(xMnd |λMd )](1−ψ

M
d )


 . (6.27)
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The notion of feature saliency is modelled as: we first treat ψMd as a missing variable in

the EM algorithm and as a second step we compute the feature saliency, ρMd = p(ψMd = 1),

which is a probability of the dth feature relevance. The resulting model can now take the

form,

p(xn|Ω) =
K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[ρMd p(xMnd |ΘMkd )] + [(1− ρMd )q(xMnd |λMd )]


 , (6.28)

where Ω =

{
πk,
{

ΘMkd

}
,
{
λMd

}
,
{
ρMd

}}
is the set of all the parameters of the model. A

simple way to understand how equation (6.28) is obtained is to observe that

[p(xMnd |ΘMkd )]ψ
M
d [q(xMnd |λMd )]1−ψ

M
d (6.29)

can be re-written as

ψMd [p(xMnd |ΘMkd )] + (1− ψMd )[q(xMnd |λMd )] (6.30)

as ψMd is a binary indicator variable (for details see the proof in Appendix D.1). The

log-likelihood can now take the form

L(Ω) =

N∑
n=1

ln p(xn|Ω). (6.31)

6.4.1 An EM algorithm for GGTM-FS

The latent structure of GGTM model can be exploited to estimate feature saliencies, in a

similar way as previously exploited for the standard GTM to estimate feature saliency (Mani-

yar and Nabney, 2006a). For this purpose, we consider flipping of a biased coin with prob-

ability ρMd ; if the coin is a head then the feature is generated from the mixture component,

p(.|ΘMkd ), otherwise the component, q(.|λMd ), is responsible.

We take Y (i.e. compnent labels) and Ψ as missing variables and we can derive an

EM algorithm for estimating model parameters (see details in Appendix D.2). In the E-

step, we use the current set of parameters, Ω, to compute the posterior probability (i.e.

responsibility), rnk = p(yn = k|xn), that the nth data point belongs to the kth mixture
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component using Bayes’ theorem,

rnk =

πk

[∏
M∈{R,B,C}

[∏|M|
d=1[ρMd p(xMnd |ΘMkd )] + [(1− ρMd )q(xMnd |λMd )]

]]
∑K

k=1 πk

[∏
M∈{R,B,C}

[∏|M|
d=1[ρMd p(xMnd |ΘMkd )] + [(1− ρMd )q(xMnd |λMd )]

]] . (6.32)

The responsibility matrix, R, is used to compute uMnkd = p(ψMd = 1, yn == k|xMn ),

which is a measure of the importance of the nth data point relating to the kth component

using the dth feature and vMnkd = p(ψMd = 0, yn = k|xMn ).

uMnkd =
ρMd p(xMnd |ΘMkd )

ρMd p(xMnd |ΘMkd )] + [(1− ρMd )q(xnd|λMd )
rnk, (6.33)

vMnkd = rnk − uMnkd. (6.34)

In the M-Step of the feature saliency parameter update, we take prior distributions for

each type of variables separately as explained in Appendix D.3.

M-step for Gaussian noise model parameters:

We can use UR to re-estimate the weight matrix WR using a set of linear equations.

Weight vector wd of each dth feature can be updated using

ŵRd = (ΦTERd Φ)−1ΦTURd xRd , (6.35)

where Φ is a K × L matrix, URd is a K ×N matrix calculated using equation (6.33), xRd

is a N × 1 data vector of real values and a diagonal matrix ERd containing the values

eRkkd =
N∑
n=1

uRnkd. (6.36)

Now we can straightforwardly re-estimate parameters of the mixture model using the re-

estimated weight matrix, ŴR: first we re-estimate the centres (for continuous features)

of the mixture model in the data space (see equation (6.37)) and then we use these re-

estimated centres to update the diagonal Gaussian width in each direction (for each contin-

uous feature): see equation (6.38) (these are the same as for standard GTM-FS (Maniyar

and Nabney, 2006a))

̂MeanΘRk = m̂Rk = Φ(zk)ŴR, (6.37)
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where m̂Rk is a 1× |R| vector.

1

β̂Rd

=

∑
k

∑
n u
R
nkd(x

R
nd − m̂Rkd)

2∑
k

∑
n u
R
nkd

. (6.38)

Common density parameters, λRd , can be updated using

M̂eanλRd =

∑
n(
∑

k v
R
nkd)x

R
nd∑

nk v
R
nkd

(6.39)

V̂ arλRd =

∑
n(
∑

k v
R
nkd(x

R
nd − M̂eanλRd )2∑

nk v
R
nkd

. (6.40)

The feature saliency parameters for the continuous features set can be updated using

ρ̂Rd =
max(

∑
nk u

R
nkd −

KP
2 , 0)

max(
∑

nk u
R
nkd −

KP
2 , 0) + max(

∑
nk v

R
nkd −

T
2 , 0)

, (6.41)

where P and T are the number of parameters in ΘRkd and λRd respectively.

M-step for Bernoulli noise model parameters:

In the M-step of the Bernoulli case, we use a simple gradient-based approach (Kabán and

Girolami, 2001) to update the weights as,

∆wBd ∝ ΦT
[
UBdxBd −EBd g

B(ΦwBd )
]
, (6.42)

eBkkd =

N∑
n=1

uBnkd. (6.43)

Once we obtain the re-estimated vector ŵBd of each dth feature from equation (6.42), we

can then straightforwardly re-estimate centres of the Bernoulli distributions using equa-

tion (6.2) as follows,

m̂Bk = gB(Φ(zk)ŴB), (6.44)

and the mean of the common density can be updated as,

λ̂Bd =

∑
n(
∑

k v
B
nkd)x

B
nd∑

nk v
B
nkd

. (6.45)

The feature saliency parameter is updated as follows,

ρ̂Bd =
max(

∑
nk u

B
nkd + αd − 1, 0)

max(
∑

nk u
B
nkd + αd − 1, 0) + max(

∑
nk v

B
nkd + βd − 1, 0)

. (6.46)
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M-step for multinomial noise model parameters:

The weights sub-matrix (where each sub-matrix represent weights for one encoded feature)

for the multinomial case can be updated as,

∆WC
Sd
∝ ΦT

[
UCdX

C
Sd
−ECdg

C(ΦWC
Sd

)
]
, (6.47)

where Φ is a K × L matrix, WSd
is an L× Sd weight sub-matrix, UCd is a K ×N matrix

obtained from equation (6.33), XSd
is a N×Sd data matrix (dth feature encoded to 1-of-Sd

binary numbers), and ECd is a K ×K diagonal matrix with elements

eCkkd =
N∑
n=1

uCnkd. (6.48)

Once we obtain the re-estimated matrix ŴC
Sd

from equation (6.47), we can then straight-

forwardly calculate the mean of each feature of the multinomial distributions using equa-

tion (6.3) as

m̂CkSd
= gC(Φ(zk)w

C
Sd

), (6.49)

and the mean of the common density can be updated as follows,

λ̂CSd
=

∑
n(
∑

k v
C
nkd)x

C
nSd∑

nk v
C
nkd

. (6.50)

The feature saliency parameter is updated with

ρ̂Cd =
max

(∑
nk u

C
nkd −

K(cd−1)
2 , 0

)
max

(∑
nk, u

C
nkd −

K(cd−1)
2 , 0

)
+ max

(∑
nk v

C
nkd −

(cd−1)
2 , 0

) , (6.51)

where cd represents number of categories for the dth feature.

6.4.2 Experiments

A series of experiments were performed to demonstrate the effectiveness of the proposed

GGTM-FS model both for synthetic and real datasets. Each weight sub-matrix (i.e. WR,

WB and WC) was initialised using principal components analysis (PCA).
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Algorithm 6.4.1: GGTM-FS algorithm summary

Input:Training dataset.
OutPut:Trained GGTM-FS visualisation model with feature saliency for
mixed-type features. begin

Generate the latent grid points zk ∈ H, k = 1, · · · ,K;
Generate the basis function grid, Φ(zk), centres {νl}, l = 1, · · · , L;
Select the basis functions, Φ(zk);
Compute the design matrix of basis function activations, Φ (as in LTM (Kabán
and Girolami, 2001) and GTM (Bishop and Svensen, 1998));
Initialise weight matrix (W), randomly or using PCA;
Apply the link functions (use equation (6.1) for continuous features,
equation (6.2) for binary features and/or equation (6.3) for multi-categorical
features) to initialise means of the mixture components;
Initialise feature saliencies, ρRd , ρ

B
d , ρ
C
d , for each type dth feature, to 0.5;

Initialise the mixing coefficient, πk, with 1
K for each kth component in the grid;

Set the initial means for the shared distributions, q(.R|λR), q(.B|λB), q(.C |λC), as
the mean of the data;
repeat

E-Step:
Compute R (equation (6.32)) and UM (using equation (6.33)) and VM

(using equation (6.34)), using current parameters, Ω;
M-Step:
for d=1 to|R| do

repeat
Re-estimate the weight vector, wRd , (for continuous case), using

ŵRd = (ΦTERd Φ)−1ΦTURd xRd , from equation (6.35)

until convergence;

end
for d=1 to|B| do

repeat
Re-estimate the weight vector, wd, (for binary case), using

∆wBd ∝ ΦT
[
UBdxBd −EBd g

B(ΦwBd )
]
, from equation (6.42)

until convergence;

end
for d=1 to|C| do

repeat
Re-estimate the weight matrix, Wsd , (for multinomial case), using

∆WC
Sd
∝ ΦT

[
UCdX

C
Sd
−ECdg

C(ΦWC
Sd

)
]
, from equation (6.47);

until convergence;

end
Re-estimate the means for each feature type, mRk (using equation (6.37)),
mBk (using equation (6.44)), mCk (using equation (6.49)), for each kth
component of the mixture in the data space and also diagonal Gaussian
width, 1

βd
, for the all the continuous features using (6.38);

Re-estimate the mean of the shared distribution using equation (6.39) for
continuous features, equation (6.45) for binary data and/or equation (6.50)
for multi-categorical data and also the shared distribution(q(.R|λR))
variance for continuous feature set using equation (6.40);
Re-estimate the saliencies of features, ρMd , using equation (6.41) for
continuous data, using equation (6.46) for binary data or equation (6.51) for
multi-categorical data;

until convergence;

end
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6.4.2.1 Synthetic dataset-I (continuous and binary features)

The synthetic dataset we generated contains 800 data points from an equiprobable mixture

of four Gaussians, N (mk, I) with k = 1, · · · , 4 with means m1 =
(

0
3

)
, m2 =

(
1
9

)
, m3 =(

6
4

)
and m4 =

(
7
10

)
(similar as in Chapter 4). We then generated 8 noisy features (where

each feature was sampled independently from N (0, I) distribution) and combined these

with the original dataset yielding a 10-feature dataset. We then generated a binary dataset

of 100 features where the first 40 features are drawn from four equiprobable clusters and

the remaining 60 features are noisy. A small amount of noise (5%) was added by inserting

random zeros in the informative features. For the uninformative features we added noise

with different densities from no noise (by adding all zeros or all ones) or by 0.2, 0.4, 0.6, 0.8.

We combined both continuous and binary features yielding a dataset with 110 features

with 800 data points. To model the data, we used a latent grid of size 8× 8 and an RBF

grid of size 4× 4.

Visualisation results for standard GTM, GGTM and GGTM-FS are presented in Fig-

ure 6.6 where we also show feature saliencies estimated using the GGTM-FS.

6.4.2.2 Synthetic dataset-II (continuous, binary and multi-category)

We generated a two-feature multi-category dataset of 800 data points where first the

feature has 8 equiprobable categories) and the second has 16 (giving a further two clusters

for each category in the first feature) categories. Another set of two features were generated

with 8 and 16 randomly distributed categorical values. We combined both two informative

(non-noisy) and two uninformative (noisy) features yielding a multi-category dataset of 4

features. We then appended this 4 features multi-category dataset with the dataset of 110

continuous and binary features (as described in Section 6.4.2.1) yielding a mixed dataset

of 114 features. We used a latent grid of size 8× 8 and an RBF grid of size 4× 4.

Visualisation plots from the standard GTM, proposed GGTM and GGTM-FS are

shown in Figure 6.7 where we also show saliencies of features estimated using GGTM-FS.
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(a) Standard GTM (b) GGTM

(c) GGTM-FS
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Figure 6.6: The standard GTM, the GGTM and the GGTM-FS visualisaion of the mixed-
type synthetic dataset-I (i.e. continuous and binary features).

Demonstration of the mixed-type data visualisation using the standard GTM, the
GGTM and the GGTM-FS for the synthetic dataset-I (i.e. continuous and binary

features). The GGTM-FS visualisation in (c) show better visualisation with compact
cluster for each class compared to the standard GTM and the GGTM visualisation given
in (a) and (b) respectively, whereas (d) show estimated saliencies from the GGTM-FS.
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(a) Standard GTM (b) GGTM

(c) GGTM-FS
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(d) Estimated saliencies

Figure 6.7: Demonstration of mixed-type data visualisation using the standard GTM, the
GGTM and the GGTM-FS for the synthetic dataset-II (i.e. continuous, binary and multi-
nomial features). GGTM-FS visualisation in (c) show better visualisation with compact
cluster for each class compared to standard GTM and GGTM visualisation given in (a)
and (b) respectively, whereas (d) show estimated saliencies from GGTM-FS.

127



Chapter 6 MIXED-TYPE DATA VISUALISATION AND SIMULTANEOUS FEATURE SELECTION

6.4.2.3 Real Datasets

The real datasets we used here are the same as in section 6.3.3 to demonstrate the ef-

fectiveness of proposed GGTM-FS model. We used a latent grid of size 8 × 8 and an

RBF grid of size 4 × 4. Figure 6.8 shows the visualisations and feature saliency plots for

the hypothyroid disease and bioassay datasets respectively. For other datasets such as

bioassays ‘AID1608’ and ‘AID456’, results are given in Appendix D.4.

(a) GGTM-FS (Training set of hypothyroid
dataset)
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(b) Estimated saliencies of hypothyroid dataset

(c) GGTM-FS (Training set of AID362 dataset)
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Figure 6.8: The GGTM-FS visualisations and the estimated feature saliencies. (a) and
(b) relate to the hypothyroid dataset (legend same as in Figure 6.3); (c) and (d) relate to
the bioassay dataset ‘AID362’ (legend same as in Figure 6.4).

6.4.3 Discussion

The visualisation results for synthetic dataset-I and -II using GGTM-FS have outper-

formed the other visualisation algorithms, with more compact clusters for each class in

the dataset (see Figures 6.6 and 6.7). For synthetic dataset-I (with continuous and binary

features), as expected, the model successfully determined that from a continuous feature

set, 2 features are informative (with saliencies close to 1) whereas the other 8 features are
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uninformative (with saliencies close to 0) and from a binary feature set 40 features are

informative (with saliencies close to 1) whereas the rest of the 60 are less informative (with

smaller saliencies) (see Figure 6.6(d)). For the synthetic dataset-II, where we have four

multi-category features in addition to the 110 features of synthetic dataset-I, the saliencies

for the continuous and binary features were observed to be similar to the results of the

synthetic dataset-I. In addition, as expected, the model successfully determined that the

first two features from the multi-category feature set are informative (with saliencies close

to 1) whereas the other two features are uninformative (with saliencies equal to 0) (see

Figure 6.7(d)).

For the real datasets. the visualisation results for GGTM-FS (see Figure 6.8(a)) are

better than both standard GTM and GGTM (see Figure 6.3). In addition GGTM-FS

revealed that from the continuous feature set, the first two features have very low salien-

cies whereas the other features have higher saliency values and from the binary feature

set the first two features have slightly better saliencies compared to other features (see

Figure 6.8(b)).

The visualisation results for GGTM-FS on the bioassay dataset ‘AID362’ also revealed

some interesting structures (see Figure 6.8(c)) compared to the results of standard GTM

and GGTM (see Figure 6.4). The saliency values for both continuous and binary features

suggested not all the features are informative and this can be seen in Figure 6.8(d).

6.5 Conclusion

In the literature not much attention has been given to analysing mixed-type data using the

latent variable formalism. In practice quite often all the features in a mixed-type dataset

are transformed to a single type (e.g. if there is a mixture of continuous and discrete

variables, then either all the discrete variables are converted to some numerical scoring

equivalent or all the continuous variables are considered as discrete variables with some

grouping criteria) before applying the appropriate latent variable model. Adopting this

transformation approach leads to a loss of information, which affects the results. However,

considering the types of variables in the modelling process without any transformation

should give better results.

Influenced by the latent trait model (LTM) (Kabán and Girolami, 2001) which was

mainly developed for visualising datasets of discrete variables, we were successful in de-

riving a non-linear model for visualising a mixed-type dataset. We called this model a

generalised GTM (GGTM). Experimental visualisation results for both synthetic and real
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mixed-type datasets have shown that this model performed much better than the standard

GTM. We were also successful in extending GGTM to estimate feature saliencies. This

extension has also shown success both for synthetic and real datasets not only in terms of

improved visualisations but also explaining the importance of features which is also very

important in its own right.
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Chapter 7 CONCLUSIONS AND FUTURE DIRECTIONS

In this last chapter of the thesis, we first summarise the outcomes from each chapter

and then give some possible future extensions to the work presented here.

7.1 Chapter summary

The research presented in this thesis mainly focuses on developing data exploration al-

gorithms for effective modelling of large and high-dimensional heterogeneous biological

datasets. The main motivation behind this project was to determine similarities among

proteomic and genomic variations that are important to develop effective medicines and

in understanding biological functions such as transplantation rejection, smell recognition

etc. We adapted latent-variable model-based techniques to explore patterns in biological

datasets but the techniques developed are equally applicable to datasets from other do-

mains. The application of the models developed in this thesis have revealed some useful

results to our collaborator from the school of Life and Health Sciences. We now summarise

each chapter in this thesis.

Chapter 2

In this chapter we reviewed the basics of bioinformatics mainly focusing on pro-

teins and their structural variants. We also reviewed the major histocompatibiltity

complex (MHC) protein family, reasons for studying MHCs and also discussed some

of the previous analysis of this protein family. We then reviewed methods of com-

puting electrostatic potential energy for the protein’s three-dimensional structure:

Electrostatic potentials are important to understand interactions with other pro-

teins or antigens. At the end of the chapter, we explained that experimentally

it is costly and time consuming to determine three-dimensional protein structures

and therefore biologists are using in-silico methods for predicting a protein’s three-

dimensional structures from known primary sequences. This process generates a

high-dimensional dataset which must be analysed to understand and predict better

protein structures and properties. In this thesis we opted to analyse such a dataset

with data projection methods.

Chapter 3

In this chapter we first reviewed some general purpose visual data mining systems.

We also explain briefly the software engineering work that we caried out on the

Data Visualisation and Modelling system (DVMS) in order to make it easier to inte-

grate new data projection algorithms. We then reviewed the projection algorithms

that are supported by this system: principal component analysis (PCA), Neuroscale
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(NSC), generative topographic mapping (GTM) and its variants such as GTM with

simultaneous feature saliency, hierarchical GTM, latent trait model (generalisation of

GTM that was developed for discrete data) and the Gaussian process latent variable

model (GPLVM). Demonstrations of these algorithms were given in the remaining

chapters. Data projection methods are considered as unsupervised learning methods

and therefore measuring and comparing their performance is difficult. We reviewed

some of the methods that we used in rest of the chapters to evaluate the visualisation

quality.

Chapter 4

Standard GTM and its extensions such as GTM with feature saliency and hier-

archical GTM were observed not to be computationally tractable while training a

model for a high-dimensional dataset (usually with dimensions greater than a few

hundred). In this chapter we proposed variants of these algorithms where we adopt

log-transformations at various steps of the parameter learning process in order to

make them tractable for high-dimensional datasets. We tested these variants succes-

fully both for a synthetic (with 500 dimensions) and a real dataset of MHC class-I

electrostatic potential values. In order to compare the results for the MHC dataset,

other projection algorithms such as PCA, Neuroscale and GPLVM were used. Our

proposed variants gave better results, in terms of visual inspection and quality met-

rics, compared to PCA and Neuroscale but not better than GPLVM. GPLVM in

general outperformed all these algorithms and our discussions with the biologists

also confirmed that the GPLVM results were more useful and informative.

Chapter 5

The LTM was proposed as a generalisation of the GTM visualisation model in order

to use different noise models based on the type of features. In this chapter we derived

a latent trait (LTM) based data visualisation models to simultaneously estimate

feature saliencies while learning the parameters of the model. This approach has

not only improved visualisations (with more compact clusters) by modelling the

irrelevant (noisy) features with a shared distribution but also gave feature saliencies

which are valuable to understand the importance of each feature. Experimental

results both for synthetic and real datasets were encouraging.

Chapter 6

In this chapter we derived a generalised GTM (GGTM) model for visualising a

mixed-type dataset under the latent variable framework. The proposed model con-
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siders appropriate noise models (e.g. Gaussian for continuous features, Bernoulli

for binary features and multinomial for multi-category features) for each type of

feature(s) in a mixed-typed dataset to give a single visualisation plot. Experimen-

tal results both for synthetic and real datasets were encouraging both in terms of

visualisation and visualisation quality evaluation metrics. We also extended this

model (i.e. GGTM) to simultaneously estimate feature saliencies while learning the

parameters of the model and call this as GGTM-FS. GGTM-FS results were also

encouraging both for synthetic and real datasets.

7.2 Future Directions and open questions

In the near future we plan to extend the work presented in this thesis in the following

contexts:

• In this thesis we considered in-silico methods of three-dimensional protein-structure

modelling using homology modelling and the continuum Poisson-Boltzmann elec-

trostatic potential for the region covering the top surface of the structure. We can

extend these approaches and apply them to the classification of MHC alleles in terms

of peptide specificity, TCR specificity, and antibody interaction and also use it to

investigate practical problems in terms of epitope prediction, solid organ and bone-

marrow transplantation, mate choice and MHC-mediated adverse drug reactions.

We also plan to extend other grid-based properties such as hydrophobicity, polarity,

mutability etc. We expect the analysis techniques presented in this thesis could also

be useful for other structural systems such as G-Protein Coupled Receptors (Bjar-

nadóttir et al., 2006) and Kinases (Endicott and Noble, 2013; Vanderstraete et al.,

2013).

• In chapter 4 we discussed the computational intractability of GTM-like models for vi-

sualising high-dimensional datasets and proposed variants where they can be made

tractable using log-transformations. However, even when the parameter learning

process was more effective, we observed tight clusters around the nodes of the reg-

ular latent grid. GTM-like algorithms often have this problem in cases of high-

dimensional datasets. However, this tight-clustering effect was not observed while

training a log-based GTM variant model which estimate feature saliencies as an

integrated part of the parameters’ learning process because this can either remove

or reduce the impact of noisy features. The same tight-clustering effect was also

observed in the hierarchical GTM and we therefore propose that extension to the
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hierarchical GTM to simultaneously estimate compute feature saliencies will aslso

be useful. The challenging part of this extension will be deriving a strategy that

shows how the feature significance obtained at higher level will carry forward in the

hierarchy.

• Influenced by the hierarchical GTM model, our future intension is to extend Gaussian

process latent variable model to generate hierarchical visualisation models. But the

limitation we observed is that there is no simple way of modifying the GPLVM to

take account of ‘soft’ cluster membership, as would be needed for a probabilistic

hierarchy (as adopted in hierarchical GTM). It will be interesting if we extend this

approach using a probabilistic mixture based (‘soft’) cluster memberships (which is

considered to be a more principled methodology) in order to generate a hierarchy of

visualisations.

• One of the avenues of future work is to extend the generalised GTM (GGTM) to a

probabilistic mixture-based hierarchical visualisation model (like hierarchical GTM).

Another possible extension will be to further extend such a hierarchial visualisation

of mixed-type data to estimate feature saliencies while training a hierarchy of visu-

alisation under the probabilistic mixture framework.

• The software tool we developed during this period of time is already freely accessible

from our research group webside 1. We have already added both GGTM and GGTM-

FS models to this tool. In future it will be a continuing process to update this tool

by adding more projection algorithms and also adding more interactive features and

making it available mainly for non-statisticial users to get better understanding of

their datasets.

1http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
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Proteins’ 3-D structure

modelling and electrostatic

potential

The three-dimensional structures of proteins are important for understanding protein func-

tions like electrostatic interactions of protein-ligand and protein-protein bindings (Price

and Nairn, 2009). We generated our dataset in a two-step process: the first is the predic-

tion of three-dimensional structure of proteins and the second step is the calculation of

the continum electrostatic potential values in a multigrid environment.

• Homology Modelling Process;

• Electrostatic Potential Map Calculation Process;

A.1 Homology Modelling Process

Homology modelling is a multi-step process for predicting the three-dimensional protein

structures. Figure A.1 explains the steps involved in the process of homology mod-

elling. We used two software tools, one called Modeller (Sali, 2010) and the other called

SCWRL4 (Krivov et al., 2009). Modeller is a software tool that is involved to perform

the first six steps as shown in Figure A.1 to predict the three-dimensional protein struc-
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Figure A.1: Homology modelling process.

tures. Modeller provides a facility of writing ordinary Python 1 computer programming

language scripts to perform different tasks using different functions at different stages of

the three-dimensional structure prediction. SCWRL4 software tool is used only at step

seven as shown in Figure A.1 to predict side chains for the predicted three-dimensional

protein structures. The details of the steps for using these software tools are given in the

following sub-sections.

A.1.1 The Target Sequence Retrieval from The Sequence Database

The first step in the homology modelling process is to download an amino acid sequence

file/files from the target sequence database. In our experiments, we are interested in

HLA class-I proteins. Sequence database files of target HLA alleles for target genes were

downloaded from the IMGT/HLA database (Robinson et al., 2003). Here in Figure A.2,

part of the sequence database file for an HLA-A gene sequence is shown in FASTA format.

 >HLA:HLA00001 A*01:01:01:01 365 bp 
MAVMAPRTLLLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPWIEQEGPEYWDQETRNMKAHSQTDRANLGTLRGYYNQSEDGSHTIQIMYGCDVG
PDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAVHAAEQRRVYLEGRCVDGLRRYLENGKETLQRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVET
RPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWELSSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQAASSDSAQGSDVSLTACKV 

>HLA:HLA02169 A*01:01:01:02N 200 bp 
MAVMAPRTLLLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPWIEQEGPEYWDQETRNMKAHSQTDRANLGTLRGYYNQSEDGDPGPGRRSRPLIP
HGRARSPTVSGSEIHPEAAGLRDPCPGRGPGAFTRFHFQFRPKIPPGWSGRGGARGTGLTAGSGPGSHTIQX 

>HLA:HLA01244 A*01:01:02 181 bp 
SHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPWIEQEGPEYWDQETRNMKAHSQTDRANLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDGKDYIALNEDL
RSWTAADMAAQITKRKWEAVHAAEQRRVYLEGRCVDGLRRYLENGKETLQRT 

Figure A.2: A sample sequence database file in the FASTA format showing three sequences
of HLA-A gene. The sequence headers are represented in lines starting with ‘>’ and the
amino acid sequences are represented using short letters in the rest of the lines before the
next sequence header.

1http://www.python.org/
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A.1.2 The Related Known Structure Search from the Structure Database

The second step in the homology modelling process is to search and download known

structure files that are most related to the target sequence gene type from a protein data

bank (Bernsten et al., 1977). For this purpose we were interested to search the structure

files whose primary sequences have at least 30% similarity with each of the alleles of HLA-

A, HLA-B and HLA-C and for example for the HLA-A we found four protein structures

(i.e. protein data bank codes ‘1I4F’,‘ITMC’,‘2HN7’ and ‘3KLA’) with minimum required

similarity. The Modeller program also provides the functionality of searching a similar

structure to a target sequence from the structure file provided with the program. However,

this contains a limited number of protein structures, so we searched a structure file from

the up-to-date protein data bank available online.

A.1.3 The Template Structure Selection

The third step in the homology modelling process is to select the structure that has

the maximum length with the maximum identity on the specific positions of amino acid

residues for sequences of all the related known structures. In our experiments, we down-

loaded pre-aligned files, for sequences of HLA-A, HLA-B and HLA-C from IMGT/HLA

database. These pre-aligned files represent that all the sequences are at least 50% similar

in each type of HLA. Therefore, a single known structure for each for HLA-A gene will be

good enough for predicting structures of the sequences of HLA-A and the same was ob-

served to be true for HLA-B and HLA-C. For example in case of HLA-A, we downloaded

four known structures as explained in Section A.1.2 and compared these structures of

HLA-A gene with downloaded sequences of HLA-A. The Modeller software provide func-

tion called ‘Compare struture’ to compare a set of structures. A Modeller script using

this function and part of the output file (.log extension file) showing a sequence identity

table are shown in Figure A.3. A sequence identity table assists user in selecting the best

structure from a set of structures for the case of HLA-A. The sequence identity table

shows that out of these four structures two structures with protein data bank code ‘1I4F’

and ‘3KLA’ have the same length of residues with 273 numbers of residues on the same

positions. However, anyone can be selected to predict the structures. From these two, we

selected the structure with protein data bank code ‘1I4F’. This selected structure will be

termed as a template structure in this thesis for the HLA-A. For the other two HLAs (i.e.

HLA-B and HLA-C) we adopted similar criteria and observed that ‘1AGD’ for HLA-B and

‘1IM9’ for HLA-C retrieved from the protein data bank were the most similar ones with
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the target sequences of the corresponding HLA type. The three reference protein struc-

tures we selected are the same already used by (Doytchinova et al., 2004) for predicting

the structures of HLAs.

 from modeller import * 
env = environ() 
aln = alignment(env) 
for (pdb, chain) in (('1I4F', 'A'), ('1TMC', 'A'), ('2HN7', 'A'),('3KLA', 'A')): 
    m = model(env, file=pdb, model_segment=('FIRST:'+chain, 'LAST:'+chain)) 
    aln.append_model(m, atom_files=pdb, align_codes=pdb+chain) 
aln.malign() 
aln.malign3d() 
aln.compare_structures() 
aln.id_table(matrix_file='family.mat') 
env.dendrogram(matrix_file='family.mat', cluster_cut=-1.0) 
 
 

(a)

Sequence identity comparison (ID_TABLE): 
 
   Diagonal       ... number of residues; 
   Upper triangle ... number of identical 
residues; 
   Lower triangle ... % sequence identity, 
id/min(length). 
 
         1I4FA @11TMCA @22HN7A @13KLAA @1 
1I4FA @1      275     163     251     273 
1TMCA @2       93     175     164     163 
2HN7A @1       92      94     274     249 
3KLAA @1       99      93      91     275 
 

(b)

Figure A.3: Demonstration of template structure selection. (a) A modeller script for
comparing sequence of known structures. (b) A sequence identity table.

A.1.4 The Sequence to the Structure Alignment

The fourth step of the homology modelling process is to align target amino acid sequences

with the sequence of template structure. This task requires three files: the target sequence

file (in PIR format as shown in Figure A.4(a)), the selected template structure file (in

PDB format) and a Modeller script that uses ‘align2d‘ function2 to perform sequence-to-

structure alignment (as shown in Figure A.4(b)). Modeller is a command line program.

It can process only one alignment script at a time. Therefore for aligning more than one

sequence with the selected template structure, a set of programs were written in Java to

automate the process of preparing the required alignment files.

A.1.5 The Removal of Unwanted Residues from Alignment File

Before generating and executing scripts for predicting structures, it is required to check

that if after sequence-to-structure alignment any gaps that were added in the sequence

of amino acids of template structure at the start and/or at the end in the alignment

file are removed from template structure sequence. The same numbers of residues are

removed from the start and/or at the end of the target sequence. This is done to predict

the most similar structures for a number of sequences by ignoring all the residues in

2This function uses a variable gap penalty function which tends to align in better structural context
gaps in the sequence-to-structure alignment file. Details of the variable gap penalty function are provided
at http://salilab.org/modeller/manual/node288.html.
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 >P1;HLA_A_01_01 
sequence:HLA_A_01_01:::::::0.00:0.00 
MAVMAPRTLLLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPR 
APWIEQEGPEYWDQETRNMKAHSQTDRANLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDG 
KDYIALNEDLRSWTAADMAAQITKRKWEAVHAAEQRRVYLEGRCVDGLRRYLENGKETLQRTDPPKTHMTHH 
PISDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHE 
GLPKPLTLRWELSSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQAASSDSAQGSDVSL 
TACKV* 
 

(a)

 from modeller import * 
 
env = environ() 
aln = alignment(env) 
mdl = model(env, file='1I4F', model_segment=('FIRST:A','LAST:A')) 
aln.append_model(mdl, align_codes='1I4F', atom_files='1I4F.pdb') 
aln.append(file='HLA_A_01_01.ali', align_codes='HLA_A_01_01') 
aln.align2d() 
aln.write(file='HLA_A_01_01-1I4F.ali', alignment_format='PIR') 
aln.write(file='HLA_A_01_01-1I4F.pap', alignment_format='PAP') 
 

(b)

Figure A.4: (a) An input target sequence file in the PIR format. (b) The modeller script
for aligning the target sequence with the template structure sequence.

the target sequence that are not known in the sequence of the given template structure.

Figure A.5(a) shows such gaps marked as red in start and end of the alignment file for

target and template sequence generated as a result of using alignment method provided by

the Modeller software whereas Figure A.5(b) shows the alignment file after removing such

marked gaps as red (as shown in Figure A.5(a)) in the template sequence and residues in

the target sequence. A program named ‘ImproveAlign’ is written in Java that does this

job for selected file(s) generated in result of sequence to structure alignment process.

A.1.6 The Three-Dimensional Structure Prediction

This step of homology modelling requires a sequence-to-structure alignment file (.ali file),

template structure file (.pdb file) and a script with some parameters to generate a three-

dimensional structure for the target sequence. The Modeller tool takes this single script

as input and generates a three-dimensional structure based on the parameters set in the

script. To automate the process for predicting structure for multiple target sequences, a

program was written in Java that generates scripts for three-dimensional structure gen-
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>P1;1I4F 
structureX:1I4F.pdb:   1 :A:+275 :A::: 1.40: 0.14 
------------------------GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPW 
IEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDGKDYIAL 
KEDLRSWTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENGKETLQRTDAPKTHMTHHAVSDHEATL 
RCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE- 
-----------------------------------------------------------------* 
 
>P1;HLA00001_A_01_01 
sequence:HLA_A_01_01:     : :     : ::: 0.00: 0.00 
MAVMAPRTLLLLLSGALALTQTWAGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPW 
IEQEGPEYWDQETRNMKAHSQTDRANLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDGKDYIAL 
NEDLRSWTAADMAAQITKRKWEAVHAAEQRRVYLEGRCVDGLRRYLENGKETLQRTDPPKTHMTHHPISDHEATL 
RCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEL 
SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQAASSDSAQGSDVSLTACKV* 
 

Template 
Sequence 

Target 
Sequence 

(a)

(A) 

>P1;1I4F 
structureX:1I4F.pdb:   1 :A:+275 :A::: 1.40: 0.14 
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYWDGETRKVKAHSQTHR 
VDLGTLRGYYNQSEAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDGKDYIALKEDLRSWTAADMAAQTTKHKWEAA 
HVAEQLRAYLEGTCVEWLRRYLENGKETLQRTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQT 
QDTELVETRPAGDGTFQKWAAVVVPSGQEQRYTCHVQHEGLPKPLTLRWE* 
  
 
 
>P1;HLA_A_01_01 
sequence:HLA_A_01_01:     : :     : ::: 0.00: 0.00 
GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQKMEPRAPWIEQEGPEYWDQETRNMKAHSQTDR 
ANLGTLRGYYNQSEDGSHTIQIMYGCDVGPDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAV 
HAAEQRRVYLEGRCVDGLRRYLENGKETLQRTDPPKTHMTHHPISDHEATLRCWALGFYPAEITLTWQRDGEDQT 
QDTELVETRPAGDGTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWE* 
 

Template 
Sequence 

Target 
Sequence 

(b)

Figure A.5: (a) An example alignment file (gaps in the start and end of the template
sequence marked as red and the corresponding amino acid residues are marked as red in
the start and end of the target sequence.) (b) Alignment file after removing gaps marked
as red in (a).

eration for selected alignment sequence file(s). This program also generates a batch file

which on execution generates three-dimensional structures for the target sequences with

well aligned backbone for all the sequences whose structure was unknown. A sample script

to predict the three-dimensional structure of one of the target sequence of HLA-A is shown

in Figure A.6.

A.1.7 The Prediction of Side Chain Conformation

Prediction of side chains is an important step in protein structure prediction. For closely

related protein structures, very little change is often observed in the backbone. There-

fore, prediction of side chain conformations can accomplish the process of structure pre-

diction (Veenstra and Kollman, 1997). We used a program called SCWRL4 (Krivov

et al., 2009) that predicts side chains of protein structures based on statistical rotamer
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 # Homology modeling by the automodel class 
from modeller import *              # Load standard Modeller classes 
from modeller.automodel import *    # Load the automodel class 
 
log.verbose()    # request verbose output 
env = environ()  # create a new MODELLER environment to build this model in 
# directories for input atom files 
env.io.atom_files_directory = ['.', '../atom_files'] 
 
a = automodel(env, 
              alnfile  = 'HLA_A_01_01-1I4F.ali',    # alignment filename 
              knowns   = '1I4F',                    # codes of the templates 
              sequence = 'HLA00001_A_01_01_01_01')  # code of the target 
a.starting_model= 1                 # index of the first model 
a.ending_model  = 1                 # index of the last model 
                                    # (determines how many models to 
calculate) 
a.initial_malign3d=True 
a.final_malign3d=True 
a.make()                            # do the actual homology modeling 
 
 

Figure A.6: A sample script for predicting structure of the target sequence.

library3 (Dunbrack, 2002). Figure A.7 demonstrates a predicted protein three-dimensional

structures before and after predicting side chain conformations using this tool. SCWRL4

is also a command line program to process a single structure at a time. Therefore again

a program was written in Java to generate a batch file for using SCWRL4 for processing

more than one file at one time.

A.2 The Electrostatic Potential Map Calculation Process

Computing electrostatic potential of a protein structure using a software tool, called the

Adaptive Poisson Boltzmann Solver (APBS) (Baker et al., 2001), is a two-step process as

explained in Figure A.8.

A.2.1 The PDB Structure to the PQR Structure Conversion

Protein data bank structures in PDB4 format file or the predicted structures from these

three-dimensional structure often misses hydrogen atoms and also misses a fraction of some

of the heavy atom coordinates. The process of adding missing hydrogen and predicting

missing heavy atoms can be achieved using a software tool called PDB2PQR (Dolinsky

et al., 2007). PDB2PQR also replaces some of the parameters in the PDB format file

3A statistical rotamer library uses conformer libraries which are samples of side chains of known protein
three-dimensional structures quite often in the form of Cartesian coordinates.

4A PDB format file is a standard method of representation of three-dimensional protein struc-
ture data obtained from X-ray crystallography or NMR methods and details are provided at
http://www.rcsb.org/pdb/static.do?p=file formats/pdb/index.html
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(a) (b)

Figure A.7: Demonstration of prediction of side chain conformations for two three-
dimensional protein structures (i.e. HLA A 01 01 as blue and HLA A 01 02 as green).
(a) Superimpose structures before predicting side chain conformations. (b) Superimpose
structures after predicting side chain conformations.

 

Using PDB2PQR Software 

Prepare Predicted 
Structure File (.PDB 
file) For Continuum 

Electrostatic 
Calculation in PQR 
Format (.PQR file) 

Compute Electrostatic 
Potential Map        

(.DX file) from PQR 
File Based on Input 

Parameter File 

Using Adaptive Poisson 
Boltzmann Solver (APBS) 

Figure A.8: Electrostatic potential map calculation process.

while converting PDB to PQR5 format file. These parameters are required parameters for

APBS software to calculate electrostatic potential energies. PDB2PQR reads these force

fields from already available data files such as AMBER99 (Wang et al., 2000). Both web

based and command line version of PDB2PQR are available and both can process only

one structure file at a time. We used a command-line version.

A.2.2 The Electrostatic Potential Map Calculation

Adaptive Poisson Boltzmann Solver (APBS) is based on the FEtk (Finite Element Toolkit),

an adaptive finite-element based modelling C++ class library for solving non-linear partial

differential equations. The APBS tool requires an input script for calculating electrostatic

5A PQR format file is a most popular method to include parameters in a PDB format file by replacing
some of parameters such as occupancy field (‘P’) is replaced with atomic charge (‘Q’) and temperature
factor column is replaced with the radius (‘R’).
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potential energy between molecular solutes and solvents such as water. In the input script,

grid size (three-dimensional lattice) and position are set based on the region of interest of

the three-dimensional structure. Both web-based and command-line versions are available

but we used the command line version. A sample script with parameters of APBS which

we used in experiments is shown Figure A.9. Executing this script generates a file that

contains the electrostatic potential value at each grid position. The electrostatic potential

value at each grid position represents a single variable. Therefore, assuming a grid of 17 in

each direction for a protein structure will have 173 variables to represent a single protein.

read 

     mol pqr C:\IMGT_HLA\A_pot\HLA00001_A_01_01_01_01.pqr 

end 

elec 

     mg-auto 

     dime 17 17 17 

     cglen 210.0000 210.0000 210.0000 

     fglen 72.0000 32.0000 52.0000 

     cgcent 0.0000 0.0000 0.0000 

     fgcent 5.0000 38.0000 14.0000 

     mol 1 

     lpbe 

     bcfl sdh 

     pdie 2.0000 

     sdie 78.5400 

     srfm smol 

     chgm spl2 

     sdens 10.00 

     srad 1.40 

     swin 0.30 

     temp 298.15 

     calcenergy total 

     calcforce no 

     write pot dx pot 

end 

quit 

Figure A.9: A sample APBS input script.

A.2.3 An Automation of Electrostatic Potential Map Calculation

PDB2PQR and APBS software tools are available both as web-based and command line

version. We used a command line version of both the tools and both can process one file

at a time. Therefore, a Graphical User Interface (GUI) was designed in Java to automate

the process for generating batch files for both the processes.
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The Neuroscale

visualisations of MHC class-I

dataset

This appendix show some visualisation of MHC class-I dataset using Neuroscale with

different number of basis functions to observe any significant impact on the visualisation.

As explained in section 3.3.2, usually it is more appropriate to use number of basis functions

equal to the number of data points in the dataset. However we observe that for the MHC

class-I data repeating the experiments with different number of basis function have not

made much improvement in the results (see Figure B.1).
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(a) 500 basis functions (b) 1000 basis functions

(c) 2000 basis functions (d) 3000 basis functions

Figure B.1: The Neuroscale visualisations of the MHC class-I dataset with different num-
ber of basis functions.
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C

The LTM-FS Visualisation

model, EM derivation of the

LTM-FS, and additional

visualisation results of the

LTM-FS model.

C.1 The Mixture Model for the GTM-FS/LTM-FS

The conditional density of xn given the Ψ = {ψd, · · · , ψD} is defined as (this is same as

equation (3.27)),

p(xn|Ψ) =
K∑
k=1

πk

D∏
d=1

[p(xnd|θkd)]ψd [q(xnd|λd)](1−ψd). (C.1)

We take Ψ as a set of missing variables and take feature saliency as ρd = p(ψd = 1),

d = 1, . . . , D, as a set of parameters to be estimated. We consider that the ψds are

mutually independent and also independent of the hidden component label y for any data

pattern x. Considering
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p(xn,Ψ) = p(xn|Ψ)p(Ψ)

=

 K∑
k=1

πk

D∏
d=1

[p(xnd|θkd)]ψd [q(xnd|λd)](1−ψd)

 D∏
d=1

ρψd
d (1− ρd)1−ψd

=
K∑
k=1

πk

D∏
d=1

[ρdp(xnd|θkd)]ψd [(1− ρd)q(xnd|λd)](1−ψd).

(C.2)

The marginal density of xn takes the form

p(xn) =
1∑

psi=0

p(xn,Ψ)

=

K∑
k=1

πk

1∑
ψ=0

D∏
d=1

[ρdp(xnd|θkd)]ψd [(1− ρd)q(xnd|λd)](1−ψd)

=
K∑
k=1

πk

D∏
d=1

1∑
ψd=0

[ρdp(xnd|θkd)]ψd [(1− ρd)q(xnd|λd)](1−ψd).

(C.3)

This is equation (3.28) and it is important to note that the features are independent of

the component label y.

C.2 Deriving the EM algorithm of the GTM/LTM -FS

From equation (3.28), the complete-data log-likelihood is defined as,

p(xn|Ω) = πk


 D∏
d=1

[ρdp(xnd|Θkd)] + [(1− ρd)q(xnd|λd)]


 . (C.4)

By defining the following terms

rnk = p(yn = k|xn). (C.5)

unkd = p(ψd = 1, yn == k|xn). (C.6)

vnkd = p(ψd = 0, yn == k|xn). (C.7)

All these quantities are calculated using the current set of parameters Ωcurrent. It is

important to note that unkd + vnkd = rnk and
∑N

n=1

∑K
k=1 rnk = N . The expected log-
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likelihood using the current set of parameters Ωcurrent we get

EΩcurrent [lnP (X,y,Ψ)]

=
∑
n,k,Ψ

p(yn = k,Ψ|xn)

lnπk +
∑
d

(
ψd
(
ln p(xnd|θkd) + ln ρd

)
+(1− ψd)(ln q(xnd|λd) + ln(1− ρd))

))
=
∑
n,k

p(yn = k|xi) lnπk +
∑
n,k

∑
d

1∑
ψd=0

p(yn = k, ψd|xn)

(
ψd
(
ln p(xnd|θkd) + ln ρd

)
+ (1− ψd)(ln q(xnd|λd) + ln(1− ρd))

)

=
∑
k

(
∑
n

rnk) lnπk︸ ︷︷ ︸
part 1

+


∑
k,d

∑
n

unkd ln p(xnd|θkd)︸ ︷︷ ︸
part 2

+
∑
d

∑
n,k

vnkd ln q(xnd|λd)︸ ︷︷ ︸
part 3

+
∑
d

ln ρd
∑
n,k

unkd + ln(1− ρd)
∑
n,k

vnkd︸ ︷︷ ︸
part 4





(C.8)

where ρd is the saliency of the dth feature, p(xnd|mkd) represent the probability density

function of the dth feature for the kth component, and q(xnd|λd) is the common back-

ground density. Each part of the equation (C.8) can be maximised separately.

M-step for GTM-FS case:

The 2nd term of the equation (C.8) is represented as

L2ndpart =
∑
kd

∑
n

unkd ln p(xnd|θkd)

L2ndpart =
∑
kd

∑
n

unkd ln


√

β

2π
exp

{
−β||xnd − φ(zk)wd||2

2

}
L2ndpart =

∑
kd

∑
n

unkd

{
1

2
ln

(
β

2π

)
− β||xnd − φ(zk)wd||2

2

} (C.9)

Now differentiating equation (C.9) with respect to wld, (i.e. l = 1, · · · , L), we get

∂L2ndpart

∂wld
=
∑
k

∑
n

unkd

[
β
(
xnd −Φ(zk)wd

)
φl(zk)

]
(C.10)
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and setting above equation equal to 0 and solving it we get

∑
k

∑
n

unkd

[
β
(
xnd −Φ(zk)wd

)
φl(zk)

]
= 0. (C.11)

This can be represented in matrix notation form as

ΦTEdΦŵd = ΦTUdxd, (C.12)

where Φ is a K ×L matrix, Ud is a K ×N matrix computed using equation (3.31), xd is

a N × 1 data vector and a diagonal matrix Ed can take the values

ekkd =
N∑
n=1

unkd. (C.13)

Now we can re-estimate the centres of Gaussians using equation (3.35) and similarly

differentiating with respect to βd we get equation (3.36) to re-estimate βd. Similary re-

estimation of the other parameters are dicussed in Section 3.3.4.1.

M-step for LTM-FS case:

Now differentiating 2nd part of equation (C.8) with respect to wld and using equation (5.3)

∂L2ndpart

∂wld
=
∑
k

∑
n

unkd

[
xnd − g((Φ(zk))

Twd)
]

Φl(zk), (C.14)

and this can be written in the matrix notation as

∂L2ndpart

∂wd
= ΦT

[
Udxd − Eg((Φ(Z))wd)

]
(C.15)

where Φ is a K × L matrix, wd is a L× 1 weight vector, Ud is a K ×N matrix obtained

from equation (5.11), xd is a N × 1 data vector, and Ed is a K ×K diagonal matrix with

elements

ekkd =

N∑
n=1

unkd. (C.16)

Re-estimation of the other parameters in p(.) and q() are dicussed in Section 5.4.1.
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C.3 The LTM and LTM-FS additional visualisation results with

different latent and RBF grid sizes

This section explains some of the additional results using different latent grid and RBF

grid sizes. We here explains results using LTM and LTM-FS with different grid sizes for

synthetic binary dataset-I and -II (as discussed in Section 5.5.1) and MHC class-I binary

dataset (as discussed in Section 5.5.3)

• Latent grid: 12 × 12 and RBF grid: 8 × 8 (see Figures C.1 and C.6 for synthetic

dataset-I and II respectively and see Figure C.11 for MHC binary dataset).

• Latent grid: 12 × 12 and RBF grid: 4 × 4 (see Figures C.2 and C.7 for synthetic

dataset-I and II respectively and see Figure C.12 for MHC binary dataset).

• Latent grid: 12 × 12 and RBF grid: 2 × 2 (see Figures C.3 and C.8 for synthetic

dataset-I and II respectively and see Figure C.13 for MHC binary dataset).

• Latent grid: 8 × 8 and RBF grid: 2 × 2 (see Figures C.4 and C.9 for synthetic

dataset-I and II respectively and see Figure C.14 for MHC binary dataset).

• Latent grid: 4 × 4 and RBF grid: 2 × 2 (see Figures C.5 and C.10 for synthetic

dataset-I and II respectively and see Figure C.15 for MHC binary dataset).
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(a) standard LTM (b) LTM-FS
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Figure C.1: The LTM and the LTM-FS visualisations of the binary synthetic dataset-I
using a latent grid size 12× 12 and RBF grid size 8× 8. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.2: The standard LTM and the LTM-FS visualisations of the binary synthetic
dataset-I using a latent grid size 12 × 12 and an RBF grid size 4 × 4. The LTM-FS
visualisation in (b) show better results with compact cluster for each class compared to
the LTM visualisation in (a) and (f) shows the estimated feature saliencies from the LTM-
FS.
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Figure C.3: The LTM and the LTM-FS visualisations of the binary synthetic dataset-I
using a latent grid size 12× 12 and RBF grid size 2× 2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.4: The LTM and the LTM-FS visualisations of the binary synthetic dataset-I
using a latent grid size 8×8 and an RBF grid size 2×2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.5: The LTM and the LTM-FS visualisations of the binary synthetic dataset-I
using a latent grid size 4×4 and an RBF grid size 2×2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.6: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II
using the latent grid 12×12 and an RBF grid size 8×8. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.7: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II
using a latent grid size 12×12 and an RBF grid size 4×4. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.

(a) standard LTM (b) LTM-FS

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature Number

F
ea

tu
re

 S
al

ie
n

cy

(c) Estimated saliencies

Figure C.8: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II
using a latent grid 12× 12 and an RBF grid size 2× 2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.9: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II
using a latent grid size 8×8 and an RBF grid size 2×2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.10: The LTM and the LTM-FS visualisations of the binary synthetic dataset-II
using a latent grid size 4×4 and an RBF grid size 2×2. The LTM-FS visualisation in (b)
show better results with compact cluster for each class compared to the LTM visualisation
in (a) and (f) shows the estimated feature saliencies from the LTM-FS.
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Figure C.11: The LTM and the LTM-FS visualisations of the MHC class-I sequence-based
binary dataset using a latent grid size 12 × 12 and an RBF grid size 8 × 8. The data
points shown as cyan circles represent alleles of HLA-A, red plus signs for HLA-B and
blue squares for HLA-C. Both the LTM and the LTM-FS visualisations (i.e. (a) and (b)
respectively) have shown clear separation between three classes (i.e. genes) of MHC class-
I dataset hence it is difficult to visually observe better clustering structure from both.
Feature saliencies estimated from the LTM-FS are shown in (c) on a scale of 0-to-1.
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Figure C.12: The LTM and the LTM-FS visualisations of the MHC class-I sequence-based
binary dataset using a latent grid size 12×12 and an RBF grid size 4×4. The data points
shown as cyan circles represent alleles of HLA-A, red plus signs for HLA-B and blue
squares for HLA-C. Both LTM and LTM-FS visualisations (i.e. (a) and (b) respectively)
have shown clear separation between three classes (i.e. genes) of an MHC class-I dataset
hence it is difficult to visually observe better clustering structure from both. Feature
saliencies estimated from the LTM-FS are shown in (c) on a scale of 0-to-1.
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Figure C.13: The LTM and the LTM-FS visualisations of the MHC class-I sequence-based
binary dataset using a latent grid size 12×12 and an RBF grid size 2×2. The data points
shown as cyan circles represent alleles of HLA-A, red plus signs for HLA-B and blue
squares for HLA-C. Both LTM and LTM-FS visualisations (i.e. (a) and (b) respectively)
have shown clear separation between three classes (i.e. genes) of MHC class-I hence it
is difficult to visually observe better clustering structure from both. Feature saliencies
estimated from the LTM-FS are shown in (c) on a scale of 0-to-1.
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Figure C.14: The LTM and the LTM-FS visualisations of an MHC class-I sequence-based
binary dataset using a latent grid 8×8 and an RBF grid size 2×2. The data points shown
as cyan circles represent alleles of HLA-A, red plus signs for HLA-B and blue squares for
HLA-C. Both the LTM and the LTM-FS visualisations (i.e. (a) and (b) respectively) have
shown clear separation between three classes (i.e. genes) of MHC class-I dataset hence
it is difficult to visually observe better clustering structure from both. Feature saliencies
estimated from the LTM-FS are shown in (c) on a scale of 0-to-1.
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(c) Estimated saliencies

Figure C.15: THe LTM and the LTM-FS visualisations of the MHC class-I sequence-based
binary dataset using a latent grid 4×4 and an RBF grid size 2×2. The data points shown
as cyan circles represent alleles of HLA-A, red plus signs for HLA-B and blue squares for
HLA-C. Both the LTM and the LTM-FS visualisations (i.e. (a) and (b) respectively) have
shown clear separation between three classes (i.e. genes) of an MHC class-I dataset hence
it is difficult to visually observe better clustering structure from both. Feature saliencies
estimated from the LTM-FS are shown in (c) on a scale of 0-to-1.
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C.4 The standard LTM and the LTM-FS models additional results

with different noise level in the noisy features

We present here some additional results where we consider different noise densities for the

irrelevant features.

(a) Standard LTM (b) LTM-FS
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Figure C.16: The LTM and the LTM-FS visualisations of the synthetic dataset-I (with
binary features). (a) and (b) show visualisations using the LTM and the LTM-FS mdoels
whereas (c) show saliencies estimated from the LTM-FS. First 9 features were considered
as relevant with clustering information whereas the remaining 9 have randomly distributed
1’s with a density p = 0.2.
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(c) Saliencies

Figure C.17: Demonstration binary type synthetic dataset-I using the standard LTM and
the LTM-FS visualisation. (a) and (b) show visualisation using the LTM and the LTM-
FS mdoels whereas (c) show saliencies estimated from the LTM-FS. First 9 features were
considered as relevant with clustering information whereas the remaining 9 have randomly
distributed 1’s with a density p = 0.6.
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D

The GGTM-FS visualisation

model, EM derivation of

GGTM-FS and additional

results for the GGTM and

the GGTM-FS

D.1 The mixture model for the GGTM-FS

Recalling equation (6.27), which is the conditional density of x with the given Ψ (where

Ψ = {ΨR,ΨB,ΨC} and in more general form ΨM = {ψM1 , · · · , ψM|M|}),

p(x|Ψ) =

K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[
p(xMd |ΘMkd )

]ψM
d
[
q(xMd |λMd )

](1−ψM
d )


 (D.1)

We take Ψ as a set of missing variables and we define feature saliency to be estimated as

ρMd = p(ψMd = 1), for d = 1, · · · , |M|. We consider that the ψds are mutually independent
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and also independent of the hidden component label y for any data pattern x. Hence,

p(x,Ψ) = p(x|Ψ)p(Ψ)

=

 K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[
p(xMd |ΘMkd )

]ψM
d
[
q(xMd |λMd )

](1−ψM
d )

 |M|∏
d=1

(ρMd )ψ
M
d (1− ρMd )1−ψM

d




=

K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[
ρMd p(xMd |ΘMkd )

]ψM
d
[
(1− ρMd )q(xMd |λMd )

](1−ψM
d )




(D.2)

The marginal density of x is defined as

p(x) =
∑
Ψ

p(x,Ψ)

=
K∑
k=1

πk
∑
Ψ

 ∏
M∈{R,B,C}

|M|∏
d=1

[
ρMd p(xMd |ΘMkd )

]ψM
d
[
(1− ρMd )q(xMd |λMd )

](1−ψM
d )




=
K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

∑
Ψ

[
ρMd p(xMd |ΘMkd )

]ψM
d
[
(1− ρMd )q(xMd |λMd )

](1−ψM
d )




=

K∑
k=1

πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[
ρMd p(xMd |ΘMkd )

]
+
[
(1− ρMd )q(xMd |λMd )

]


,

(D.3)

which is (6.28) and also note that the features are considered as independent of the com-

ponent label y.

D.2 Deriving the EM algorithm for the GGTM-FS

From equation (6.28), the complete-data log-likelihood is defined as,

p(x|Ω) = πk

 ∏
M∈{R,B,C}

|M|∏
d=1

[ρMd p(xMd |ΘMkd )] + [(1− ρMd )q(xMd |λMd )]


 (D.4)

By defining the following terms

rnk = p(yn = k|xn) (D.5)

uMnkd = p(ψMd = 1, yn == k|xMn ) (D.6)
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vMnkd = p(ψMd = 0, yn == k|xMn ) (D.7)

All these quantities are calculated using the current set of parameters Ωcurrent. It is

important to note that uMnkd+v
M
nkd = rnk and

∑N
n=1

∑K
k=1 rnk = N . The expected complete

data log-likelihood using the current set of parameters Ωcurrent we get

EΩcurrent [lnP (X,y,Ψ)]

=
∑
n,k,Ψ

p(yn = k,Ψ|xn)

lnπk +
∑

M∈{R,B,C}

|M|∑
d=1

(
ψMd

(
ln p(xMnd |θMkd ) + ln ρMd

)

+(1− ψMd )(ln q(xMnd |λMd ) + ln(1− ρMd ))
)

=
∑
n,k

p(yn = k|xi) lnπk +
∑
n,k

∑
M∈{R,B,C}

|M|∑
d=1

1∑
ψM
d =0

p(yn = k, ψMd |xMn )

(
ψMd

(
ln p(xMnd |θMkd ) + ln ρMd

)
+ (1− ψMd )(ln q(xMnd |λMd ) + ln(1− ρMd ))

)

=
∑
k

(
∑
n

rnk) lnπk︸ ︷︷ ︸
part 1

+
∑

M∈{R,B,C}


K|M|∑
k,d

∑
n

uMnkd ln p(xMnd |θMkd )︸ ︷︷ ︸
part 2

+

|M|∑
d=1

∑
n,k

vMnkd ln q(xMnd |λMd )︸ ︷︷ ︸
part 3

+

|M|∑
d=1

ln ρMd
∑
n,k

uMnkd + ln(1− ρMd )
∑
n,k

vMnkd︸ ︷︷ ︸
part 4




(D.8)

Each part in the above equation can be maximized separately. Recalling that the densities

pM(.) and qM(.) are univariate Gaussians ifM = R and are characterized by their means

and variances and, if M = B then these are univariate Bernoulli which are defined by

the means and, if M = R then these are univariate Multinomial which are defined by

the means. Now maximizing the expected log-likelihood of the complete-data gives the

M-step equations (6.35)-(6.41) (i.e. for Gaussian case), (6.42)-(6.46) (i.e. for Bernoulli
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case) and (6.47)-(6.51) (i.e. for multinomial case). It is also important to note that

p(ψMd = 1|yn = k,xMn ) =
p(ψMd = 1,xMn |yn = k)

p(xMn |yn = k)

=
ρMd p(xMd |θMkd )

∏|M|
d′ 6=d

(
ρMd′ p(x

M
d′ |θMkd′) + (1− ρMd′ )q(xMd′ |λMd′ )

)
∏|M|
d′=1

(
ρMd′ p(x

M
d′ |θMkd′) + (1− ρMd′ )q(xMd′ |λMd′ )

)
=

ρMd p(xMd |θMkd )

ρMd p(xMd |θMkd ) + (1− ρMd )q(xMd |λMd )

(D.9)

Therefore equation (6.33) becomes

uMnkd = p(ψMd = 1|yn = k,xMn )p(yn = k|xn)

=
ρMd p(xMd |ΘMkd )

ρMd p(xMd |ΘMkd )] + [(1− ρMd )q(xd|λMd )
rnk.

(D.10)

D.3 The priors over the features saliency parameter update

Maximizing the expected log-likelihood of the complete-data (equation (D.8)), the M-step

for the updating the feature saliency is defined as

ρ̂Md =

∑
n,k u

M
nkd∑

n,k u
M
nkd +

∑
n,k v

M
nmd

=

∑
n,k u

M
nkd

N
. (D.11)

We take Dirichlet-type prior (which is improper) for saliencies of continuous features (see

Equation (D.12) and similar prior was previously used in (Law et al., 2004)), Beta dis-

tribution prior for saliencies of binary features (see Equation (D.13) and similar prior

was previously used in (Bouguila, 2010)) and a Dirichlet-type prior (which is a natural

conjugate prior of the multinomial) for the saliencies of the multi-category features (see

Equation (D.14) and similar prior was previously used in (Silvestre et al., 2013)).

p(ρR1 , · · · , ρR|R|) ∝
|R|∏
d=1

(ρRd )−
KP
2 (1− ρRd )−

T
2 (D.12)

p(ρB1 , · · · , ρB|B|) =

|B|∏
d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
(ρBd )αd−1(1− ρBd )βd−1, (D.13)

p(ρC1 , · · · , ρC|C|) ∝
|C|∏
d=1

(ρCd)−
Kcd
2 (1− ρCd)−

cd
2 (D.14)

Therefore applying the respective priors gives the M-step in equations (6.41) (i.e. for

continuous features), (6.46) (i.e. for binary features) and (6.51) (i.e. for binary features).
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D.4 Additional Results

D.4.1 Bioassay dataset ‘AID1608’

(a) GTM (Training set) (b) GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

Figure D.1: The standard GTM and the GGTM visualisations of a Bioassays dataset
‘AID1608’ (continuous and binary features). Legend same as in Figure 6.4
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Trustworthiness Continuity
Training Test Training Test

1
GTM 0.7721 0.7368 0.8333 0.7984
GGTM 0.7878 0.7291 0.8286 0.7807

2
GTM 0.7738 0.7512 0.8155 0.7936
GGTM 0.7904 0.7274 0.7924 0.7428

3
GTM 0.7492 0.7245 0.7854 0.7348
GGTM 0.7593 0.7315 0.7966 0.7421

4
GTM 0.7775 0.7452 0.8185 0.7870
GGTM 0.7871 0.7410 0.7924 0.7468

5
GTM 0.7410 0.7198 0.7880 0.7587
GGTM 0.7621 0.7414 0.8025 0.7520

6
GTM 0.7306 0.7287 0.7783 0.7594
GGTM 0.7407 0.7296 0.7841 0.7393

Table D.1: The GTM and the GGTM comparison using quality evaluation metrics of the
trustworthiness and the continuity for the bioassay dataset ‘AID1608’.

MRREd MRREl
Training Test Training Test

1
GTM 0.0805 1.9920 0.0781 1.7098
GGTM 0.0823 1.9261 0.0788 1.7419

2
GTM 0.0872 1.8687 0.0788 1.7408
GGTM 0.0844 1.7687 0.0797 1.8668

3
GTM 0.0927 1.8352 0.0801 1.8785
GGTM 0.0936 1.7887 0.0789 1.8559

4
GTM 0.0905 1.8703 0.0800 1.8292
GGTM 0.0884 1.6508 0.0797 1.8350

5
GTM 0.0962 1.9776 0.0792 1.8830
GGTM 0.0950 1.7765 0.0800 1.8197

6
GTM 0.1016 2.0492 0.0769 1.9262
GGTM 0.0951 1.9055 0.0806 1.9575

Table D.2: The GTM and the GGTM comparison using quality evaluation metrics of
the mean relative rank errors with respect to the data space and the latent space for the
bioassay dataset ‘AID1608’.
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Appendix D THE GGTM-FS VISUALISATION MODEL, EM DERIVATION OF GGTM-FS AND

ADDITIONAL RESULTS FOR THE GGTM AND THE GGTM-FS

AVDD NLL
Training Test Training Test

1
GTM 0.7242 0.6498 4.4045 30.2783
GGTM 0.7428 0.6470 29.0927 34.0156

2
GTM 0.7873 0.7014 25.8622 37.6762
GGTM 0.7595 0.6633 36.1514 38.3979

3
GTM 0.8030 0.7469 47.4196 55.5927
GGTM 0.7744 0.7312 42.3488 43.0953

4
GTM 0.7901 0.6953 30.7389 41.9343
GGTM 0.7598 0.6687 37.7940 39.6991

5
GTM 0.7764 0.7271 51.0882 56.5348
GGTM 0.7415 0.7119 43.5000 44.2253

6
GTM 0.7996 0.7358 57.4340 63.9826
GGTM 0.7630 0.7190 45.9382 46.6930

Table D.3: The GTM and the GGTM comparison using quality evaluation metrics of the
distance distortion and the negative log-likelihood (per point) for the bioassay dataset
‘AID1608’.
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Appendix D THE GGTM-FS VISUALISATION MODEL, EM DERIVATION OF GGTM-FS AND

ADDITIONAL RESULTS FOR THE GGTM AND THE GGTM-FS

D.4.2 Bioassay dataset ‘AID456’

(a) GTM (Training set) (b) GTM (Test set)

(c) GGTM (Training set) (d) GGTM (Test set)

Figure D.2: The GTM and the GGTM visualisations of bioassays dataset ‘AID456’ (con-
tinuous and binary features). Legend same as in Figure 6.4
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Appendix D THE GGTM-FS VISUALISATION MODEL, EM DERIVATION OF GGTM-FS AND

ADDITIONAL RESULTS FOR THE GGTM AND THE GGTM-FS

Trustworthiness Continuity
Training Test Training Test

1
GTM 0.8327 0.7815 0.8056 0.7740
GGTM 0.8448 0.7978 0.8385 0.8038

2
GTM 0.8169 0.7874 0.7917 0.7573
GGTM 0.8088 0.7862 0.8062 0.7694

3
GTM 0.7694 0.7549 0.7996 0.7658
GGTM 0.7595 0.7509 0.8314 0.7880

4
GTM 0.8066 0.7866 0.8190 0.7874
GGTM 0.8077 0.7865 0.8164 0.7771

5
GTM 0.7617 0.7518 0.8037 0.7767
GGTM 0.7608 0.7546 0.8334 0.7996

6
GTM 0.7142 0.7299 0.8127 0.7819
GGTM 0.7604 0.7530 0.8480 0.8146

Table D.4: The GTM and the GGTM comparison using quality evaluation metrics of the
trustworthiness and the continuity for the bioassay dataset ‘AID456’.

MRREd MRREl
Training Test Training Test

1
GTM 0.0077 0.0314 0.0070 0.0314
GGTM 0.0079 0.0320 0.0071 0.0315

2
GTM 0.0077 0.0329 0.0069 0.0311
GGTM 0.0077 0.0336 0.0069 0.0310

3
GTM 0.0073 0.0325 0.0068 0.0299
GGTM 0.0075 0.0335 0.0067 0.0294

4
GTM 0.0076 0.0337 0.0068 0.0310
GGTM 0.0077 0.0338 0.0069 0.0309

5
GTM 0.0072 0.0326 0.0068 0.0298
GGTM 0.0073 0.0332 0.0067 0.0295

6
GTM 0.0072 0.0319 0.0066 0.0287
GGTM 0.0074 0.0334 0.0067 0.0294

Table D.5: The GTM and the GGTM comparison using quality evaluation metrics of
the mean relative rank errors with respect to the data space and the latent space for the
bioassay dataset ‘AID456’.
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Appendix D THE GGTM-FS VISUALISATION MODEL, EM DERIVATION OF GGTM-FS AND

ADDITIONAL RESULTS FOR THE GGTM AND THE GGTM-FS

AVDD NLL
Training Test Training Test

1
GTM 0.8407 0.7998 28.3908 31.6213
GGTM 0.8535 0.8173 36.5018 36.9206

2
GTM 0.8621 0.8225 39.0959 40.1398
GGTM 0.8762 0.8289 41.7087 41.8175

3
GTM 0.8757 0.8508 55.3785 55.5542
GGTM 0.8874 0.8946 51.2770 51.2801

4
GTM 0.8585 0.8183 43.5062 44.1405
GGTM 0.8771 0.8462 43.3726 43.4341

5
GTM 0.8599 0.8392 57.6106 57.7671
GGTM 0.9133 0.8933 50.0265 49.9552

6
GTM 0.8699 0.8321 63.7037 64.6040
GGTM 0.8838 0.8557 48.9251 48.8951

Table D.6: The GTM and the GGTM comparison using quality evaluation metrics of
the distance distortion and the negative log-likelihood per point for the bioassay dataset
‘AID456’.
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THE GGTM-FS VISUALISATION MODEL, EM DERIVATION OF GGTM-FS AND ADDITIONAL

RESULTS FOR THE GGTM AND THE GGTM-FS

(a) GGTM-FS(AID1608)
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(b) GGTM-FS(Saliencies for AID1608)

(c) GGTM-FS(AID456)
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(d) GGTM-FS(Saliencies for AID456)

Figure D.3: The GGTM-FS visualisation and estimated features saliencies for bioassay
datasets (continuous and binary). Legend same as in Figure 6.4
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