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Abstract

Optimal stochastic controller pushes the closed-loop behavior as close as pos-

sible to the desired one. The fully probabilistic design (FPD) uses probabilistic

description of the desired closed loop and minimizes Kullback-Leibler divergence

of the closed-loop description to the desired one. Practical exploitation of the fully

probabilistic design control theory continues to be hindered by the computational

complexities involved in numerically solving the associated stochastic dynamic pro-

gramming problem. In particular very hard multivariate integration and an approx-

imate interpolation of the involved multivariate functions. This paper proposes a

new fully probabilistic control algorithm that uses the adaptive critic methods to

circumvent the need for explicitly evaluating the optimal value function, thereby

dramatically reducing computational requirements. This is a main contribution of

this short paper.
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1 Introduction

Stochastic control design minimizes an expected cost function with respect to

feedback control strategies, e.g. [1,5]. It influences selected characteristics, e.g.

noncentral second moments, of the joint probability density function (pdf) of

variables occurring in the optimized closed loop. The studied FPD [11,7,12]

pushes this joint pdf to the user-specified ideal pdf describing the desired be-

havior of the closed loop. The FPD has a strong intuitive appeal and provides

an explicit minimizing strategy. Although the minimizer can be obtained ex-

plicitly, computational requirements of the FPD approach are still intensive.

Numerically the FPD approach involves computation of subsequent integra-

tions to minimize an expected cost function subject to the probability den-

sity function of the system dynamics. Practical implementation of the FPD

approach is difficult because of 1) multivariate integration and curse of di-

mensionality 2) non Gaussian probability density functions prevent the cost

function from being written in a closed analytical form, which consequently

does not allow exploitation of the rich available analytical results 3) the FPD

approach assumes the existence of perfectly known pdf models of the systems

to be controlled, which are rarely available.

The contribution of this paper lies in developing an adaptive critic solution to

the FPD problem. The proposed fully probabilistic adaptive critic approach

uses a critic network that approximates the derivative of a cost function de-

rived from a Kullback-Leibler distance between the joint probability density

function of the closed loop system and an ideal joint probability density func-
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tion. The critic network critiques the controller and the outputs of that con-

troller, hence considered as a feedback rather than an open loop controller.

The action network provides estimate for the conditional distribution of the

optimal control strategy as derived from the FPD either on or off line. In con-

trast to the original FPD, the proposed adaptive critic solution reduces the

computational requirements and does not assume the existence of perfectly

known pdf models of the system dynamics to be controlled. As such, more

robust control strategy can be derived for real world systems where hypothet-

ical probability measures of the system dynamics are assumed. This paper

provides a basis for considering the computational intelligence-based adaptive

critic methods along with the existing classical FPD approach for developing

a more robust and practically implementable control.

To emphasize, this work uses neural network approximation methods to com-

plement the techniques of conventional stochastic control theory, which are

well developed, tested and implemented. This represents the novelty of the

new probabilistic adaptive critic framework proposed in this paper: whilst the

proposed design is firmly rooted in stochastic control, the needed probabilistic

models are handled by stochastic version of neural networks. These are proved

to be very effective tools for obtaining probabilistic models of stochastic lin-

ear and nonlinear mappings. The new design provides a general solution for

stochastic systems subject to random inputs and deterministic systems charac-

terized by functional uncertainty with unknown probability density functions.

Hence the contribution of this work to intelligent control stems from the nature

of the plant and the environment being considered, which covers functional

uncertainty and randomness. These are the typical conditions under which an

intelligent controller is expected to operate so as to improve the performance
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and autonomy of conventional control schemes.

Throughout, ≡ is defining equality; f(·|·) stands for a probability density

function (pdf); the conditioning symbol | is also used as separator in functions

that need not to be pdfs; t labels discrete-time moments, t ∈ {1, . . . , H};
H ≤ ∞ is a given control horizon; dt = (xt, ut) is the data record at time

t consisting of an observed vectorial measurable state xt and of an optional

vectorial system input ut; d(t) stands for the sequence (d1, . . . , dt); integrals

are multiple and definite over the integrand domain.

2 Problem Formulation

Assume that the system can be represented by the following nonlinear stochas-

tic model

xt = g(xt−1, ut, εt), (1)

where xt is the measured state vector, ut is the control input to the system,

εt is a white noise, which has zero mean and covariance P , and g(.) is an

unknown nonlinear function that represents the system dynamics. Because of

the existence of the noise, only the conditional probability density functions

(pdfs) of the future state values can be specified at each instant of time t as

follows

s(xt|ut, xt−1), (2)

In general s(·|·) needs not to be known and no assumption is made on whether

εt has a known probability density function.
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The objective of the FPD is then to determine a randomized optimal control

law described by the conditional pdf

c(ut|xt−1) (3)

that minimizes the Kullback-Leibler divergence (KLD) between the actual

joint pdf f(D) of the observed data D = (x(H), u(H)) and the ideal joint pdf

If(D) acting on a set possible Ds and defined as follows

D
(
f || If

)
≡

∫
f(D) ln

(
f(D)
If(D)

)
dD. (4)

The KLD in (4) has the following key property

D(f || If) ≥ 0, D(f || If) = 0 iff f = If almost everywhere on D. (5)

The joint pdf f(D) ≡ f(d(H)) of the data sequence D ≡ d(H) is the most

complete probabilistic description of the (observed) behavior of the closed

control loop. The chain rule for pdfs [18] allows its factorisation as follows

f(D) =
H∏

t=1

s(xt|ut, xt−1)c(ut|xt−1). (6)

The first generic factor in (6) is the conditional pdf of the system dynamic

given in (2) and the second generic term describes the optional (randomized)

causal controller given in (3). To reemphasise, probability density functions

of the system dynamics and inverse controller are assumed to be unknown

and need to be estimated in this article. The estimation method of these

probability density functions will be discussed in Section 3.

The interpretation of the ideal pdf as a result of standard control design implies

that it can be factorised in the way mimic to (6) with an “ideal” system
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model Is(xt|ut, xt−1) and “ideal” controller Ic(ut|xt−1) mimic to (2) and (3),

respectively

If(D) =
H∏

t=1

Is(xt|ut, xt−1)
Ic(ut|xt−1). (7)

Minimization of (4) with respect to the control input can be obtained recur-

sively by first defining − ln(γ(xt−1)) to be the expected minimum cost-to-go

function (alternatively called value function) corresponding to (4)

− ln(γ(xt−1)) = min
{c(uτ |xτ−1}H

τ≥t}
H∑

τ=t

∫
f(dt, . . . , d(H)|xt−1)

× ln

(
s(xτ |uτ , xτ−1)c(uτ |xτ−1)

Is(xτ |uτ , xτ−1) Ic(uτ |xτ−1)

)
d(dt, . . . , d(H)),

for arbitrary τ ∈ {1, . . . , H}. Using this definition minimization is then per-

formed recursively to give the following recurrence functional equation

− ln(γ(xt−1)) = min
c(ut|xt−1)

∫
s(xt|ut, xt−1)c(ut|xt−1) (8)

×
[
ln

(
s(xt|ut, xt−1)c(ut|xt−1)

Is(xt|ut, xt−1) Ic(ut|xt−1)

)

︸ ︷︷ ︸
≡partial cost =⇒ U(xt, ut)

− ln(γ(xt))︸ ︷︷ ︸
optimal cost-to-go

]
d(xt, ut).

Full derivation of (8) is given in the appendix. Equation (8) constitute the

recurrence equation of the dynamic programming solution to the FPD control

problem.

The recurrence equation can then be used backward in time to obtain an ap-

proximate solution to the exact optimal control history. Here the evaluation of

any control action ut, at time t, involves performing H− t subsequent integra-

tions. Furthermore, the evaluation of the optimal cost-to-go function, γ(xt−1)

involves repeating these subsequent integrations many times. Using stored val-

ues of later optimal cost-to-go, the backward propagation is implemented to
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evaluate the control strategy, which means very large storage requirements.

This backward dynamic programming approach is very expensive computa-

tionally for higher dimensional systems. The required expansion of the state

and storage of all optimal cost lead to a number of computations that grows

exponentially with the number of the state variables, a phenomenon known

as the curse of dimensionality.

3 An Adaptive Critic Approach to the Fully Probabilistic Control

In this paper, we seek to avoid the difficulties of the FPD arising from the

multivariate integration and curse of dimensionality. This can be achieved by

way of the adaptive critic methods derived from the forward dynamic pro-

gramming approach. They use a critic network to approximate the optimal

cost-to-go and an action network to provide prediction for the optimal con-

trol policy. The critic methods overcome the curse of dimensionality problem

through function approximation while approaching the optimal solution over

time. The main objective here is to achieve satisfactory convergence to the

optimal or near-optimal solution.

Adaptive critic designs are neural network based designs for optimization that

combine concepts of reinforcement learning and approximate dynamic pro-

gramming [21,20,19,15–17]. They consist of two neural networks, an action

network that produces optimal actions and an adaptive critic that approxi-

mates the performance of the action network [2,8,13]. Depending on the spe-

cific role performed by the key component called the critic, the critic network

approximates the optimal cost-to-go function or its derivative and is then

trained using recursive equations derived from dynamic programming [22].
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The critic network is trained forward in time, which reduces computational

time and storage requirements in real time control applications. This also has

the advantage of predicting future cost and take prevention a head of time

before applying the control signal.

Figure 1 illustrates the FPD adaptive critic design proposed in this paper. It

is based on the dual heuristic programming (DHP) scheme of adaptive critic

methods. In the proposed FPD adaptive critic, the critic approximates the

derivative of the cost function in (8) with respect to the state,

λ∗[xt−1] =
∂[− ln(γ(xt))]

∂xt−1

. (9)

The proposed architecture contains parametric blocks called the controller or

action network, the forward model and the critic network. The action network

is responsible for estimating the conditional distribution of control signals,

while the critic network provides approximation to the derivative of the opti-

mal cost-to-go function as specified in (9). The forward model can be either

a mathematical model or neural network approximation to the conditional

distribution of the system dynamics.

3.1 Forward Model

The method adopted for estimating the conditional distribution of the sys-

tem dynamics is based on the method proposed in [9], where neural network

models are used to provide a prediction for the conditional expectation of

the system output and calculating the variance of its residual error. For the

general class of stochastic nonlinear systems given by (1), the forward model,

which provides a prediction for the conditional expectation of the state can be
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Fig. 1. The architecture of the proposed probabilistic DHP adaptive critic method

either a mathematical or neural approximation of the following general form

x̂t = Nf (xt−1, ut), (10)

determined by a non-linear mapping Nf . The sum of squares error between

actual state values xt and estimated state values x̂t is used to optimize the

parameters of this model. Once the forward model of the plant is identified

the following stochastic model can be built

xt = x̂t + ε̃t, (11)

where ε̃t represents the residual error of the system output, which is shown [9]

to be close to Gaussian random noise with zero mean and P̃ covariance. Ac-

cording to the developed stochastic model in (11), the distribution of the state

values will be Gaussian distribution with expected means provided by the ap-

proximating nonlinear network and a global covariance P̃ given by the residual

value of the error between actual and estimated states E
(
(xt − x̂t)(xt − x̂t)

T
)
.
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3.2 Controller Network

Similar to the forward model, the conditional distribution of control signals is

estimated using neural network models, which are used to provide a prediction

for the conditional expectation of control. For the proposed probabilistic DHP

AC, the optimal control law can be computed from the following optimality

equation, which is obtained by deriving (8) with respect to the control input,

∂[− ln(γ(xt−1))]

∂ut

∣∣∣∣
ut=u∗t

=
∫

s(xt|ut, xt−1)c(ut|xt−1) (12)

×
[
∂U(xt, ut)

∂xt

∂xt

∂ut

+
∂U(xt−1, ut)

∂ut

+ λ[xt]
∂xt

∂ut

]
d(xt, ut) = 0.

Here the controller network can be optimized such that the error between

optimal control input u∗t , obtained from (12) and estimated control input ut

from the neural network is minimized. Once this network is optimized informa-

tion about the error between optimal control u∗t and estimated control ut will

become available. Hence, the controller generates a control signal ut stochasti-

cally from a Gaussian distribution having a mean computed from the controller

network and a global covariance matrix equal to the residual error between the

output of the network and the optimal control signal, E
(
(u∗t − ut)(u

∗
t − ut)

T
)
.

Remark 1: Although the conditional distribution function of the system

output and control signals are assumed to be Gaussian in this paper, expected

values of these distributions are estimated using nonlinear neural network

models.

Remark 2: The sum of square errors does not require that the distributions

of the states or control inputs to be Gaussian. If a sum of square error is

used however the quantities, which can be determined are the conditional
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expectations of the estimated outputs and the global average covariances of

the residual errors.

Remark 3: It would be possible to consider more general estimators of the

residual error, but the Gaussian assumption is adequate for the moment. Fu-

ture work, will consider how this assumption may be relaxed by modelling the

noise distribution using a mixture model.

3.3 Adaptive Critic Network

Given estimation of control law from the control network and the derivative of

the critic network λ[xt−1], the critic network can be optimized by computing

its desired value as follows

λ∗[xt−1] =
∫

s(xt|ut, xt−1)c(ut|xt−1)
[
∂U(xt, ut)

∂xt

∂xt

∂xt−1

+
∂U(xt, ut)

∂xt

∂xt

∂ut

∂ut

∂xt−1

+
∂U(xt, ut)

∂ut

∂ut

∂xt−1

+ λ[xt]
∂xt

∂xt−1

+ λ[xt]
∂xt

∂ut

∂ut

∂xt−1

]
d(xt, ut), (13)

which is obtained by deriving (8) with respect to the state. The parameters

of the critic network can then be adapted such that the error between the

desired value of the critic given in (13) and estimated value from the critic

network is minimized.

3.4 Training Algorithm

Assuming dual heuristic programming DHP for training the adaptive critic

network, the training process for the adaptive critic network has been known

to be a two stage process. The training of the action network, which outputs
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the optimal control policy u[xt−1] and the training of the critic network, which

approximates the derivative of the cost function λ[xt−1]. As a first step in the

training process, the critic and the action networks need to be designed and the

initial weights of these networks should be randomized. Since the derivative

of the utility function can be calculated, this in combination with the critic

outputs and the system model derivatives, allows the use of (13) to calculate

the target value of the critic, λ∗[xt−1]. The difference between λ∗[xt−1] and

the output of the critic, λ[xt−1] is used to correct the critic network, until it

converges. The output from the converged critic is used in (12) solving for the

target u∗t , which is then used to correct the action network. These two steps

continue until a predetermined level of convergence is reached.

To reemphasise, adaptive critic designs are based on an algorithm that cycles

between a policy improvement routine and an action determination opera-

tion. Here the algorithm approximates the optimal control law and the value

function − ln(γ(xt−1)). The algorithm terminates when control law and value

function or its derivative λ[xt−1] have converged to the optimal or subopti-

mal control law and value function or its derivative respectively. The proof

of convergence given in [6,10] is directly applicable to the probabilistic adap-

tive critic design in this paper. A simple example on the convergence of the

proposed probabilistic critic network is given in Section 5.

Although adaptive critic algorithm involves multiple computational levels, its

implementation can be made by means of modular approach constituting of

functional modules and algorithmic modules. The key functional modules are

the action and critic networks. Algorithmic modules however include networks

parameters updating, solve the optimality Equation (12), and compute the de-

sired value of the critic network (13). Each module in the adaptive critic can
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be modified independently from other modules thus algorithmic changes and

debugging are performed fast and reliable. The speed of convergence is depen-

dent on the suitability of the initialized control law and value function as well

as the optimization algorithm [6,9]. Further discussion on the convergence and

speed of convergence of adaptive critic designs can be found in [14]. Moreover,

empirical evidence on the convergence of the adaptive critic design can be

found in [2,8,13,15].

4 Linear Gaussian Case

Since analytic solution of the fully probabilistic design method can be obtained

if all pdfs of the system dynamics and the controller are Gaussian, this section

will evaluate the adaptive critic solution and the FPD solution to the linear

Gaussian case. In other words, the linear Gaussian systems will serve as a

benchmark problem for checking the meaning of the proposed adaptive critic

method and illustrating the use of the FPD.

For that purpose the theory developed in the previous section is applied here

to a linear-Gaussian state space model, described by the following stochastic

equation,

xt = Axt−1 + But + ωt

s(xt | xt−1, ut) ÃNxt(Axt−1 + But, Σ), (14)

where A and B are the state and control matrices respectively, ωt is the noise

of the residual error of the state, and where the covariance of the residual error

Σ is estimated as described in Section 3. The system is initially in state xt−1

and the aim is to return the system state to the origin. Hence, the recurrence
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functional equation defined in (8) is considered as the performance function

to be minimized. As a result of the chain rule Equation (8) can be expressed

in the form,

− ln(γ(xt−1)) =
∫

f(xt, ut)
[
ln

s(xt|xt−1, ut)
Is(xt|ut, xt−1)

+ ln
c(ut|xt−1)
Ic(ut|xt−1)

− ln(γ(xt))
]
d(xt, ut). (15)

The system state distribution s(. | .) in Equation (15) is defined in (14). The

ideal state distribution is assumed to be,

Is(xt|ut, xt−1) = Nxt(0, Σ) (16)

It reflects the regulation problem with the realistic aim of reaching the zero

state, with a spread being determined by the covariance of the innovation Σ.

The randomized controller to be designed is described by the following stochas-

tic model

ut = Cxt−1 + εt

c(ut|xt−1) ÃNut(Cxt−1, Γ), (17)

where C is the matrix of the controller parameters, εt is the residual error of

the control input, and Γ is the covariance of the residual error of control. The

distribution of the ideal controller is also assumed to be

Ic(ut|xt−1) = Nut(0, Γ), (18)

where Γ is the innovations in estimating the optimal control input.

Define the following matrix,

Ẽ = A + BC (19)
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Using (19) in (14), the stochastic equation of the state space model can then

be rewritten as follows,

xt = µt + Bεt + ωt = Ẽxt−1 + Bεt + ωt. (20)

By the backward induction, it will be verified that − ln(γ(xt)) = 0.5xT
t Mxt +

Q0 with some positive semidefinite matrix M ≥ 0 and some constant Q0 ≥ 0.

Since it proves convenient to make use of this result almost immediately, but,

first the following definition is introduced

M = ẼT MẼ + CT Γ−1C + ẼT Σ−1Ẽ. (21)

We claim that the optimal performance index satisfies the following condition

− ln(γ(xt−1)) = 0.5xT
t−1Mxt−1 +Q0, (22)

To prove this we simply substitute into (15) and verify that it is satisfied. For

the left hand side of the equation we get:

− ln(γ(xt−1)) = 0.5xT
t−1Mxt−1 +Q0. (23)

For the right hand side, we get

=
∫ H−1∑

t=0

f(xt, ut)
[
ln

s(xt|xt−1, ut)
Is(xt|ut, xt−1)

+ ln
c(ut|xt−1)
Ic(ut|xt−1)

+ 0.5xT
t Mxt +Q0

]
d(xt, ut)

=
1

2
xT

t−1C
T Γ−1Cxt−1 +

1

2
xT

t−1Ẽ
T Σ−1Ẽxt−1 +

1

2
xT

t−1Ẽ
T MẼxt−1

+
1

2
tr[MΣ] +Q0. (24)

Because M satisfies (21) and because the distributions of the errors are con-

stant with respect to x, this tells that,
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∫
f(xt, ut)

[
ln

s(xt|xt−1, ut)
Is(xt|ut, xt−1)

+ ln
c(ut|xt−1)
Ic(ut|xt−1)

− ln(γ(xt))
]
d(xt, ut).

= 0.5xT
t−1Mxt−1 +Q0. (25)

Comparing (25) and (22), we see that the quadratic nature of the optimal

performance index is satisfied.

4.1 Proposed Adaptive Critic in Linear Gaussian Case

In this section, the target of the critic as they would be generated by DHP

from the proposed adaptive critic solution will be calculated and compared to

that of the correct target values. The correct target values of the critic network

can be obtained by deriving (25) with respect to the state, xt−1 as follows:

λ[xt−1] = Mxt−1 (26)

To calculate the output of the critic network, λ[xt] should firstly be calculated,

and then we carry out the calculations implied by (13),

λ[xt] = Mxt (27)

The first term on the right hand side of (13), requires calculation of the partial

derivatives of U(xt, ut) and xt with respect to xt and xt−1 respectively,

∫
s(xt|ut, xt−1)c(ut|xt−1)

∂U(xt, ut)

∂xt

∂xt

∂xt−1

d(xt, ut) = ẼT Σ−1Axt−1

For the second term the partial derivatives of U(xt, ut), xt, and ut with respect

to xt, ut, and xt−1 respectively need to be calculated,

∫
s(xt|ut, xt−1)c(ut|xt−1)

∂U(xt, ut)

∂xt

∂xt

∂ut

∂ut

∂xt−1

d(xt, ut) = ẼT Σ−1BCxt−1
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The third term requires calculation of the partial derivatives of U(xt, ut) and

ut with respect to ut and xt−1 respectively,

∫
s(xt|ut, xt−1)c(ut|xt−1)

∂U(xt, ut)

∂ut

∂ut

∂xt−1

d(xt, ut) = CT Γ−1Cxt−1

The fourth term requires propagating λ[xt] through the stochastic model of

(14) back to xt, which yields,

−
∫

s(xt|ut, xt−1)c(ut|xt−1)λ[xt]
∂xt

∂xt−1

d(xt, ut) = AT M [A + BC]xt−1

Finally the fifth term can be calculated by propagating λ[xt] through the

stochastic model of (14) back to ut, and then through the action network,

which yields,

−
∫

s(xt|ut, xt−1)c(ut|xt−1)λ[xt]
∂xt

∂ut

∂ut

∂xt−1

d(xt, ut) = MBT CT [A + BC]xt−1

Adding all terms together, yields the target vector of the critic network,

λ[xt−1] = ẼT Σ−1Axt−1 + ẼT Σ−1BCxt−1 + CT Γ−1Cxt−1

+ AT M [A + BC]xt−1 + MBT CT [A + BC]xt−1 (28)

Using (21) in (28) yields,

λ[xt−1] = Mxt−1 (29)

From (29), it can clearly be seen that the target value as estimated by the

critic network is equal to the correct critic value. This validates the theoretical

development of the proposed DHP adaptive critic solution of the FPD problem

proposed in this paper.
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4.2 Action Network in Linear Gaussian Case

For linear Gaussian systems, the parameters of the action network C in Equa-

tion (17) can be obtained for a corresponding value function λ[xt] by carrying

out calculations implied by Equation (12). The first term on the right hand

side of (12), requires calculation of the partial derivatives of U(xt, ut) and xt

with respect to xt and ut respectively,

∫
s(xt|ut, xt−1)c(ut|xt−1)

∂U(xt, ut)

∂xt

∂xt

∂ut

d(xt, ut)

= BT Σ−1Axt−1 + BT Σ−1BCxt−1

For the second term partial derivatives of U(xt, ut) with respect to ut need to

be calculated

∫
s(xt|ut, xt−1)c(ut|xt−1)

∂U(xt, ut)

∂ut

d(xt, ut) = Γ−1Cxt−1

The last term can be calculated by propagating λ[xt] through the stochastic

model of (14) back to ut, which yields

∫
s(xt|ut, xt−1)c(ut|xt−1)λ[xt]

∂xt

∂ut

d(xt, ut) = BT MAxt−1 + BT MBCxt−1

Adding all terms together and solving for the parameters of the action network

yields,

C = −(BT MB + BT Σ−1B + Γ−1)−1(BT MA + BT Σ−1A). (30)

The controller can then generates control signals ut stochastically from a gaus-

sian distribution having a mean Ĉxt−1 and a global average covariance Γ calcu-

lated as discussed in Section 3. Here Ĉ is the estimate of the optimal controller

18



parameters C obtained from the neural network model.

5 Simulation Example

In order to illustrate the validity of the theoretical development of the pro-

posed probabilistic adaptive critic, the theory developed in Section 3 is applied

here to a single input 2–outputs control problem described by the following

stochastic equation

xt+1 = Gxt + Hut+1 + wt+1, (31)

where

G =




0 0

−0.5 1




, H =




1

0




, E[wt+1w
T
t+1] =




0.01 0

0 0.01




.

The plant is initially, at time t = 0, in state x0 = [2;−2], and the aim is

to return the plant state to the origin, or a state close to the origin. As a

first step in the solution, the Gaussian probability density function of the

stochastic model described by Equation (31) is estimated, as discussed in

Section 3, using two generalized linear networks to provide predictions for

the expected values of states x1, and x2, and a global diagonal covariance

matrix Σ = [0.0098, 0.0101]. Another generalized linear network is used to

provide prediction for the expected value of control signal. The variance of

the controller is taken to be, Γ = [0.01]. Next, the critic networks were taken

to be multi-layer perceptron neural networks with five neurons in the hidden

layer. The parameters of the controller and the adaptive critic networks are
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initialized randomly from a zero mean, isotropic Gaussian, with unit variance

scaled by the fan-in of the output units.

The target values of the critic networks are calculated as specified in Equa-

tion (13) for random values of xt until the critic network converges. The action

network is then trained from the converged critic networks, which are used in

solving Equation (12) for control. After the action network converges, the

critic networks are again trained (by adapting weights of the previously con-

verged critic) using the outputs of the trained action network. This process is

repeated until action and critic networks converge.

For comparison purposes, two experiments were conducted to demonstrate the

optimal control using policy method of dynamic programming and the pro-

posed probabilistic adaptive critic approach. The numerical results are shown

in Figure 2. To demonstrate the validity of the proposed probabilistic adaptive

critic approach we have presented plots of the proposed probabilistic adaptive

critic states and optimal states histories in Figures 2(a), and (b). In each of

the cases we can see that the optimal state values (as obtained from the pol-

icy method of dynamic programming) and the proposed probabilistic adaptive

critic solutions are superimposed on each other. Figures 2(c), and (d) show

the estimated critic values from the proposed probabilistic adaptive critic ap-

proach and the optimal critic values . It can be seen that the estimated critic

values converge to the optimal critic values. The optimal control history and

the adaptive critic control history are presented in Figure 2(e). This figure

shows that the estimated control is always close to the optimal control.
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Fig. 2. Controlled multi dimensional stochastic system: (a) Optimal and critic es-

timated values for state 1. (b) Optimal and critic estimated values for state 2. (c)

Critic output 1. (d) Critic output 2. (e) Optimal and critic values for control.

6 Conclusion

A new approximate neural network based solution of the FPD problem has

been proposed. The proposed solution uses the adaptive critic method to ap-
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proximate the FPD problem. It reduces computational requirements of the

original FPD problem and does not assume the existence of perfectly known

probability pdf models of the system dynamics to be controlled. As such, more

robust control strategy can be derived for real world systems where hypothet-

ical probability measures of the system dynamics are assumed. This paper

provides a basis for considering the computational intelligence-based adaptive

critic methods along with the existing classical FPD approach for developing

a more robust and practically implementable control.

Moreover, the proposed formulation of the FPD in an adaptive critic frame-

work allows exploitation of functional uncertainty when deriving the optimal

control law. Functional uncertainty are usually state and control dependent.

If functional uncertainty are made available for the proposed approach, an

adaptive critic controller can provide superior performance with minimum a

priori knowledge of system dynamics. In future work, we will discuss how to

estimate and exploit functional uncertainty in a fully probabilistic adaptive

critic design approach.

7 Appendix

7.1 Justification of the Fully Probabilistic Design

Stochastic control design orders controllers according to the expected cost

assigned to them [3]. Generally, the optimal controller is designed such as to

minimize a performance index J of the following form

J =
∫
Ũ(L(D), D)f(D) dD. (32)
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The loss function L(D) with real, possibly infinite, values orders a posteriori

closed-loop behaviors D, i.e., it quantifies preference among them and ex-

presses compromise between generic multiple-objectives of the control design.

It extends partial preference ordering, which the designer has among possible

behaviors. It has to be isotonic with respect to this ordering but its choice

is far from being unique. Usually, unnecessary requirements (like smoothness,

additivity etc.) are added in order to reduce this freedom.

The function Ũ shapes additionally the loss so that the prior risk attitude

of the designer can be respected. Again, Ũ is far from being unique and has

to meet just a few requirements, like isotonicity with respect to L values,

measurability and a sort of smoothness.

The risk-attitude-expressing the role of Ũ justifies the following assumption

Ũ(L(D), D) ≡ U(L(D), f(D)). (33)

The assumption (33) says that the risk-related modification of the loss is the

same for equally probable behaviors. It is acceptable and resembles a sort of

likelihood principle [4].

Assume that a randomized controller can be found for a given conditional

pdf of system dynamics and any pair of L, Ũ , such that it minimizes the

performance index J . The interconnection of the randomized controller with

the pdf of the system is given by the ideal joint pdf, If(D). Then, the following

proposition can then be introduced,

Proposition 1 (Justification of the FPD) Let i) (33) holds; ii) U(·, ·) has

continuous partial derivative with respect to the second argument for almost all
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D; iii) the minimum of J is reached for f(D) = If(D); iv) U(L(D), If(D)) =

constant for almost all D.

Then, J as given in (32) is an increasing affine transformation of the KLD,

D
(
f(D)|| If(D)

)
.

Proof : Let us denote, f = f(D), If = If(D) and let f = If+εδ be a variation

of the optimal pdf If minimizing the performance index J . Here ε ≥ 0 and

δ = δ(D) is an arbitrary function, which has zero integral over §D and which

guarantees that f ≥ 0. Substituting (33) into (32) and setting the derivative

of J with respect to f(D) to zero yields the necessary condition for If to be

a minimizer. Thus,

∫
δ(D)

[
U(L(D), If) + If

∂

∂z
U(L(D), z)z= If(D)

]
dD = 0 ⇒︸︷︷︸∫

δD dD=0 and iv)

If
∂U(L(D), z)

∂z |z= If(D)
= A > 0 ⇒ U(Z(D), f(D)) = A ln(f(D)) + B(D),

for some function B(D). By applying again the assumption iv), we get the

claimed result. 2

Neither the adopted ”likelihood principle” nor smoothness represent a signifi-

cant restriction of generality. The restriction degree caused by the ”uniformity”

requirement iv) is not clear yet.

7.2 Stochastic Principle of Optimality

For the FPD control problem the expected value of the KLD should be mini-

mized
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D
(
f || If

)
= E

{ H∑

τ=t

∫
f(dτ |xτ−1)× ln

(
s(xτ |uτ , xτ−1)c(uτ |xτ−1)

Is(xτ |uτ , xτ−1) Ic(uτ |xτ−1)

)
d(dτ )

}
.

The stochastic principle of optimality can then be derived by firstly defining

the minimum expected cost function as follows

− ln(γ(xt−1)) = min
{c(uτ |xτ−1}H

τ≥t}
E

{ H∑

τ=t

∫
f(dτ |xτ−1)

× ln

(
s(xτ |uτ , xτ−1)c(uτ |xτ−1)

Is(xτ |uτ , xτ−1) Ic(uτ |xτ−1)

)
d(dτ )

}
.

By splitting the summation into two parts

− ln(γ(xt−1))

= min
c(ut|xt−1)

[
min

(c(uτ |xτ−1))H
τ=t+1

{∫
f(d1, . . . , dt|xt−1)

× ln

(
s(xt|ut, xt−1)c(ut|xt−1)

Is(xt|ut, xt−1) Ic(ut|xt−1)

)
d(d1, . . . , dt)

+
H∑

τ=t+1

∫
f(dτ |xτ−1)× ln

(
s(xτ |uτ , xτ−1)c(uτ |xτ−1)

Is(xτ |uτ , xτ−1) Ic(uτ |xτ−1)

)
d(dτ )






 .

When respecting dependence on the optimised control, we get

− ln(γ(xt−1)) = min
c(ut|xt−1)

[∫
f(d1, . . . , dt|xt−1)

{
ln

(
s(xt|ut, xt−1)c(ut|xt−1)

Is(xt|ut, xt−1) Ic(ut|xt−1)

)

− ln(γ(xt))} d(d1, . . . , dt)]
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