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SUMMARY

A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete

time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in

the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed

adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration

purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems

and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the

distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme

is demonstrated numerically through the simulation of an affine nonlinear system.

Copyright c© 2010 John Wiley & Sons, Ltd.

1. Introduction

It can generally be assumed that any system in the real world has some degree of uncertainty, which

is a consequence of the uncertainty due to the intrinsic nonlinear dynamic of the system, noise and
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2 R. HERZALLAH

randomness in data and approximate model parameters. It is therefore, a necessary requirement for

any controller to be able to estimate and incorporate such uncertainty. The classical way of solving the

problem of uncertain parameters is to use adaptive filters where not only the dynamic behavior of the

system is estimated but also the noise statistics [11, 14]. The most general approach for solving the

noise adaptive filtering was the Bayesian approach [13, 14, 19]. Several applications of the Bayesian

method have been discussed in the literature, examples are: the control of the basic oxygen furnace [10],

traffic flow forecasting [20] and the estimation of the river reach time delay [21]. However, for complex

control problems it is insufficient to estimate parameters uncertainty only. Models uncertainty should

also be estimated and incorporated in deriving the optimal control law. To deal with the high levels

of uncertainty in modeling and estimation and the growing complexity of control systems, a number

of controller algorithms have been proposed. Three groups of the so far known developed control

methods are: i) the shape control of the closed loop probability density function [9]; ii) the control of

the output probability density functions [22, 23]; and iii) the control of the tracking error probability

density functions [7]. In the first group the controller is designed such as to minimize the distance

between the actual closed loop probability density function and a predefined desired density function.

In that method, all required probability density functions are assumed to exist. In the second group

the objective of the controller design is to find a control input which makes the shape of the measured

output probability density function follows a given distribution. The objective of the controller in the

third method however, is to characterize the uncertainty of the tracking error for general nonlinear

systems. It estimates the distribution of the inverse controller which makes the average tracking error

equal to zero. The problem in [7] is formulated from the Bayesian decision theoretic viewpoint which

is shown to be a general framework to solve stochastic estimation and control problems [8]. Despite

the theoretical attractiveness of the first and second groups, they treat uncertainty as a nuisance or

perturbation which does not affect the derivation of the optimal control law. In other words, uncertainty

has been assumed to be input–independent and consequently they did not contribute to the derivation

of the optimal control law. The third design group on the other hand considers input–dependent

uncertainty in the forward model. No allowance is made for uncertainty of the tracking error.

The method proposed in [7] is constrained to the case where the noise variance of the tracking

error represented by the hyperparameter of the tracking error distribution was input–independent.
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A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 3

This is restrictive in many real world applications which are characterized by nonstationary and

input–dependent noise. This input–dependent nature of the noise significantly deteriorates the control

performance, and therefore should be taken into consideration when deriving the optimal control law.

Here we mention a few examples from the literature. The first one is the Keck astronomical telescope

where the direction of the force of gravity on the mirror changes as the telescope turns to track a

star [1]. A second example is the aircraft autolander where the wind disturbance affecting the landing

of an aircraft is a function of the altitude of the aircraft [15]. In biomedical applications also different

samples have different values of uncertainty depending on whether we have complete or incomplete

measurement of that sample. As a final example we mention here communication systems where the

systems’ noise is nonstationary and data–dependent [4].

Even if the control system has stationary noise affecting its output, the hyperparameter of the

tracking error would still be assumed to be input–dependent, especially in on line estimation and

control. This can be motivated by considering the sensitivity of the model predictions to noise on the

inputs. This leads to a consideration of a model regularizer in which there is a different regularization

parameter for different regions in the input space.

In this paper, it will be shown that the assumption of an input independent hyperparameter of

tracking error is inconsistent with certain properties of local model approximations. Hence, the

method developed in [7] will be extended here to the more general case where the hyperparameter

of the tracking error distribution is assumed to be input–dependent. The input–dependency of the

hyperparameter implies that it should contribute to the derivation of the optimal control law. This

assumption is realistic especially in situations where the noise is nonstationary and where the system

is affected by internal (structure), uncertainty and unpredictable dynamics. A Bayesian approach [7] to

the calculation of the optimal control law will be taken. It will be shown that incorporating uncertainty

of the tracking error when deriving the optimal control law improves not only the transient response of

the system but also the steady state response.

This new framework provides an alternative to the standard adaptive control theory and is based on

probabilistic control methods rather than deterministic methods. The Bayesian formalism of this paper

allows considering model uncertainty as well as parameters uncertainty in the control algorithm. It also

extends the method in [7] by allowing the dependency of the hyperparameter of the tracking error on

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.2010;00:1–27

Prepared usingacsauth.cls



4 R. HERZALLAH

the input values. The proposed method provides a natural way to deal with processes characterized

by functional uncertainty and nonstationary noise, which are actual conditions under which almost all

real world control problems operate as discussed earlier in this section. It takes model uncertainty into

consideration when designing the near–to–optimal control law. Taking knowledge of uncertainty into

consideration when deriving the near–to–optimal control gives superior control results [2,5,6].

2. Preliminaries

In this section, we provide basic elements required for the development of the proposed Bayesian

formalism with input–dependent hyperparameter and we discuss the problem formulation.

2.1. Basic Elements

Consider the general form of stochastic nonlinear plant given by

y(k + τ) = f(z(k), u(k)) + η̃(k + τ), (1)

which can generally be expressed as

y(k + τ) = s(z(k), u(k), η̃(k + τ)), (2)

where y(k + τ) is the system output,u(k) is the control input,̃η(k + τ) is an independent noise signal

with zero mean Gaussian distribution of varianceρ̃, z(k) = [y(k), . . . , y(k−q+1), u(k−1), . . . , u(k−

p+1)] is the input state vector,q andp are the maximum delays of the output and the input respectively,

andf(.) ands(.) are unknown nonlinear functions that represent the system dynamics. Without loss of

generality it is assumed thatf(.) ands(.) are bounded and invertible with respect tou(k).

The aim of control is to design a randomized controller such that the output tracking error is made

small and goes to zero,et(k + τ) −→ 0,

et(k + τ) = y(k + τ) − ym(k + τ)

= s(z(k), u(k), η̃(k + τ)) − ym(k + τ). (3)

This can generally be expressed as

et(k + τ) = g(y(k + τ), ym(k + τ)), (4)
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A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 5

whereg(.) is the stochastic model of the tracking error and is obtained by subtracting the desired output

ym(k + τ) from the system stochastic functions(z(k), u(k), η̃(k + τ)).

To achieve the above purpose, design a randomized controller that makes the output tracking error

small and goes to zero, we adopt the formalism in [7] which is based on defining the following posterior

distribution of control signals ,p(u(k) | et(k + τ), I(k)) using Bayes’ rule:

p(u(k) | et(k + τ), I(k)) =
p(et(k + τ) | u(k), I(k))p(u(k) | I(k))

p(et(k + τ) | I(k))
.

=
1

ZS
exp(−βEet − αEu)

=
1

ZS
exp(−S(u(k))), (5)

where

S(u(k)) = βEet + αEu, (6)

and whereZS is a normalizing constant given by the integral of the numerator over the control input,

u(k). Here,I(k) = {y(1), . . . , y(k), u(1), . . . , u(k − 1)} is the information state vector

The first termEet is the contribution from the likelihoodp(et(k+τ) | u(k), I(k)) which is assumed

to be Gaussian with zero mean and inverse varianceβ:

p(et(k + τ) | u(k), I(k)) =
1

Zet(β)
exp(−

β

2
Eet)

=
1

Zet(β)
exp

(
−

β

2
{y(k + τ) − ym(k + τ)}2

)
, (7)

where

Zet(β) =

(
2π

β

) 1
2

, (8)

is a normalization factor given by the integral ofEet over the random variableet(k + τ), and

whereβ is the inverse variance of the distribution of the tracking error. This means that in order

to proceed with this control problem, the probability density function (pdf) of the tracking error,

p(et(k + τ) | u(k), I(k)) should be estimated. The pdf of the tracking error will be estimated from

process data using recent development in neural networks. It will be discussed briefly in the next

section.

The second termEu is the contribution from the prior over control signals, which is assumed to be
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6 R. HERZALLAH

Gaussian with zero mean and inverse varianceα.

p(u(k) | I(k)) =
1

Zu(α)
exp(−αEu)

=
1

Zu(α)
exp

(
−

α

2
uT (k)u(k)

)
, (9)

whereZu(α) is a normalization factor given by

Zu(α) =

∫
exp(−αEu)du,

=

(
2π

α

) r
2

, (10)

which ensures that
∫

p(u)du = 1. Herer is the dimensionality of the control signal.

Remark1:The Gaussian assumption on the prior reflects preference in minimizing the control energy.

This corresponds to the penalty term foru(k), which is usually added in control problems to penalize

large control signals [3], reflecting that in practice, the control amplitude needs to be constrained.

However, our framework does not insist on smoothness of the control signal and other regularizers can

be used.

2.2. Estimation of the pdf of the Tracking Error

In order to proceed with the above Bayesian formalism, the unknown distribution of the tracking error

should be estimated. Using the probability theory, the density of the tracking error can be obtained

from the density of the system output, y(k + τ) as follows

Pet(y(k + τ), ym(k + τ)) = Py

(
g−1(y(k + τ), ym(k + τ))

)∣∣∣∣
d(g−1(y(k + τ), ym(k + τ)))

dy(k + τ)

∣∣∣∣, (11)

whereg−1(.) is the inverse function ofg(.) with respect to y(k + τ).

Since the transformation (4) is linear, the formula (11) simplifies to

Pet(y(k + τ), ym(k + τ)) = Py

(
et(k + τ) + ym(k + τ)

)
. (12)

The conditional distribution of the system output can be estimated by constructing the following

stochastic model [7] for the general nonlinear discrete time system defined in Equation 1:

y(k + τ) = ŷ(k + τ) + η(k + τ), (13)
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A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 7

where

ŷ(k + τ) = Nf(z(k), u(k)). (14)

is the prediction of the conditional expectation of the system output produced by a neural network

modelNf(.). The parameters of the neural network model are to be adjusted using an appropriate

gradient-based method to optimize a performance function based on the error between the plant and

the neural model output. The termη(k + τ) represents uncertainty of the output model, assumed to

have Gaussian distribution of zero mean and an input dependent variance,ρ. Once the expected value

of the system output is estimated, an estimate for the input–dependent variance can be obtained using

another neural network, referred to as the variance network, with the same structure and same inputs

as that of the output model [7]. To guarantee the positivity of the predicted values of the variance, the

log value of the actual measured variance,E(‖ y(k+ τ)− ŷ(k+ τ) ‖2), is taken to be the target for the

variance network. Consequently, the estimated variance is the exponential of the corresponding output

of the variance network:

ρ̂ = exp{h(z(k), u(k))}. (15)

Remark2:The stochastic model (13) does not require the system outputs to have a Gaussian

distribution. This however means, that the optimal outputs of the nonlinear approximator (the neural

network model optimized using a sum–of–square error) is the input–dependent mean of the Gaussian

distribution.

2.3. Problem Formulation

Under the Bayesian framework discussed in the previous section, the optimal control law of a stochastic

system is derived in [7] by minimizing the expected value of the negative logarithm of the posterior

distribution defined in (5) with respect to the control input. Since the normalization factor,ZS is

evaluated by integrating over the control signal, the minimization process is shown [7] to be equivalent

to minimizing E
η(k+τ)

[S(uuu(k))] given by Equation (6). For the prior distribution given in Equation (9)

and noise model given by Equation (7) this can be written in the form

E
η(k+τ)

[S(uuu(k))] = E
η(k+τ)

[
β

2

{
y(k + τ) − ym(k + τ)

}2

+
α

2
uuuT (k)uuu(k)

]
(16)
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8 R. HERZALLAH

Using Equation (13) in Equation (16) yields

E
η(k+τ)

[S(uuu(k))] = E
η(k+τ)

[
β

2

{
ŷ(k + τ) + η(k + τ) − ym(k + τ)

}2

+
α

2
uuuT (k)uuu(k)

]

=
β

2

[{
ŷ(k + τ) − ym(k + τ)

}2

+ 2

{
ŷ(k + τ) − ym(k + τ)

}
E[η(k + τ)]

+ E[η2(k + τ)]

]
+

α

2
uuuT (k)uuu(k). (17)

Using the facts thatE[η(k + τ)] = 0 andE[η2(k + τ)] = ρ yields

E
η(k+τ)

[S(uuu(k))] =
β

2

[{
ŷ(k + τ) − ym(k + τ)

}2

+ ρ

]
+

α

2
uuuT (k)uuu(k). (18)

The performance index (18) is then minimized with respect to the control input and the optimal control

law is derived [7]. The derivation of the optimal control law in [7] is based on the assumption of an

input independent hyperparameter of the tracking error, given by the inverse varianceβ of the tracking

error distribution. However, assuming that the hyperparameter of the tracking error is input independent

is inconsistent with certain properties of local model approximations. To illustrate the problem of local

model approximation we demonstrate on minimizing a sum of square error between the desired output

and the system output. In particular, we will show that this mean square tracking error will have zero

expected value and an input dependent variance which can be estimated using another neural network.

Consider the output of a network which performs a mapping from input variablesx(k) =

{z(k), u(k)} to an output variable y(k + τ). The mean square tracking error is then given by an integral

of the form,

Eet =
1

2

∫
{ym(k + τ) − y(k + τ)}2dy(k + τ) (19)

Following the discussion in Section 2.2, the tracking error distribution can be obtained from the

distribution of the system output. For that purpose we define the following conditional averages of

the system output y(k + τ)

< y(k + τ)|x(k) > =

∫
y(k + τ)p(y(k + τ)|x(k))dy(k + τ), (20)

< y2(k + τ)|x(k) > =

∫
y2(k + τ)p(y(k + τ)|x(k))dy(k + τ). (21)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process.2010;00:1–27

Prepared usingacsauth.cls



A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 9

Rewrite the term in brackets in Equation (19) in the form

{ym(k + τ) − y(k + τ)}2 = {ym(k + τ)− < y(k + τ)|x(k) > + < y(k + τ)|x(k) > −y(k + τ)}2

= {ym(k + τ)− < y(k + τ)|x(k) >}2 + {< y(k + τ)|x(k) > −y(k + τ)}2

+ 2{ym(k + τ)− < y(k + τ)|x(k) >}{< y(k + τ)|x(k) > −y(k + τ)}, (22)

Next substitute Equation (22) into Equation (19) and make use of Equations (20) and (21), the third

term on the right hand side of (22) then vanishes as a consequence of the integration over y(k + τ).

This yields

Eet =
1

2
{ym(k + τ)− < y(k + τ)|x(k) >}2 +

1

2
{< y2(k + τ)|x(k) > − < y(k + τ)|x(k) >2}. (23)

The first term in this equation is the bias. It measures the extent to which the expected value of the

system output differs from the desired output value. The second term is the variance which measures

the extent to which the expected output value is sensitive to a particular choice of control input.

Equation (23) shows that the expressions for Bias and variance are functions of the control signalu(k).

Therefore, to achieve good overall performance the bias and the variance of the square of the tracking

error which are input dependent would both have to be minimized. Thus for local model approximation

and control where the bias and variance of the tracking error are input dependent, it is not sufficient

to assume that the probability model of the tracking error has an input independent variance. To be

consistent with our prior knowledge it is necessary to make the variance of the probability model of the

tracking error depends on the input vector. This contrasts with the input independent hyperparameter

proposed in [7], where the tracking error uncertainty does not alter the optimal control law. In the next

section we extend the results in [7] by allowing the dependency of the hyperparameter of the tracking

error on the input variables.

3. Solution Development and Analysis: Main Results

3.1. Derivation of the Optimal Control Law

For analyzing the Bayesian control problem with an input dependent hyperparameter of the tracking

error, it is assumed that although the tracking error is unknown, a model for estimating its variance is
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10 R. HERZALLAH

available. To do so, a nonlinear neural network can be used to provide an estimate for the variance of

the tracking error as follows:

σ2
et

= exp{Nσ(z(k), u(k))}. (24)

Using Equations (24) and (15) in Equation (18) yields the following performance index to be

minimized:

E
η(k+τ)

[S(u(k))] =
1

2σ2
et

[
{ŷ(k + τ) − ym(k + τ)}2 + exp{h(z(k), u(k))}

]
+

α

2
uT (k)u(k). (25)

Minimization of the explicit performance index (25) leads to the optimality equation specified in the

following theorem.

Theorem 1. The optimal control law minimizing the expectation of the negative logarithm of the

posterior of Equation(25)subject to the system of Equation(14)and variances of system and tracking

error of Equations(15)and(24)respectively can be found by solving the following nonlinear optimality

equation:

0 = −2
∂σ2

et

∂u(k)

[ŷ(k + τ) − ym(k + τ)]2

[2σ2
et

]2
+

[ŷ(k + τ) − ym(k + τ)]

σ2
et

∂ŷ(k + τ)

∂u(k)

− 2
∂σ2

et

∂u(k)

ρ̂2

[2σ2
et

]2
+

1

2σ2
et

∂ρ̂2

∂u(k)
+ αu(k). (26)

where this equation is obtained by setting the derivative of Equation(25) with respect to the control

signal equal to zero.

Remark3:Since the forward model of the system output and the model of its variance and the model

of the hyperparameter of the tracking error are nonlinear functions of the control signal, a nonlinear

optimization method is required for solving Equation (26) and deriving the optimal control law which

is then used to update the parameters of the neural network controller. As such the optimization

algorithm (26) can only guarantee the search for local minima.

3.2. Predictive Distribution of the System Output

The Bayesian formalism above is used for estimating the posterior distribution of control signals.

According to this formulation, the distribution of control signals affects the distribution of the system

output and in-turn, the distribution of the tracking error. In addition, there will be a contribution of the

tracking error distribution arising from the assumed Gaussian noise on the error tracking.
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A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 11

Using the rules of probability, the predictive distribution of the system output for a given input can

be written in the form

p(η(k + τ) | et(k + τ), z(k), I(k)) =
∫

p(η(k + τ) | uuu(k), z(k), I(k))p(uuu(k) | et(k + τ), I(k))duuu(k), (27)

wherep(uuu(k) | et(k + τ), I(k)) is the posterior distribution of the control signal. The distribution

p(η(k + τ) | uuu(k), z(k), I(k)) is the distribution of the noise on the system output, which can be

obtained by substituting Equation (13) into Equation (7) as follows

p(η(k + τ) | uuu(k), z(k), I(k)) =
1

Zet(β)
exp

(
−

β

2
{ŷ(k + τ) + η(k + τ) − ym(k + τ)}2

)
. (28)

The integral in Equation (27) is not analytically tractable for nonlinear models. In the Bayesian work for

estimating the weight parameters of neural networks, Mackay [12] used a Gaussian approximation for

the posterior distribution of the weight vector to solve this problem. Similarly, here we use the Gaussian

approximation for the posterior distribution of the control signal. This is obtained by considering the

Taylor expansion ofE[S(uuu)] around its minimum value ofuuuMP(k) and retaining terms up to the second

order so that

E[S(uuu(k))] = E[S(uuuMP(k))] +
1

2
(uuu(k) − uuuMP(k))A(uuu(k) − uuuMP(k)), (29)

where the linear term has vanished since we are expanding around a minimum ofE[S(uuu)]. HereA is

the Hessian matrix of the total error function, with elements given by

A =
−52 σ2

et
[σ2

et
]2 + 2σ2

et
[5σ2

et
]2

[σ2
et

]4
Eêt −

25 Eêt 5 σ2
et

[σ2
et

]2

+
1

σ2
et

52 Eêt +
52ρ̂2

2σ2
et

−
5σ2

et
5 ρ̂2

[σ2
et

]2
−
52σ2

et
ρ̂2

2[σ2
et

]2
+

(5σ2
et

)2ρ̂2

[σ2
et

]3
+ α52 Eu

= −β2

(
52 σ2

et
Eêt +

52σ2
et

ρ̂2

2

)
+ β3

(
2[5σ2

et
]2Eêt + [5σ2

et
]2ρ̂2

)

− β2

(
25 Eêt 5 σ2

et
+5σ2

et
5 ρ̂2

)
+ β

(
52 Eêt +

52ρ̂2

2

)
+ αI,

= −β2

(
52 σ2

et
Eêt +

52σ2
et

ρ̂2

2
+ 25 Eêt 5 σ2

et
+5σ2

et
5 ρ̂2

)

+ β3

(
2[5σ2

et
]2Eêt + [5σ2

et
]2ρ̂2

)
+ β

(
52 Eêt +

52ρ̂2

2

)
+ αI, (30)
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12 R. HERZALLAH

whereEêt = (1/2){ŷ(k + τ) − ym(k + τ)}2. Note that all terms in Equation (30) are evaluated at the

most probable control value,uMP(k).

Using the Laplace approximation given in (29) and the model of the variance of the tracking error

given in Equation (24), the predictive distribution of the system output as defined in Equation (27) can

be written as

p(η(k + τ) | et(k + τ), z(k), I(k))

∝
∫

exp

(
−

1

2σ2
et

{η(k + τ) + ŷ(k + τ) − ym(k + τ)}2
)

exp

(
−

1

2
4 uT (k)A4 u(k)

)
d4 u(k), (31)

where4u(k) = uuu(k) − uuuMP(k). Assuming that the width of the posterior distribution of control

signals (determined by the Hessian matrixA) is sufficiently narrow, the nonlinear functionsŷ(k+τ) =

Nf(z(k), u(k)) and σ2
et

may now be approximated by their Taylor expansions aboutuMP(k) as

follows

ŷ(k + τ) = ŷMP(k + τ) + JT 4 u(k),

σ2
et

= σ2MP

et
+ vT 4 u(k) +

1

2
4 uT (k)M4 u(k) (32)

where

J ≡ 5u(k)ŷ(k + τ) |uMP(k)

v ≡ 5uσ
2
et

|uMP(k)

M ≡ 52
uσ2

et
|uMP(k) . (33)

Using Equation (32) in Equation (31) yields

p(η(k + τ) | et(k + τ), z(k), I(k)) ∝
∫

exp

(
−

1

2{σ2MP

et
+ vT 4 u(k) + 1

2 4 uT (k)M4 u(k)}
{ŷMP(k+τ)+JT4u(k)+η(k+τ)−ym(k+τ)}2

)

exp

(
−

1

2
4 uT (k)A4 u(k)

)
d4 u(k) (34)

whereŷMP(k + τ) = ŷ(k + τ) |uMP
. The integral in Equation (34) can be evaluated as given in the
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Appendix to give a Gaussian distribution of the form

p(η(k+τ) | et(k+τ), z(k), I(k)) =
1

(2πσ2
η)1/2

exp

(
−

(η(k + τ) − [ym(k + τ) − ŷMP(k + τ)])2

2σ2
η

)
.

(35)

This distribution has a mean given by ym(k + τ) − ŷMP(k + τ) and a variance given by

σ2
η = σ2MP

et
+ JTA−1J +

1

2
Tr(A−1M). (36)

However, since the mean value of the residual error of the system output is zero [7] it follows that

ŷMP(k+ τ) = ym(k+ τ). This means that after training the forward and inverse models, the expected

value of the system output will be equal to the desired output value.

It is clear from Equation (36) that the standard deviation of the predictive distribution of the system

output has three contributions. The first component is the variance of intrinsic noise on the tracking

error but is now dependent on the control input. The second component arises from the width of the

posterior distribution of control signals around the system output. And the third component arises from

the width of the posterior distribution of control signals around the noise variance of tracking error.

3.3. Estimation of the Hyperparameters,α andβ

For the input–dependent hyperparameter of the tracking error, the values of the hyperparameters

which maximizes the posterior distribution of control signal can be found by implementing the same

procedure used in [7]. It is based on maximizing the likelihood function,p(et(k + τ) | α,β) which is

called the evidence forα andβ,

p(et(k + τ) | α,β) =

∫
p(et(k + τ) | u(k), α, β)p(u(k) | α,β)du(k),

=

∫
p(et(k + τ) | u(k), β)p(u(k) | α)du(k), (37)

where it is made use of the fact that the prior is independent ofβ and the likelihood function is

independent ofα. Using the exponential forms given in Equations (9) and (7) for the prior distribution

of control signals and the likelihood distribution, together with Equation (6), the evidence ofα andβ

can then be written in the form

p(et(k + τ) | α,β) =
1

Zet(β)

1

Zu(α)

∫
exp−S(u(k))du(k)

=
ZS(α,β)

Zet(β)Zu(α)
. (38)
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14 R. HERZALLAH

The normalization coefficientsZet(β) and Zu(α) have already been evaluated in Equations (8)

and (10) respectively. For the Gaussian approximation of the posterior distribution of control signals,

ZS(α,β) is given by,

Z∗S(α, β) = e−E[S(uMP(k))](2π)r/2 | A |−
1
2 , (39)

whereA is the Hessian matrix of the error function defined in Equation (30). Using Equations (39), (8)

and (10) the log of the evidence forα andβ is then given by,

ln p(et(k + τ) | α,β) = −αEMP
u − βEMP

E[et] −
1

2
ln | A | +

r

2
ln α +

1

2
ln β −

1

2
ln(2π). (40)

Maximization of the explicit form of the log of the evidence defined in Equation (40) subject to

Equations (39), (8) and (10) leads to re–estimation equations forα andβ defined in the following

theorem.

Theorem 2. The hyperparametersα and β maximizing the log of the evidence defined in

Equation(40)subject to Equations(39), (8) and (10)are given by

αnew =
γ

2Eu
, (41)

βnew =
1 − γ

2EE[et]
, (42)

where the quantityγ is defined by

γ =

r∑

i=1

2µi + 3λi + ϑi

µi + λi + ϑi + α
, (43)

and whereµi, λi, and ϑi denote the eigenvalues of the first Hessian matrix, the second Hessian

matrix, and the third Hessian matrix represented by the first term, the second term, and the third

term respectively of Equation(30) for the general nonlinear class of discrete time systems.

The proof of theorem2 is given in the Appendix. It can easily be carried out by taking the derivative

of Equation (40) with respect toα andβ and setting the derivative equal to zero.

4. Affine Class of Nonlinear Discrete Time Systems

The theory developed in the previous section is applied here to a stochastic multi–input single–output

affine class of nonlinear discrete time systems having the general form

y(k + τ) = f[z(k)] + gT [z(k)]u(k) + η̃(k + τ), (44)
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where y(k + τ) is the output,u(k) is the control input vector of dimensionr, z(k) = [y(k), . . . , y(k −

q + 1), u(k − 1), . . . , u(k − p + 1)] is the input state vector,f[z(k)] : Rq+rp−r 7−→ R and

g[z(k)] : Rq+rp−r 7−→ Rr are unknown nonlinear functions of the state andη̃(k + τ) is an additive

noise signal.

Two neural networks can then be used to approximate the nonlinear functionsf[z(k)] andg[z(k)].

The networks’ estimates are denoted asf̂[z(k)] andĝ[z(k)]. Hence, the expected value of the system

output is given by

ŷ(k + τ) = f̂[z(k)] + ĝT [z(k)]u(k). (45)

The variance of the tracking error,et denoted by the inverse hyperparameter,1
β and the variance of the

residual error of the system output, are estimated using two neural network models as follows:

1

β
= σ2

et
= qT [z(k)]u(k). (46)

ρ̂ = hT [z(k)]u(k). (47)

To guarantee the positivity of the predicted variance values, the method of Lagrange multipliers

is assumed here to optimize the parameters of the variance network, instead of the exponential

transformation in the general class of nonlinear control problems. By using the method of Lagrange

multipliers, the linearity of the affine class problems can be preserved. Using Equations (47) and (46)

in Equation (18) yields

E
η(k+τ)

[S(u(k))] =
1

2(qT [z(k)]u(k))

[
{ŷ(k+τ)−ym(k+τ)}2 +hT [z(k)]u(k)

]
+

α

2
uT (k)u(k). (48)

Setting the derivative of Equation (48) with respect to the control signal equal to zero leads to control

law as a solution of the optimality equation specified in the following theorem.

Theorem 3. The optimal control law minimizing the performance index of Equation(48) subject to

the system of Equation(45) and variances of tracking errors and system of Equations(46) and (47)

respectively can be found by solving the following cubic optimality equation:

0 = 4αuT (k)q[z(k)]qT [z(k)]u(k)u(k) + 4uT (k)ĝ[z(k)]qT [z(k)]u(k)ĝ[z(k)]

− 2uT (k)ĝ[z(k)]ĝT [z(k)]u(k)q[z(k)] + 2qT [z(k)]u(k)h[z(k)] − 2hT [z(k)]u(k)q[z(k)]

+ 4{f̂[z(k)] − ym(k + τ)}[qT [z(k)]u(k)ĝ[z(k)] − ĝT [z(k)]u(k)q[z(k)]]

− 2q[z(k)]{̂f[z(k)] − ym(k + τ)}2. (49)
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16 R. HERZALLAH

For the single–input single–output discrete time affine nonlinear systems, the above equation reduces

to

0 = 4αu3(k)q2[z(k)] + 2u2(k)ĝ2[z(k)]q[z(k)] − 2q[z(k)]{f̂[z(k)] − ym(k + τ)}2. (50)

This cubic equation could be solved numerically or analytically in closed form. Depending on the sign

of the discriminant, the solution of a cubic equation could have1 real root,3 real roots with two or

three equal roots or3 distinct real roots [18]. Because, the sign of the discriminant of Equation (50) is

not determined, any of the above solutions could be valid. This implies that a decision should be taken

here to determine the control signal to be forwarded to the plant. For the case of three real solutions

one of them is a local maximum. In order to exclude the maximum from the set of possible solutions,

the second derivative of the error equation could be evaluated. One of the possibilities to choose the

control signal to be forwarded to the plant amongst the remaining solutions is to take the control signal

which gives the minimum value of the error function defined by Equation (48). This corresponds to

maximizing the likelihood function. To treat the problem more properly in a Bayesian framework,

another alternative for choosing the control signal to be forwarded to the plant is to integrate over all

possible control signals. This corresponds to the maximum aposteriori estimate.

For the multi–input single–output nonlinear affine discrete time systems the optimal control signal

needs to be obtained by solving the full vector cubic equation (49) numerically.

Using the neural estimates of the nonlinear models of Equation (45) together with the neural network

estimates for the variance of the tracking error defined in Equation (46), in Equation (31) yields the

distribution forη(k + τ) defined by the following integral:

p(η(k + τ) | et(k + τ), z(k), I(k)) ∝
∫

exp

(
−

1

2{qT [z(k)]u(k)}
{f̂[z(k)] + ĝT [z(k)]u(k) + η(k + τ) − ym(k + τ)}2

)

exp

(
−

1

2
4 uT (k)A4 u(k)

)
d4 u(k)

=

∫
exp

(
−

1

2{qT [z(k)][uMP(k) +4u(k)]}
{f̂[z(k)]+ĝT [z(k)][uMP(k)+4u(k)]+η(k+τ)−ym(k+τ)}2

)

exp

(
−

1

2
4 uT (k)A4 u(k)

)
d4 u(k). (51)

The evaluation of the integral in Equation (51) is given in the Appendix. It is a Gaussian distribution
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of the form

p(η(k + τ) | et(k + τ), z(k), I(k))

=
1

(2πσ2
η)1/2

exp

(
−

{η(k + τ) − [ym(k + τ) − f̂[x(k)] − ĝT [z(k)]uMP(k)]}2

2σ2
η

)
. (52)

This distribution has a mean given by ym(k + τ) − {f̂[z(k)] + ĝT [z(k)]uMP(k)}, and a variance given

by

σ2
η = qT [z(k)]uMP(k) + ĝT [z(k)]A−1ĝ[z(k)], (53)

whereA is the Hessian of the error function of the affine system defined in Equation (48)

A =
52Eêt

2σ2
et

−
45 σ2

et
5 Eêt

[2σ2
et

]2
+

8(5σ2
et

)2Eêt

[2σ2
et

]3
−

45 σ2
et

h
[2σ2

et
]2

+
8(5σ2

et
)2hT u

[2σ2
et

]3
+ αI

= β52 Eêt − 4β2 5 σ2
et
5 Eêt + 8β3(5σ2

et
)2Eêt − 4β2 5 σ2

et
h + 8β3(5σ2

et
)2hT u + αI,

= −β2{45 σ2
et
5 Eêt + 45 σ2

et
h} + β3{8(5σ2

et
)2Eêt + 8(5σ2

et
)2hT u} + β{52Eêt } + αI.

(54)

Again since the mean value of the residual error of the system output is zero, it follows that

f̂[z(k)] + ĝT [z(k)]uMP(k) = ym(k + τ). This means that, after training the forward and inverse

models the expected value of the system output will be equal to the desired output value.

It is clear from Equation (53) that the standard deviation of the predictive distribution of the residual

error of the system output has two contributions. The first contribution arises from intrinsic noise on the

tracking error, represented by the first term of Equation (53). The second contribution arises from the

width of the posterior distribution of control signals, represented by the second term of Equation (53).

Finally the same update equations given inTheorem 2for the hyperparametersα, andβ can be

shown to be applicable for the affine class of discrete time systems, taking into consideration the

Hessian matrix of the affine systems specified in Equation (54).

5. Simulation Example

In this section a nonlinear SISO stochastic control problem is simulated. The dynamic equation of the

system is

y(k + 1) = sin[y(k)] + cos[3y(k)] + {2 + cos[y(k)]}u(k) + ε(k + 1), (55)
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18 R. HERZALLAH

whereε(k + 1) was assumed to be sampled from a Gaussian distribution,N (0, 0.2). This system has

been used in [2,3] to illustrate theoretical developments for suboptimal dual adaptive control.

In this paper two radial basis function neural networks with7 and 3 Gaussian basis functions

respectively are used to approximate the nonlinear functionsf(y(k)) = sin[y(k)] + cos[3y(k)] and

g(y(k)) = {2 + cos[y(k)]}. The following reference model with input–output pairs{r(k), ym(k + 1)}

is chosen so that ym(k + 1) represents the desired output behavior at timek + 1

ym(k + 1) = r(k) + 0.0074ym(k). (56)

For comparison purposes, three sets of experiments were conducted to demonstrate the on–line training

methods for the proposed Bayesian control algorithms with input–dependent and input–independent

hyperparameter and the conventional indirect adaptive control [16, 17]. On–line adaptation for the

parameters of the forward models in the indirect adaptive control method and for the parameters of

the forward models and the hyperparametersα andβ in the Bayesian control method were conducted.

The same noise sequence, initial conditions, neural network structure, and reference input were used

during implementation of each control method. The result is shown in Figure 1. As expected, the figure

shows that the indirect adaptive control exhibits large transient overshoot because it is not taking into

consideration the uncertainty of the forward and inverse models. Only after the initial period, when the

parameters of the forward and inverse models converge, does the control assume good tracking. On the

contrary, and although a different source of uncertainty is introduced (which is mainly coming from

the uncertainty introduced from the on-line estimation of the hyperparameters), the Bayesian method

with input–independent hyperparameter shows better characteristics in the transient response reflecting

the use of knowledge about uncertainty of the forward and inverse models. Besides the better transient

performance of the proposed Bayesian method with input–dependent hyperparameter, the steady state

performance of this method was much better compared to the classical indirect adaptive control method

and the Bayesian method with input–independent hyperparameter. This is also expected and stems from

the fact that the noise variance could be different for different choices of input values and therefore its

effect on the system output could be significantly reduced. This can also be verified from figure 2 ,

which shows the probability density function curves of the tracking error at different instants of time.

It can be seen from this figure that the pdf of the tracking error becomes deep and narrow after a
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A PROBABILISTIC INDIRECT ADAPTIVE CONTROL 19

few time steps of control, particulary after time instant6 indicating that the derived control algorithm

decreases the randomness of the tracking error.

6. Discussion

Similarly to the method presented in [7], the proposed probabilistic indirect adaptive control in this

paper is another Bayes–based control method, but augmented with our prior knowledge on local model

approximations and control. To elaborate further, we derive the probabilistic indirect adaptive control

with the following points in mind:

• Following the discussion in section 2.3, we assume the dependency of the hyperparameter of the

tracking error on the input vector. This ensures consistency with our prior knowledge on local

model approximations and control.

• Subsequently, we focus on how to compute the predictive distribution of the system output

analytically. This requires Gaussian approximation of the posterior distribution of control signals

by Taylor expanding it around its minimum value ofuuuMP(k) as given in Equation (29).

Moreover, since the hyperparameter and the system output models are nonlinear functions of

the control signals, they are also approximated by their Taylor expansions aboutuuuMP(k) as

given in Equation (32).

• There is no assumption made on whether the process noise has a known probability density

function or is a stationary random process. The proposed Bayesian formalism in this paper

provides an elegant method for estimating and tracking the noise.

In this line of thinking, the predictive distribution of the system output is shown to have an additional

term to the noise variance as can be seen from Equation (36) compared to that derived in [7]. This term

is related to the width of the posterior distribution of control signal around the noise variance of the

tracking error. This means that via the approach proposed in this paper we have achieved the accurate

estimate of the predictive distribution of the system output. Moreover, since functional uncertainties

and tracking error noises are considered in the probabilistic adaptive control method proposed in this

paper, the derived control law thus possesses robustness.
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Figure 1. Results of on–line control: output and tracking error (a) the actual and reference model outputs of
standard adaptive control. (b) tracking error of standard adaptive control. (c) the actual and reference model outputs
of the proposed Bayesian method with input–independent hyperparameter. (d) tracking error of the proposed
Bayesian method with input–independent hyperparameter. (e) the actual and reference model outputs of the
proposed Bayesian method with input–dependent hyperparameter. (f) tracking error of the proposed Bayesian

method with input–dependent hyperparameter.
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Figure 2. Probability density of tracking error

To sum up, we claim that the proposed probabilistic indirect adaptive control in this paper is more

accurate, more principled in mathematical terms and is consistent with local model approximations

and control than the method proposed in [7].

The difficulty with the present approach, and ultimately its limitations (as with other nonlinearly

optimized control design methods) can be summarized as follows. First, it requires a nonlinear

optimization method for the control signal determination. Second, it requires intensive computational

load due to the on–line implementation of the method. Third, the stability and closed loop performance

are difficult to asses due to the nonlinearity of the dynamics of the process.

Finally, although the Bayesian formalism in this paper is built in the Gaussian domain, it is capable

of approximating nonlinear and stochastic systems where a unique control signal can be generated.

For stochastic systems characterized by multimodality and Hysteresis, more general distributions of

the tracking error and the prior should be considered. Future work will consider how the Gaussian

assumption may be relaxed by modeling the required probability density functions using, for example,

mixture models.
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7. Conclusions

In this paper a new probabilistic indirect adaptive control algorithm for nonlinear systems with input–

dependent hyperparameter of tracking error was presented. It provides a theoretical foothold for a wider

aim in probabilistic controller design.

Throughout the paper, the basic paradigm for the proposed probabilistic control method has been

developed. The discussion then demonstrated the proposed method for general class of nonlinear

uncertain discrete time systems where the system equations are taken to be nonlinear functions in

both the previous input and output values. Because of the nonlinearity of the system equations a closed

form for the optimal control strategy could not be found. The developed method is then applied to

the affine class of nonlinear uncertain discrete time systems. The optimal control law is shown to be

determined in closed form by solving a cubic equation.

A numerical example demonstrated the improvement due to the inclusion of input–dependent

hyperparameter of tracking error. Better transient and steady state performance has been obtained by

allowing the dependency of the hyperparameter of the tracking error on the input values.

This more general framework for adaptive control methods has the major advantage that we can now

incorporate uncertainty (in models and parameters) in a more structured framework. Different levels

of uncertainty and noise models can be treated consistently using the inference machinery. We have

chosen to adopt pragmatic and tractable approximations to the general framework, and future work

will examine the computational consequences of this proposed methodology.

APPENDIX

I.1. Gaussian Integral of Input–Dependent Noise

In this Section the evaluation of the mean and the variance of the following Gaussian integral will be

considered
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p(t|D) =

∫
p(t|u)p(u|D)du

∝
∫

exp

[
−

1

2[σ2
mp + qT 4 u + 1

2 4 uTM4 u]

{
t − [ym − ymp − gT 4 u]

}2

−
1

2
4 uTA4 u

]
d4 u, (57)

where hereymp +gT 4u andσ2
mp +qT 4u+ 1

24uTM4u is the mean and the variance respectively

of the distributionp(t | u). Let

b = ym − ymp − gT 4 u

a =
1

σ2
mp + qT 4 u + 1

2 4 uTM4 u
. (58)

Use Equation (58) in Equation (57), yields

p(t|D) ∝
∫

exp

[
−

a

2
(t − b)2 −

1

2
4 uTA4 u

]
d4 u (59)

We start firstly by evaluating the mean̄t of the distributionp(t | D) by multiplying the integral of

Equation (57) byt and integrating overt first and then integrating overu as follows

t̄ ∝
∫ ∫

t exp

[
−

a

2
(t − b)2 −

1

2
4 uTA4 u

]
d4 udt

∝
∫ ∫

(t + b) exp

[
−

a

2
t2

]
dt exp

[
−

1

2
4 uTA4 u

]
d4 u

= ym − ymp. (60)
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Next to evaluate the varianceκ2 of the distributionp(t | D), we evaluate the second moment of the

distribution, integrating overt first and then integrating overu as follows

t̄2 + κ2 ∝
∫ ∫

t2 exp

[
−

a

2
(t − b)2 −

1

2
4 uTA4 u

]
d4 udt

∝
∫ ∫

(t + b)2 exp

[
−

a

2
t2

]
dt exp

[
−

1

2
4 uTA4 u

]
d4 u

∝
∫ [

1

a
+ b2

]
exp

[
−

1

2
4 uTA4 u

]
d4 u

∝
∫ [(

σ2
mp + qT 4 u +

1

2
4 uTM4 u

)

︸ ︷︷ ︸
Integral I

+

(
ym − ymp − gT 4 u

)2

︸ ︷︷ ︸
Integral II

]
exp

[
−

1

2
4 uTA4 u

]
d4 u (61)

The evaluation of integral I yields

IntegralI ∝
∫ (

σ2
mp + qT 4 u +

1

2
4 uTM4 u

)
exp

[
−

1

2
4 uTA4 u

]
d4 u

= σ2
mp +

1

2
Tr(A−1M), (62)

and the evaluation of integral II yields

IntegralII ∝
[ ∫

(ym − ymp)2 exp

[
−

1

2
4 uTA4 u

]
d4 u

+

∫
4uTggT 4 u exp

[
−

1

2
4 uTA4 u

]]
d4 u

= (ym − ymp)2 + gTA−1g. (63)

Adding up the results of integral I and II and equate to the left hand side of Equation (61) while using

Equation (60) simultaneously, yields

κ2 + (ym − ymp)2 = (ym − ymp)2 + σ2
mp + gTA−1g +

1

2
Tr(A−1M)

κ2 = σ2
mp + gTA−1g +

1

2
Tr(A−1M) (64)

I.2. Proof of Theorem 2

In this section we give the proof of Theorem2 of the re–estimation equations of the hyperparameters

of the input–dependent noise model. Here the HessianA of the error function consists of four terms.
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To unify the definition of the Hessian matrix for the affine and the general classes of nonlinear discrete

time systems we rewrite the Hessian matrix here in the form

H = H1 + H2 + H3 + αI, (65)

whereH1, H2, H3 correspond to the first, the second and the third term of Equation (30) respectively.

We start by considering the problem of finding the maximum of Equation (40) with respect to

α. If {µi}, {λi}, and{ϑi} denote the eigenvalues ofH1, H2, H3 respectively, thenA has eigenvalues

µi + λi + ϑi + α and the derivative of the log of the Hessian matrix ln| A | with respect toα is given

by

d

dα
ln | A | =

d

dα
ln

(
Πi(µi + λi + ϑi + α)

)

=
d

dα

∑

i

ln(µi + λi + ϑi + α)

=
∑

i

1

µi + λi + ϑi + α
= TrA−1. (66)

Although the Hessian matrix of the affine class of nonlinear discrete time systems with input-

independent hyperparameter is independent of the control signal, making the variance of the noise

of the tracking error a function of the control signal has led to the complication of the Hessian matrix

being function of the control signal as could be seen from Equation (54). This implies that as well as

for the general nonlinear class of discrete time systems the result given in Equation (66) neglects terms

involving dλ/dα for the affine class of nonlinear systems.

With this approximation, the maximization of Equation (40) with respect toα leads to the result that

at the maximum,

2αEMP
u = r −

r∑

i=1

α

µi + λi + ϑi + α
= γ, (67)

whereγ is defined in Equation (43).

Consider now the maximization of Equation (40) with respect toβ. The derivatives of the

eigenvalues{µi}, {λi}, and{ϑi} of the Hessian matrices with respect toβ can be shown to be directly
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proportional toβ and hence

dµi

dβ
=

2µi

β
,

dλi

dβ
=

3λi

β
,

dϑi

dβ
=

ϑi

β
. (68)

Thus the derivative of the log of the Hessian matrix ln| A | of the error function with respect toβ is

given by

d

dβ
ln | A | =

d

dβ

∑

i

ln(µi + λi + ϑi + α),

=
1

β

∑

i

2µi + 3λi + ϑi

µi + λi + ϑi + α
. (69)

This leads to the following condition satisfied at the maximum of Equation (40) with respect toβ,

2βEMP
E[et] = 1 −

r∑

i=1

2µi + 3λi + ϑi

µi + λi + ϑi + α
= 1 − γ. (70)

Rearranging Equations (67) and (70) yields the re-estimation equations of the hyperparametersα and

β given by (41) and (42) respectively.
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