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Abstract—Self-awareness and self-expression are promising
architectural concepts for embedded systems to be equipped
with to match them with dedicated application scenarios and
constraints in the avionic and space-flight industry. Typically,
these systems operate in largely undefined environments and
are not reachable after deployment for a long time or even
never ever again. This paper introduces a reference architec-
ture as well as a novel modelling and simulation environment
for self-aware and self-expressive systems with transaction level
modelling, simulation and detailed modelling capabilities for
hardware aspects, precise process chronology execution as well
as fine timing resolutions. Furthermore, industrial relevant
system sizes with several self-aware and self-expressive nodes
can be handled by the modelling and simulation environment.

I. INTRODUCTION

Self-awareness and self-expression are promising archi-
tectural concepts for embedded systems to be equipped with
to match them with dedicated application scenarios and
constraints in the avionic and space-flight industry. Systems
that profit from these kind of self-aware and self-expressive
capabilities are (1) avionic systems, (2) autonomous fly-
ing systems, (3) special satellites, (4) deep-space mission
systems and (5) exploratory space mission systems. Typ-
ically, these systems are highly dependable, represent a
substantial investment, operate in largely undefined and
changing environments that are impossible to define during
system design, and are not reachable after deployment for
a long time or even ever again [1]. Consequently, it is
today’s industrial practice to tremendously over-design these
systems with respect to redundancy, diverse equipment,
long operationally proven components and static breakdown
mitigation concepts. Furthermore, all of these systems have
stringent weight, power, size and density constraints [2].
This significantly limits the overall processing performance
and the kinds of implementable functionality. Systems with
self-aware and self-expressive features can overcome some
of these limitations and offer a completely new architectural
concept to deal with unpredictable environments through
flexible, not pre-defined, sub-system adaptation.

Between research at the conceptional level of self-aware
and self-expressive systems and the level of implement-
ing first proof-of-concept demonstrators, there is a gap

to systematically model, simulate and study the behaviour
and performance of particular self-aware and self-expressive
systems. This gap is filled by our novel modelling and
simulation environment for self-aware and self-expressive
systems. It offers modularised modelling, transaction level
abstraction and execution, possibilities for detailed hardware
modelling, fine resolution timing and industrial relevant
system handling.

This paper is organised as follows: the next section
describes our self-aware and self-expressive reference archi-
tecture that serves as theoretical basis for the implementation
of the modelling and simulation environment. Section III
introduces the novel simulation environment that is based on
our reference architecture. All components of the simulation
environment, their dependencies and interconnections are
explained. The execution chronology, simulation time offsets
and transaction flows are described. Finally section IV com-
ments on the utilisation of the novel simulation environment
for avionic and space-flight applications, while section V
concludes this paper.

II. REFERENCE ARCHITECTURE

System self-awareness, and adaptive behaviour based on
it, have long been recognised as enablers for advanced
autonomic behaviour [3]. Appropriate levels and forms of
self-awareness will be essential for systems, which operate
for long run times, in unpredictable and changing environ-
ments with minimal human intervention, while being heavily
resource constrained. Informally, we consider self-awareness
to be concerned with the acquisition and representation of
knowledge about a system by that system. The comple-
mentary concept of self-expression then describes behaviour
based on a system’s self-awareness [4]. In order to lay
the foundations for systems that possess self-awareness and
self-expression capabilities, concepts from psychology and
cognitive science are being reinterpreted in a computational
context [4], [5]. This approach has also been followed to
develop other nature-inspired computing paradigms, which
have enjoyed great success in a wide range of practical
applications, despite the frequent lack of the assurances
usually required for engineered systems.
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Figure 1. Reference architecture for a single self-aware and self-expressive
node.

A. Self-aware, Self-expressive Nodes

As part of this effort a reference architectural framework
for a self-aware, self-expressive node was developed [6].
This is shown in figure 1, and defines the high level structure
of such a node and its required conceptual components.
Such a node need not to be a specific physical system,
but instead provides a conceptual container for the system
being considered: the element in that context which is being
referred to as self. A node could therefore be, for example, an
autonomous agent, a running thread, a physical machine or a
collective of these. Importantly, the node represents a level of
abstraction at which knowledge acquisition, representation
and behavioural processes occur.

The architecture deals with the concept of public and
private self-awareness [4], by specifying conceptual compo-
nents for building knowledge from both internal and external
sources of information. Additionally, a meta-self-awareness
[4] component is identified, responsible for knowledge con-
cerning the system’s own self-awareness and self-expression
processes, and for adapting them as necessary.

B. Online Learning

Due to the unpredictability associated with both deploy-
ment environments and the dynamics within them, one key
challenge in realising self-awareness and self-expression in
computing systems is the appropriate use of effective online
learning schemes. Online learning is applied in two contexts
within a self-aware, self-expressive system: at the adaptation
level and at the meta level [6]. In the reference architectural
framework, online learning algorithms instantiate two con-
ceptual components at the adaptation level:

• the self-awareness engines, where sensor data is col-
lected, analysed and, if appropriate, knowledge ob-
tained from it is represented.

• the self-expression engine, where behavioural learning
(e.g. action selection and strategy selection) takes place.

Additionally, online learning at the meta level occurs in
the meta-self-awareness component, where models of the
node’s own behaviour are built online, and acted upon.

C. Approach

In attempting to draw general conclusions about the bene-
fits of self-awareness and self-expression for computing and
engineering, we turn to our understanding of these concepts
in psychology, as well as previous efforts to apply them to
computing [4]. A key finding of that survey was that the term
self-awareness has been used in a variety of ways within
computer science and engineering literature. The general
concept of self-aware computing covers but is not limited
to all of these cases. Our approach is therefore to design
systems based on the flexible node architectural framework,
which defines how self-awareness, self-expression and meta-
self-awareness concepts can be combined to achieve run
time learning and adaptation. This reference architectural
framework allows for a wide range of approaches to be
taken, while ensuring coherence between the three key
activities of self-awareness, self-expression and meta-self-
awareness.

Figure 2. Structure of the simulation environment.

III. SIMULATION ENVIRONMENT

The reference architecture introduced in section II serves
as basis for the detailed component implementation of
the modelling and simulation environment. For the general
modelling and simulation methodology, features such as
overall simulation performance, scalability and abstraction
levels at which to study self-aware and self-expressive
systems have led to the decision of utilising a Transaction
Level modelling (TLM) approach. A TLM approach typically
separates details of the communication among modules from
the details of the implementation of the modules and details
of the overall communication architecture. In compliance
with the defined reference architecture, the following TLM
components as well as their roles were identified for the
self-aware and self-expressive model (cf. figure 2):

• SENENV: This TLM component represents the internal
and the external sensor environment of the node. Each
node can possess at least one or as many as required
SENENV modules, depending on the concrete system.

• OTHERNODES: Receives information from other self-
aware and self-expressive nodes in a self-aware and
self-expressive system. A particular node can possess
as many OTHERNODES modules as required.



• SAE: Together with LMODEL, this represents the self-
awareness functionality. SAE collects and stores the
information sent by all the internal and external sensors.

• LMODEL: This component represents the part of the
self-awareness functionality, which processes the re-
ceived sensor information. The separation of the self-
awareness functionality into two components was nec-
essary to coordinate the transactions and overall syn-
chronisation.

• GVOC: This component embodies the predefined Goals,
Values, Objectives and Constraints of the self-aware
and self-expressive node.

• MONITOR: The monitor component controls the self-
awareness and self-expressive components. It has the
system rights to intervene in the node processing to
redirect or refocus lower level of self-awareness and
self-expression in the node.

• SEE: A component representing the self-expression
engine, this component will take decisions about what
kind of actions to take, according to the received data
from the self-aware engine component complex and in
detail data from LMODEL, simultaneously taking GVOC
data into account.

• ACTUATOR: Represents the internal actuator(s) of the
node. This component is the target of SEE and each
self-aware and self-expressive node can have several
actuators, depending on the concrete system under
investigation.

• EXTACTION: This component represents an actuator
that has access to the external environment of a self-
aware and self-expressive node and is, like the actuator
component, the target of the self-expressive engine
during transactions.

• IC1-4: These interconnect components of the model (cf.
figure 2) are used where several initiators communicate
with the same target or an initiator communicates with
several targets over the same transaction type.

Additionally to the described TLM components, there is a
high-level module, which coordinates the initial generation
of the components, the port and socket bindings of a par-
ticular node as well as all of these generation processes for
systems with several self-aware and self-expressive nodes.

A. Processes

In order to describe the detailed functional behaviour of
a TLM component as well as to define the transaction level
behaviour of a component, our approach utilises processes to
encapsulate these actions. The following sections present the
existing processes in our proposed modelling and simulation
environment as well as the implementation of the temporal
decoupling of these processes in the model.

1) Processes A1 and A2: A1 and A2 are located in
the initiator component GVOC, as shown in figure 3. They
transfer the specified goals, values, objectives and constraints

Figure 3. Transaction groups for the processes A1 (left) and A2 (right
WRITE indicates that the transactions initiated here are write transactions

into the node by calling the blocking transport method. There
is a transaction object for each of both processes. Process
A1 transfer data to the MONITOR and process A2 to the
component SEE. A1 and A2 are always the first processes
to be executed in each system-simulation cycle and they
always execute without any suspension till their respective
next synchronisation points.

2) Process B: B is located in each of the sensor compo-
nents SENENV, as shown in figure 4, and OTHERNODE.
By means of the blocking transport method the data is
transferred to SAE through the interconnect component IC1.
The memory area of SAE is equally shared by the sensors
in each node and the detailed address translation is always
done by the interconnect component IC1 for each incoming
method call and before the call is forwarded. All B processes
run next after the A1 and A2 processes in every node and
every simulation cycle, and also ahead simulation time until
they reach their next synchronisation point.

Figure 4. Transaction group for processes B - WRITE indicates that the
initiated transactions are write transactions

3) Process C1 and C2: These processes are embedded
in the LMODEL (figure 5). C1 is responsible for the linear
readout of the memory space of SAE and the forwarding
of that data into the module for processing. After the
processing, LMODEL decides whether some measures have
to be taken in view of the processing results. Its decision is
finally sent to SEE by C2. C1 will always be executed before
C2 in each node, during each simulation cycle and after all
B processes were suspended. At every execution, process C1
creates an immediate notification and an delta notification.
With the delta notification, process C1 is suspended and
with the immediate notification an event belonging to the
dynamic sensitivity list of process C2 is notified. Hence, C2
runs immediately after C1 is suspended.



C2 generates a transaction to transfer the results of
LMODEL to SEE. Additionally, C2 executes an immediate
notification to inform SEE after the last transaction is com-
pleted. The notified event belongs to the dynamic sensitivity
list of process D, which is next on the set of executable
processes.

Figure 5. Transaction groups for processes C1 (left) and C2 (right).
WRITE and READ indicate the type of transactions generated.

4) Process D: During each execution of D, which is
located in SEE (figure 6), the data received from the
component LMODEL is read out and evaluated for self-
expressive actions. The dedicated self-expressive action is
realised by process D through initiated write transactions to
the corresponding actuators, EXTACTION or ACTUATOR.

Figure 6. Transaction group of process D

5) Process E1 and E2: Both Processes E1 and E2 are
located in the Monitor (figure 7). E1 is responsible for
LMODEL and activated in each node immediately after
process C1. E2 is activated directly after process D and
is linked with SEE. In view of the fact that the monitor
of the self-aware and self-expressive node doesn’t have to
constantly monitor the self-expressive and the self-awareness
engines, these processes are activated at each simulation
cycle but only executed at predefined intervals (counter) of
simulation cycles. In case that the counter value is equal
to the specified number, events belonging to the dynamic
sensitivity list of process E1 and E2 are notified and the
counter is reset. The immediate notification, which activates
process E1, is executed by process C1 and the one which
activates process E2, is executed in D. At each execution,
process E1 reads the report memory of LMODEL and E2
reads the report memory of SEE.

6) Synchronisation process F: This process is embedded
in the high-level module of the model. F runs in each simu-
lation cycle only once and synchronises always immediately
after it has started. The purpose of this process is to ensure
that processes in all nodes of a multi-node self-aware and
self-expressive system end at the same simulation time of

Figure 7. Transaction groups for processes E1 (left) and E2 (right). READ
indicates that the generated transactions are read transactions

a cycle. This means that the control is yielded back to the
simulation kernel only after all the processes (A - F) of all
instantiated nodes have reached their next synchronisation
point.

B. Execution chronology

From the above behavioural descriptions of the processes,
it arises that the processes of a node always run in the same
chronology, cf. figure 8, within a simulation cycle:

A1, A2→ B → {C1→ [E1]→ C2→ [E2]→ D} → F .

Here, processes E1 and E2 run only in specific intervals of
simulation cycles, which must be defined by the user before
the simulation start. For processes in brackets, hereinafter
referred to as process chain, they run alternately after each
transaction until they reach their next synchronisation point.

C. Local time offset

Temporally decoupled processes [7] run always ahead
of the simulation time and need to be suspended for a
defined period of time, namely the local time offset toff . A
suspended process can run again, only when the scheduler
has advanced the simulation time of this same local time
offset toff . Based on that fact, we can deduce that the
next execution time tsim,next of a suspended temporally
decoupled process always results from the sum of the actual
simulation time and the local time offset of this process (
tsim,next = tsim,actual + toff ).

The local time offset, in turn, results from the sum
of latency times of all the transactions generated by a
process between two synchronisation points. In our model,
the latency times and the number of transactions between
the synchronisation points of a process are automatically
calculated during elaboration and generation of the simu-
lation model, such that the local time offset between two
synchronisation points always equals the global quantum,
the point of process synchronisation. Therefore, the next
execution time of a process after his last synchronisation
always results from the sum of the actual simulation time and
the specified global quantum tglob quantum. Hence we have
tsim,next = tsim,actual + tglob quantum. From the known
simulation time of the first execution of each process (tbeg)



Figure 8. Implemented chronology of processes

and the above formula, we have the following starting times
for the execution of a process
in the 1st simulation cycle with t0 = tbeg and in the 2nd sim-
ulation cycle with t1 = tbeg + tglob quantum. Summarising,
we have the following start time in the nth simulation cycle
with tn−1 = tbeg + (n− 1) ∗ tglob quantum, with n ∈ N+.
With the formula above, we were able to derive the following
general formula for the execution start time ti of a process in
every process cycle n: with ti = tbeg+i∗tglob quantum; i =
n− 1, n ∈ N+.

1) Global quantum: When using temporal decoupling,
it is recommended that each process uses the same global
time quantum. It should be determined, in accordance with
the whole simulation time period, so that the number of
resulting synchronisations or delta cycles doesn’t exceed a
few hundred thousands (see [8, p. 279]). Let’s assume that
tsim denotes the whole simulation time period, ndelta cycles

the number of delta cycles and nsync the number of syn-
chronisations. The number of synchronisations in the model
can be calculated with the following formula:

nsync =

⌊
tsim

tglob quantum

⌋

Using the previous formula for the number of synchronisa-
tions, we can precisely derive the formula for the number
of delta cycles in the model:

ndelta cycles = (nT ∗ 2 + 6) ∗ nsync ∗ nnodes nr

= (nT ∗ 2 + 6) ∗
⌊

tsim
tglob quantum

⌋
∗ nnodes nr

where nnodes nr ≥ 1 denotes the number of nodes in the
simulated system.

Thus, the following inequality holds:

nsync ≤ 100000 ⇔⌊
tsim

tglob quantum

⌋
≤ 100000

or

ndelta cycles ≤ 100000 ⇔⌊
tsim

tglob quantum

⌋
∗ (6 + nT ∗ 2) ∗ nnodes nr ≤ 100000

Both inequalities lead us to the following formula for the
global quantum:⌊

tsim

tglob quantum

⌋
≤

100000

(6 + nT ∗ 2) ∗ nnodes nr

that is used in our proposed modelling and simulation
environment.

2) Latency times of the transactions: From the synchroni-
sation condition for temporally decoupled processes it results
that the global quantum is always less or equal to the sum of
the latency times of all executed transactions between two
synchronisation points. Thus:

tglob quantum ≤
nT∑
i=1

ttrans delay,i = toff

where tglob quantum global quantum, nT number of trans-
actions, ttrans delay,i latency of the ith transaction and toff
local time offset.

To determine the execution start times of the processes
in the simulation cycles, we assumed that the value of local
time offset is equal to the global quantum; tglob quantum =
toff .

Assuming that every transaction has the same latency,
the sum of the latency times in the inequality above can
be substituted by the product obtained when multiplying
the latency of one transaction by the number of executed
transactions between two synchronisation points. We have
tglob quantum ≤ nT ∗ttrans delay, where ttrans delay denotes
the latency of each transaction.

We can now derive the latency of each transaction gen-
erated by the processes A1, A2 and B’s by ttrans delay =
tglob quantum/nT , where nT denotes the number of trans-
action per process cycle.

All sensor data stored in SAE has to be read and evaluated
by LMODEL within a simulation cycle. The number of
transactions generated by each of the processes C1 and C2
is given by nTC1,C2

= nTB
∗ nS , where nTC1,C2

: number
of transactions generated in each process cycle by C1 and
C2, nTB

: number of transactions generated in each process
cycle by each process B and nS : the number of sensors in
the model.

The same formula applies to the processes E1, E2 and D
of the process chain, because they run in each simulation
cycle as many times as the processes C1 and C2.

By substituting the number of transactions in the pre-
viously derived formula for the latency of processes A1,
A2 and B’s, we obtain the following formula for the la-
tency of each process in the process chain ttrans delay =
tglob quantum/(nTB

∗ nS).



The transaction latency times that we are actually look-
ing for are the latency times tsingle delay of the single
transactions. These are not always equal to the latency
times determined previously, precisely when the generated
transactions are bursts, i.e. when the burst length is greater
than one (BL > 1) ( [8, p. 217]).

So we need the following formula showing the functional
interrelation between the latency of a transaction and the
latency of a single transaction in order to derive the searched
formula:

ttrans delay = tsingle delay ∗BL; BL =

⌈
DLmax

(BUSbits/8)

⌉
This leads to the following formula for the latency of the

single transactions in the node for the processes A1, A2 and
B’s as tsingle delay = tglob quantum/(nTB

∗BL) and for the
processes C1, C2, E1, E2 and D of the process chain as
tsingle delay = tglob quantum/(nTB

∗ nS ∗BL).
These are the formulas used in the model to automatically

calculate the latency times of the single transactions in each
node of a simulated system. This ensures the preconditioned
execution chronology of the processes and transactions in
each simulation cycle as well as the respective execution
start times of the processes that we defined. All together,
this realises a functional and timing correct simulation of
self-aware and self-expressive systems.

IV. EVALUATION

Both main parts of our advocated approach, the reference
architecture (section II) as well as the modelling and simula-
tion environment (section III), ran through intensive testing
and refinement phases to reach the current stable version.

During a first testing and refinement phase of the mod-
elling and simulation environment several more generic self-
aware and self-expressive systems composed of just one
node or composed of several nodes have been utilised to
optimize the simulation performance, the execution chronol-
ogy and the transaction and event handling of the different
processes. Additionally, the data read, storage and transport
mechanisms have been tested, bug-fixed and optimized to
provide an environment that can handle industrial relevant
systems in simulation run times of a few hours for data input
sizes of several tens of thousands of input samples.

Beside the modelling and simulation work with these
generic systems to test out and optimize the implementation,
we currently use the environment for a self-aware and self-
expressive system that realises novel concepts for fault tol-
erance to overcome one drawback of today’s over-designed
avionic systems. This concrete system is composed of one
single self-aware and self-expressive node representing an
avionic sub-system with safety critical functionality. Later
extensions will realise several of these nodes that exchange
information to guide the self-aware and self-expressive
behaviour locally at one node and at all system nodes,

simultaneously. Due to running patent applications further
details are not possible.

V. CONCLUSION

In this paper we have presented a comprehensive approach
for self-aware and self-expressive systems, including a sys-
tematic derivation of a reference architecture and a complete
modelling and simulation environment that is based on that
generic architectural template. With the defined reference
architecture and the modelling and simulation environment
at hand, we are able to systematically define, simulate and
analyse systems with self-aware and self-expressive capabil-
ities. Initial tests with multi-node systems and first results
of a running project on alternative fault tolerance avionic
concepts with one node proof our approach and underpin
the industrial relevance of the implemented environment.
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