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Abstract 

 In order to inhibit the photocatalytic degradation of organic material supports induced by 

small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available 

P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl)triethoxysilane 20 

(APTES). These APTES-modified P25 TiO2 nanoparticles were then deposited and fixed onto 

the surface of paper samples via a simple, dip-coating process in water at room temperature. 

The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much 

greater stability to UV-illumination than uncoated blank reference paper and very little, or no, 

photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-25 

nanoparticle-treated paper is observed. There are many other potential applications for this 

Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to 

maintain their whiteness and brightness. 
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1 Introduction 

 Titanium dioxide (TiO2) is a very important industrial material and has been widely 35 

used in pigments, paints, cosmetics, photocatalysis and supports.( Chen, Wang, & Chiu, 2007; 

Gesenhues, 2001; Fernandez-Garcia, Martinez-Arias, Hanson, & Rodriguez, 2004) It has also 
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been used for anti-reflection coatings, optical coatings and beam splitters due to its high 

dielectric constant and reflection index. (Samuel, Pasricha, & Ravi, 2005) Titanium dioxide 

naturally exists in three crystalline polymorphs: anatase, rutile and brookite. The most 

commonly used forms are anatase and rutile. (Pelton, Geng, & Brook, 2006; Wold, 1993) Both 

of the anatase and rutile TiO2 are commonly used in photocatalysis, with anatase TiO2 showing 5 

higher photocatalytic activity. (Linsebigler, Lu, & Yates, 1995) P25 is a commercial TiO2 

powder (EVONIK), which consists of 80% of the anatase phase and 20% of the rutile phase. It 

has been widely applied in the field of photocatalytic reactions due to its high photocatalytic 

activity. (Ryu, & Choi, 2008) Unfortunately, the high redox activity of titania can lead to 

photodegradation of any organic substrate, support, functional material, etc, which will limit 10 

its applications in paper, textile, paint and plastic film industries. Selecting large particle size 

titania (particle size larger 200 nm), using rutile titania and passivated titania nanoparticles with 

inert shells, such as silica (SiO2), to form core/shell TiO2/SiO2 nanoparticles are the most 

common method used in attempts to inhibit the photocatalytic effect of TiO2 and inhibit 

degradation of the supports. (Furusawa, Honda, Ukaji, Sato, & Suzuki, 2008) 15 

 3-Aminopropyltriethoxysilane (APTES) is frequently used as a coupling agent for 

attaching organic molecules to hydroxylated silicon oxide or metal oxide substrates due to the 

presence of terminal amine groups. (Kim, Cho, Seidler, Kurland, & Yadavalli, 2010; 

Pasternack, Amy, & Chabal, 2008) For example, APTES has been applied to link proteins or 

to promote cell adhesion on TiO2 surfaces. (Balasundaram, Sato, & Webster, 2006; Filippini, 20 

Rainaldi, Ferrante, Mecheri, Gabrielli, Bombace, Indovina, & Santini, 2001)) Adsorption of 

organic dyes on TiO2 surfaces has also been reported using APTES as a coupling agent. 

(Andrzejewska, Krysztafkiewicz, & Jesionowski, 2004) Although in many cases APTES has 

been applied for specific purposes, disagreements often occur on the dominant conformation 

or chemical form of APTES at interfaces because they not only depend on the reaction 25 

conditions but also on the crystal structures of TiO2 substrate. (Song, Hildebrand, & Schmuki, 

2010; Chen, & Yakovlev, 2010; Ukaji, Furusawa, Sato, & Suzuki, 2007)APTES has not so far, 

to the authors’ best knowledge, been used to deposit and bind TiO2 nanoparticles to the surface 

of cellulose or its derivatives. 

 Cellulose is the most abundant, widespread and naturally occurring biopolymer in 30 

nature. Alongside its traditional applications in paper and cotton textiles, cellulose is also a 

very important environmentally friendly, biocompatible and cost-effective, carbon-based 

resource for the development of novel advanced functional materials. (Habibi, Lucia, & Rojas, 

2010) Cellulose is a extensive, linear, mainchain carbohydrate polymer consisting of repeating 
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-D-glucopyranose moieties, which are covalently linked through acetal functions between the 

equatorial OH groups. The presence of a large number of hydrophilic hydroxyl groups (Klemm, 

Heublein, Fink, & Bohn, 2005; Roy, Semsarilar, Guthrie, & Perrier, 2009) can promote the 

nucleation and growth of inorganic phases at the cellulose fibre surface and thus facilitate the 

production of organic/inorganic nanocomposites. (Pinto, Marques, Barros-Timmons, Trindade, 5 

& Neto, 2008; Li, Chen, Hu, Shi, Shen, Zhang, & Wang, 2009; Iguchi, Ichiura, Kitaoka, & 

Tanaka, 2003)  

 Protection of cellulosic textiles against different kinds of degradation and the creation 

of new advantageous functions can be realised by coating of the textiles with silica sols with 

nanoparticle diameters smaller than 50 nm. (Mahltig, Haufe, & Bottcher, 2005). The surface 10 

of vegetable cellulose fibres has been modified, for example, with a nanoparticle-functionalised 

siloxane coating first using the hydrolysis of tetraethoxysilane (TEOS), octyltrimethoxysilane 

(OTMS) or polydimethylsiloxane (PTMS), followed then by layer-by-layer deposition of 

previously synthesized titanium dioxide nanoparticles. (Goncalves, Marques, Pinto, Trindade, 

& Neto, 2009) Morphologically well-defined silica nanoparticles have been successfully 15 

deposited at cellulose fibre surfaces via a polyelectrolytes layer-by-layer approach. (Pinto, 

Marques, Barros-Timmons, Trindade, & Neto, 2008) 

 In this report, commercially available, highly photochemically active and strongly UV-

absorbing P25 TiO2 nanoparticles (EVONIK) have been modified to form a strongly UV-

absorbing, but non-photo-catalytically active, coating on the surface of cellulose paper in order 20 

to significantly improve its resistance to UV-degradation in terms of maintaining the original 

brightness and whiteness of paper samples under standard, commercial UV-illumination test 

conditions. In a simple, two-step process the surface of small, photo-active titania nanoparticles 

was first modified with a thin coating of APTES to produce deactivated, APTES-coated TiO2 

nanoparticles, which were then deposited and fixed on the surface of paper simply using a very 25 

simple, water-based dip-coating procedure at room temperature. The APTES-modified TiO2 

nanoparticles protect the paper from photochemical bleaching as far as possible under standard 

UV-illumination test conditions. No impact or spray coating techniques, chemical binders, 

surfactants, dispersants or a post-treatment curing step are required in this two-step process. 

The presence of additional amine and silane groups present in the APTES coating covering the 30 

surface of the APTES-modified TiO2 nanoparticles should promote attachment and fixation to 

the many hydroxyl-groups present on the surface of the cellulose fibres. The APTES-modified 

TiO2 nanoparticles are prepared in a simple fashion at a relatively low reaction temperature. 
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The structural and mechanical properties of the cellulose fibres will not be impaired by the 

presence of the APTES-modified TiO2 nanoparticles, whose presence just on the outer surface, 

not in the core, of the fibre will ensure a high effective absorption of UV-light. A much lower 

loading of nanoparticles is required using this surface-based approach than dispersing 

nanoparticles in the bulk fibre mixtures used to prepare paper, fabrics, textiles, etc., which is 5 

advantageous in terms of minimising contamination of the environment with nanoparticles. 

 

2 Experimental  

2.1 Materials and characterization methods 

 TiO2 P25 with approximately 80/20 of anatase and rutile TiO2 was provided by EVONIK. 10 

(3-aminopropyl)triethoxysilane [APTES, (C2H5O)3Si(CH2)3NH2] and xylene were supplied by 

Aldrich and used as received. The paper samples, which are 1 mm thick, and do not possess a 

surface coating such calcium carbonate or china clay, were provided by Mondi Uncoated Fine 

Paper, Austria. Acetone was sourced from Fisher Scientific, UK, and used as received. 

 Fourier transform infrared spectra were recorded on a Nicolet Magna-500 FTIR 15 

spectrometer. X-ray powder diffraction (XRD) analyses were performed on a SIEMENS 

D5000 Instrument. Scanning electron microscopy (SEM) images were obtained using Carl 

Zeiss SMT ‘EVO60’ SEM microscope operating at 20 kV and EDX data were obtained using 

an Oxford Instruments ‘INCA’ Energy Dispersive X-ray Spectrometer. Transmission electron 

microscopy (TEM) was collected using a Jeol 2010 TEM running at 200kV. Images were 20 

obtained with a Gatan Ultrascan 4000 digital camera. Solid samples were prepared by 

suspension in distilled water and 5 µl aliquots of a suitable dilution dropped onto carbon coated 

copper grids. The BET surface area and pore size diameter of powders was calculated from 

nitrogen adsorption/desorption isotherms at 77 K using a Micromeritics three star 3000 

instrument. The whiteness of the standard paper samples and the APTES-modified TiO2 25 

nanoparticle paper samples was measured with a standard whiteness tester (Lorentzen&Wettre, 

Elrepho). The brightness of these samples was determined before and after the suntest (Suntest 

XLS+; ATLAS Material Testing Solutions). The suntester allows irradiation of paper samples 

with a xenon lamp under accurate, repeatable conditions (i.e. 90 min, 500 W, and 2700 kJ/m2). 

XPS was performed on a Kratos Axis HSi X-ray photoelectron spectrometer fitted with a 30 

charge neutraliser and magnetic focusing lens employing Al Kα monochromatic radiation 

(1486.7 eV). Surface elemental analysis was undertaken on Shirley background-subtracted 
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spectra applying the appropriate instrument and element specific response factors. Spectral 

fitting was conducted using CasaXPS version 2.3.14, with binding energies corrected to the C 

1s peak at 284.5 eV and high-resolution C 1s, O 1s, N 1s, Si 2p and Ti 2p XP spectra fitted 

using a common Gaussian/Lorentzian peak shape. Errors were estimated by varying the Shirley 

background subtraction procedure across reasonable limits and re-calculating fits. The 5 

photocatalytic activity of the P25 TiO2 and APTES modified TiO2 was evaluated in terms of 

the degradation of Rhodamine B. (Ren, Chen, Zhang, & Wu, 2010) P25 TiO2 or APTES 

modified TiO2–powder (10 mg) was suspended in 10 mL of water and then 10 mL of 

Rhodamine B solution (20 mg/L) was added to the suspension solution. The UV irradiation 

was carried out under a UV light at 365 nm for 30 min. The suspension solutions were 10 

centrifuged at 10000 rpm for 15 min. The Rhodamine B content in the solutions was 

determined by UV-Vis analysis in the range between 300 and 700 nm using a Perkin Elmer 

Lambda 25 spectrometer. 

 

2.2 Modification of TiO2 surfaces with APTES (TiO2-APTES) 15 

 APTES (1.5 mL) was added to a stirred suspension of P25 TiO2 nanoparticles (0.5 g) in 

xylene (50 mL). After allowing the reaction mixture to react at 50 oC for 10 h, a white powder 

was obtained by centrifugation of the cooled the reaction mixture, which was then washed with 

xylene and then twice with acetone followed by drying under vacuum overnight. 

 20 

2.3 Coating of papers with APTES modified TiO2 nanoparticles 

The APTES-stabilised P25 TiO2 nanoparticle powder was added to distilled water (20mL) 

and sonicated for 15 min to produce a stable, aqueous colloidal solution of APTES-stabilised 

P25 TiO2 nanoparticles. A sample of commercial uncoated paper (0.7 g) was then immersed in 

the aqueous colloidal solution. After sonication for 15 min, the paper sample coated with 25 

APTES-stabilised P25 TiO2 nanoparticles was washed carefully with copious amounts of 

distilled water and dried under vacuum overnight.  
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3 Results and Discussions 

3.1 Modification of P25 TiO2 nanoparticles with APTES 

 The IR spectra of P25 TiO2 nanoparticles and APTES-modified P25 TiO2 nanoparticles 

shown in Fig. 1 reveal a small peak at 1640 cm−1 and large, broad peak between 3450 and 3200 

cm−1, which are due to stretching vibrations of absorbed water, as well as surface hydroxyl (–5 

OH) groups present on the surface of the nanopowder. (Chen, & Yakovlev, 2010) The broad 

peak between 600–400 cm-1 can be assigned to the Ti–O–Ti bond. Compared with P25 TiO2 

nanoparticles, the APTES-modified P25 TiO2 nanoparticles show a weak band at 2923 cm-1, 

which can be assigned to alkyl groups [–(CH2)n–] present in APTES. The new absorption band 

at 1561 cm-1 is attributable to a NH2 scissor vibration, suggesting the presence of the amino 10 

groups of APTES molecules in the terminal of the propyl chain. (Pasternack, Amy, & Chabal, 

2008) Furthermore, the peak at around 1024 cm-1 can be assigned to the stretch vibration of 

Ti–O–Si moieties, formed by a condensation reaction between silanol groups of APTES and 

hydroxyl groups present on the surface TiO2 nanoparticles. (Ukaji, Furusawa, Sato, & Suzuki, 

2007) In addition, the broad band at around 1116 cm-1 is probably attributable to the stretch 15 

vibration of Si–O–Si, produced by the condensation reactions between silanol groups. (Chen, 

& Yakovlev, 2010) All these facts suggest that APTES has been successfully attached as a thin 

film to the surface of the P25 TiO2 nanoparticles.  
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Fig. 1. Infrared spectra of commercially available P25 TiO2 nanoparticles and APTES-

modified P25 TiO2 nanoparticles. 

 

 XPS spectra of the P25 TiO2 nanoparticles and corresponding APTES-modified P25 5 

TiO2 nanoparticles are shown in Fig. 2. In comparison with the survey spectrum of the P25 

TiO2 nanoparticles (Figure 2A), the APTES-modified P25 TiO2 nanoparticles exhibit new 

peaks corresponding to N 1s and Si 2p photoemission features, clearly indicating surface 

modification of the titanium oxide surface by an aminosilane. Fig. 2B-2F shows the 

corresponding high resolution C 1s, O 1s, Si 2p, N 1s and Ti 2p XP spectra. The C1s spectra 10 

were deconvoluted using three components, C1, C2 and C3. The C1, C2 and C3 peaks in the 

C 1s spectrum of P25 TiO2 nanoparticles at 284.41 (82.7 %), 286.04 (9.44 %) and 288.15 

(7.86 %) (Table 1) are assigned to CHx, C-O and C=O bonds respectively, associated with 

adventitous hydrocarbon resulting from sample preparation and handling. (Arranz, Palacio, 

Garcia-Fresnadillo, Orellana, Navarro, & Munoz, 2008) APTES modified titania also exhibits 15 

three carbon components at 284.84 (68.33 %), 286.20 (18.51 %) and 288.16 (13.17 %), which 

are attributed to CHx/C-C/C-Si, C-N/C-O and C=O functions respectively. (Song, Hildebrand, 

& Schmuki, 2010) The C3 component likely arises from organic residues during sample 

handing/transportation since APTES does not contain a carbonyl function. Such high binding 

energy carbon moities have also been reported during the APTES modification of GaN and 20 
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amorphous TiO2 surfaces. (Song, Hildebrand, & Schmuki, 2010; Song, Hildebrand, & 

Schmuki, 2010) The O 1s spectrum also exhibited a new peak at 532.13 eV after APTES 

modification, ascribed to O-Si-R surface species. The presence of a sharp peak at 102.13 eV in 

the Si 2p clearly evidences APTES attachment to the TiO2 nanoparticle surface, with surface 

compositional analysis showing that the APTES modified titania possess 17.2 atom% silicon 5 

(Table 2). Three new N 1s peaks were also observed following APTES modification at 339.18, 

400.61 and 401.61 eV. The 339.18 eV component is assigned to terminal NH2 groups in the 

APTES coating of the P25 TiO2 nanoparticles, whereas the peaks at 400.61 and 401.61 eV are 

possibly due to hydrogen-bonded NH2 or protonated amino-groups (-NH3
+). (Song, Hildebrand, 

& Schmuki, 2010) 10 

 The possible modes of interactions of APTES, which has two distinct terminal 

functional groups: the hydrolysable silane (-Si(OR)3) group and the amino- (-NH2) group, with 

the TiO2 nanoparticle surface are shown in Fig. 3. (Ukaji, Furusawa, Sato, & Suzuki, 2007; 

Acres, Ellis, Alvino, Lenahan, Khodakov, Metha, & Andersson, 2012) If the silane groups 

react with hydroxyl groups present on the TiO2 nanoparticle surface to form a silanized surface, 15 

as shown in Fig. 3a-d, then free terminal -NH2 groups, which project away from the TiO2 

nanoparticle surface, can be observed at 399.18 eV (normal attachment). One the other hand, 

if the -NH2 groups are attached to the surface through hydrogen bonding, or protonated amine 

(-NH3
+) ionic bonding, with the hydroxyl groups on the TiO2 nanoparticle surface, as shown 

in Fig. 3 (e) and 3(f), the N 1s peak will appear at higher energy (~ 400.9 eV) (reverse 20 

attachment). Since the contribution of the peak at 399.18 eV is 60.42 % and much higher than 

that of the peaks at 400.61 eV (24.92 eV) and 401.61 (14.67 eV), APTES appears to be mainly 

attached by silanized bonding with free terminal NH2 projecting away from the nanoparticle 

surface,  which would be similar to similar to previously reported behaviour. (Pasternack, Amy, 

& Chabal, 2008; Arranz, Palacio, Garcia-Fresnadillo, Orellana, Navarro, & Munoz, 2008; 25 

Vandenberg, Bertilsson, Liedberg, Uvdal, Erlandsson, Elwing, & Lundstrom, 1991)  
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Fig. 2. (A) XPS survey spectra and (B) C 1s, (C) O 1s, (D) Si 2p, (E) N 1s and (F) Ti 2p high-

resolution spectra of (a) commercially available, untreated P25 TiO2 nanoparticles and (b) 

APTES-modified P25 TiO2 nanoparticles. 

  5 
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Table 1   XPS surface analysis of P25 TiO2 and APTES modified TiO2 nanoparticles 

 

                 TiO2           TiO2 – APTES  

 Binding 

energy /ev 

% Binding 

energy /ev 

% 

Ti 2p 458.00  458.00  

 ?  ?  

O 1s 529.23 92.01 529.40 82.03 

 530.94 7.99 530.93 8.63 

   532.13 9.34 

C 1s 284.41 82.70 284.84 68.33 

 286.04 9.44 286.20 18.51 

 288.15 7.86 288.16 13.17 

N 1s   399.18 60.42 

   400.61 24.92 

   401.61 14.67 

Si   102.13  

 

 

Table 2   XPS surface elemental analysis for APTES-modified P25 TiO2 nanoparticles. 5 

Element % 

Ti 18.88 

O 51.14 

C 23.16 

N 3.56 

Si 3.25 

 

 

 
 

Fig. 3. Possible surface interactions and potential modes of chemical bonding between a TiO2 10 

nanoparticle surface and (3-aminopropyl)triethoxysilane (APTES). 
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 The active surface area of the APTES-modified P25 TiO2 nanoparticles as determined 

using absorption experiments and BET analysis is 47.5 m2/g, which is marginally lower (2.5 

m2/g) than that of the untreated P25 TiO2 nanoparticles (50.0 m2/g), due to the coating of 

APTES on the surface of P25 TiO2 nanoparticle powder. The photocatalytic activity of the P25 

TiO2 and APTES modified TiO2 powder was tested by adding samples of the untreated and 5 

treated P25 TiO2 nanoparticles to a Rhodamine solution followed by UV-irradiation at 365 nm 

for 30 min. The UV/vis analysis shows that 51.8% of Rhodamine is degraded by the APTES-

modified P25 TiO2 nanoparticles, compared with 58.5% of Rhodamine degradation by the 

untreated P25 TiO2 nanoparticles (Fig. 4). The lower photocatalytic activity of APTES-

modified P25 TiO2 nanoparticles further supports the assumption that the surfaces of treated 10 

P25 TiO2 nanoparticles have indeed been coated with APTES. However, the TEM images of 

P25 TiO2 and APTES APTES-modified P25 TiO2 nanoparticles show no significant 

differences in size or shape of the nanoparticles before and after treatment (not show), which 

indicates that the APTES coating present on the TiO2 surface is very thin, as could be 

reasonably expected.  15 

 

Fig. 4. Rhodamine B photodegradation by (1) commercially available P25 TiO2 nanoparticles 

and (2) APTES-modified P25 TiO2 nanoparticles.after 30 min UV-irradiation.  
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3.2 Deposition of APTES-modified P25 TiO2 nanoparticles on paper 

 The APTES-modified P25 TiO2 nanoparticles have free terminal amino-groups (normal 

attachment of -NH2 groups) and hydrolysable silane groups (reverse attachment of –Si(OR)3 

groups). Therefore, the presence of free terminal NH2 groups can facilitate the attachment of 

the APTES-modified P25 TiO2 nanoparticles to the cellulose fibres through hydrogen bonding 5 

between amino- or protonated amino- (-NH3
+) groups with hydroxyl groups present the surface 

on the surface of the cellulose fibres. The silane groups will also react with the hydroxyl groups 

on cellulose fibres to fix P25 TiO2 nanoparticles onto the surface of the cellulose paper. These 

interactions and chemical reactions ensure the fixation of the APTES-modified P25 TiO2 

nanoparticles on the surface of the cellulose fibres, that cannot removed by repeated washing 10 

with copious amounts of water. 

 Figure 5 shows the XRD patterns of the paper substrate and the paper coated with the 

APTES-modified P25 TiO2 nanoparticles. It can be seen that beside a strong peak attributable 

to cellulose at 2 = 23o, a weak anatase titania peak attributable to TiO2-P25 can also be 

observed. However, peaks attributable to the minority rutile polymorph present in the standard, 15 

commercially available P25 TiO2 nanoparticles are probably too weak to be observed. SEM 

images also show that the surfaces of the cellulose fibres are covered with a coating of APTES-

modified P25 TiO2 nanoparticles and no nanoparticles can be observed between the fibres of 

cellulose, see Fig. 6. In contrast, the untreated P25 TiO2 nanoparticles are mainly located 

between the fibres of the cellulose, rather than being attached to the surface of the fibres (Fig. 20 

6).  
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Fig. 5.   XRD pattern of (a) cellulose paper and (b) cellulose paper coated with APTES-

modified P25 TiO2 nanoparticles. 

 

 5 

 
 

Fig. 6.   SEM images of cellulose papers coated with (a, b and c) commercially available P25 

TiO2 nanoparticles and (d, e and f) APTES-modified P25 TiO2 nanoparticles. 

 10 
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 The ISO-brightness determined for the blank reference paper and the paper samples coated 

either with untreated P25 TiO2 nanoparticles or APTES-modified P25 TiO2 nanoparticles, 

before and after illumination with UV-light in the standard xenon UV-stability test, is shown 

in Fig. 7(a). It can be seen that the brightness of the blank paper reference is sharply reduced 

after illumination with UV radiation in the standard xenon test. The reduction in brightness is 5 

even more significant for the paper samples coated with untreated P25 TiO2 nanoparticles. In 

contrast, there is only a marginal reduction in the brightness of the paper samples coated with 

APTES-modified P25 TiO2 nanoparticles. It seems reasonable to assume that the small 

reduction in the brightness of the APTES-modified P25 TiO2 nanoparticle coated paper sample 

after the xenon UV-test is attributable to the fact that the photo-catalytically active titania 10 

nanoparticles have been coated effectively with a thin, inert layer of APTES, which passivates 

their surface and thereby inhibits their inherent photocatalytic activity. The value for the CIE-

whiteness of the cellulose paper coated with APTES-modified P25 TiO2 nanoparticles is 

slighter higher than that of either the blank paper reference and that of the P25 TiO2-

nanoparticle-coated paper sample, see Fig. 7(b). In contrast to the sharp reduction in the 15 

whiteness of the blank paper reference sample and the P25 TiO2 nanoparticle coated paper 

sample, no reduction in whiteness can be observed for the paper coated with the APTES-

modified P25 TiO2 nanoparticles, after the standard xenon UV-stability test.  

 

 20 
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Fig. 7. (a) ISO-brightness and (b) CIE whiteness of blank reference paper and the paper 

samples coated either with untreated P25 TiO2 nanoparticles or APTES-modified P25 TiO2 

nanoparticles before and after the UV-stability test. 

 5 

  

3.3 Conclusion 

 A simple dip-coating procedure has been successfully applied to attach APTES-modified, 

commercially available P25 TiO2 nanoparticles onto the surface of standard, commercial 

uncoated paper samples. The presence of free terminal NH2 groups and hydrolysable silane 10 

groups in the APTES-modified P25 TiO2 nanoparticles contributes to the attachment of TiO2 

onto the surface of the constituent fibres of the paper samples. The presence of the APTES 

coating between the titania nanoparticles and cellulose fibres effectively inhibits the strong 

photocatalytic degradation effect of the titania nanoparticles. The paper samples coated with 

APTES-modified P25 TiO2 nanoparticles exhibit a significantly higher stability to UV-15 

bleaching than that of the untreated commercial paper reference.  
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