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Complexity of classical dynamics of molecular systems.
II. Finite statistical complexity of a water–Na ¿ system

Dmitry Nerukh, George Karvounis, and Robert C. Glen
Unilever Centre for Molecular Informatics, Department of Chemistry, Cambridge University,
Cambridge CB2 1EW, United Kingdom

~Received 17 July 2002; accepted 9 September 2002!

The computational mechanics approach has been applied to the orientational behavior of water
molecules in a molecular dynamics simulated water–Na1 system. The distinctively different
statistical complexity of water molecules in the bulk and in the first solvation shell of the ion is
demonstrated. It is shown that the molecules undergo more complex orientational motion when
surrounded by other water molecules compared to those constrained by the electric field of the ion.
However the spatial coordinates of the oxygen atom shows the opposite complexity behavior in that
complexity is higher for the solvation shell molecules. New information about the dynamics of
water molecules in the solvation shell is provided that is additional to that given by traditional
methods of analysis. ©2002 American Institute of Physics.@DOI: 10.1063/1.1518011#

I. INTRODUCTION

Molecular systems are Hamiltonian nonlinear dynamical
systems. They are also large systems consisting of small,
relatively simple interacting parts. Systems with these char-
acteristics are capable of exhibiting self-organizing complex
behavior. It has been recognized that this type of behavior is
quite general for a wide class of nonlinear dynamical sys-
tems. In view of this analysis, the emergent behavior of
physical systems and their information-theoretical content
has become an active area of research. Methods for estimat-
ing the complexity of physical systems have attracted close
attention. However, very few investigations are devoted to
this kind of analysis of molecular systems. It is therefore a
promising line of research to focus on the details of the dy-
namical complexity of molecular systems.

To achieve this we need first to choose a relevant com-
plexity measure among the variety of existing theoretical ap-
proaches. Second, a specific implementation of the method-
ology should be devised, in particular, a practical algorithm
for symbolization of physical data. And, finally, the method
should be applied to a particular characteristic of a molecular
system. The results on the first two stages of the study are
reported in our accompanying paper1 while the details on this
particular application to a molecular system are presented
here.

It has been shown in Ref. 1 that computational mechan-
ics by Crutchfieldet al.2–4 can be effectively used as a mea-
sure of complexity of continuous physical trajectories. This
approach is a well-developed methodology nicely combining
fundamental ideas such as Shannon entropy and
Kolmogorov–Chaitin algorithmic complexity providing at
the same time practical methods for computing complexity.
One of the advantages of this approach is that it is based on
informatic-theoretical analysis of the dynamical evolution of
the system and opens up the possibility to explore details of
the key events in the systems behavior.

The particular implementation of computational me-

chanics based on the method reported in Ref. 5 is discussed
in Ref. 1. It is shown that it can be consistently used for
calculating dynamic complexity—the finite statistical com-
plexity in this case. Particular attention has been given to a
method of converting the physical trajectory into a symbolic
sequence. This is important because the complexity algo-
rithms are mostly applied to abstract mathematical models
that normally have analytical representation. Also, even
though there is a rigorous mathematical formulation of the
symbolization procedure, it is far from obvious how to apply
it to a general continuous multidimensional trajectory.

Studying complexity is becoming an active field of re-
search, nevertheless, its application to real physical systems
is still quite scarce.

There is evidence of chaotic character in molecular mo-
tions. Various MD trajectories of proteins have been care-
fully analyzed in Refs. 6 and 7 and it is shown that they have
positive Lyapunov exponents. The latter is a strong indica-
tion of the presence of chaos in the dynamics of the system.
The existence of chaos can be rigorously verified for a
simple three-atomic molecular model.8 The existence of
transversal homoclinic points in a Poincare´ map of this sys-
tem rigorously proves~via the theorem of Smale! its chao-
ticity. There is even the experimental indication of the exis-
tence of chaos in the dynamics of a Brownian particle.9

Lyapunov exponents and Kolmogorov–Sinai entropy are
used in studying transport and reaction-rate coefficients in a
classical fluid.10 The connection of Kolmogorov–Sinai en-
tropy with thermodynamic entropy is discussed in Refs. 11,
12. The informational aspect of Kolmogorov–Sinai entropy
and, most interesting, its use as a measure of complexity is
studied in Ref. 13.

Most theoretical work in connection with complexity
uses ‘‘symbolic dynamics.’’ That is, the dynamics of a sys-
tem is represented as a sequence of symbols from an alpha-
bet of possible values. Besides formal mathematical investi-
gations of symbolic dynamics there are applications to
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physical systems. Among them the studying of algorithmic
complexity of solar spike events14 and investigation of the
important phenomena of temporal irreversibility in real
physical phenomena.15

While the Kolmogorov–Chaitin algorithmic complexity
is applied to physical systems there are few applications of
computational mechanics and its measure of complexity.
However it would be very advantageous to focus on this
particular approach because it clearly provides more oppor-
tunities for understanding complex behavior. To the best of
our knowledge there is no application of either algorithmic
complexity or computational mechanics to the dynamics of
real molecular systems. In this paper we would like to
present the first attempt at investigating dynamic complexity
of a classical molecular system.

The diversity of molecular properties arising from the
dynamical structure of water to the role of water in the
mechanism of protein folding is likely to be the result of the
emergent, self-organizing character of these systems. Clearly,
the extent of self-organization and consequently, the com-
plexity is different for different systems. The power of analy-
sis methods of the emergent behavior would, probably, be
greatest in the most complex systems. However, even the
simplest examples should shed a new light on these exten-
sively studied systems.

As the first attempt in understanding complexity we have
chosen to analyze the classical dynamics of water molecules
in the Na1 –water system. We hypothesized that the dynam-
ics of water molecules in the solvation shell of the ion and in
the bulk would show significant differences in complexity. In
addition, some other features, not immediately obvious from
more traditional analysis could be revealed. The methodol-
ogy of classical molecular dynamics of this type of system is
rather well developed and an ample amount of literature
sources are available for comparison.16–22

II. SIMULATION AND NUMERICAL MODEL

We collected the coordinates from the molecular dynam-
ics simulation of a Na1 ion in cubic box filled with water.
The simulation was performed using theGROMACS 3.0pack-
age ~for details and documentation, see Ref. 23!. The box
included 216 molecules of SPC water24 and periodic bound-
ary conditions were applied. There was a 0.85 nm cutoff
distance for both van der Waals and Coulomb potentials.
When introducing the Na1 ion in the middle of the cubic box
~dimensions: 1.875 67 nm!, energy minimization using a
conjugate gradient algorithm was performed followed by a
steepest descent algorithm for further minimization. The
leapfrog algorithm for integrating equations of motion and
the GROMOS-96~Ref. 23! force field to implement the poten-
tial functions were used. The time step was 0.002 ps and we
collected 11 000 time steps. The initial velocities were gen-
erated by a Maxwellian distribution at 300 K.

It is important to choose a relevant dynamic characteris-
tic that reflects the key property of the system. We have
analyzed the orientation of the water molecule with respect
to the ion. The anglea is calculated as shown in Fig. 1,
where a15rO2rNa1 and a25(rH1

2rO)1(rH2
2rO). Two

main characteristics were used as dynamic trajectories for
calculating complexity: cosa and the distanced5ua1u. In
addition the raw three-dimensional coordinates of the oxygen
atoms were also used to estimate the complexity of the
atomic motion.

III. RESULTS AND DISCUSSION

There are a number of works devoted to MD simulation
of the water–Na1 system. The methods range from classical
MD ~Refs. 16–20! via mixed quantum-classical
approaches21 to ab initio molecular dynamics.22 We will not
focus on the structure and dynamics of the system here. It is
worth noting that the particular event of a migrating water
molecule in and out of the first solvation shell~ss! of the ion
and the details of the dynamics is of great interest. This
particular process is key to understanding chemical reactions
in liquid water.

The trajectories analyzed are presented in Figs. 2 and 3.
The 3D coordinates of the oxygen atoms were also used as
dynamic trajectories. The cosa and d trajectories are the
characteristics of the water molecules as a whole while the
space coordinate motion is a description at the single atom
level. Nine representative water molecules were chosen and
labeled by numbers from 1 to 9.

The distance time dependence was used to distinguish
between the water molecules in the first solvation shell those
from the bulk water. From Fig. 2 it is clear that molecules

FIG. 1. The dynamical characteristic, cosa andd, used to calculate com-
plexity.

FIG. 2. The distancesd of water molecules number 1–9 from the ion. The
bulk molecule trajectories are marked with numbers corresponding to the
molecule numbers~see text!.
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5–9 spend all their time in the ss region while the others, in
the bulk. The molecules in the ss change their distance to the
ion very insignificantly. Overall they behave very differently
from molecules in the bulk, however they also differ between
each other in small details. Molecules 6 and 8 exhibit notice-
ably bigger fluctuations.

In order to obtain consistent results in complexity its
dependence on the algorithm’s parameters must be analyzed.
As discussed in Ref. 1 the parameters of our algorithm arel
the length of left and right subsequences, andk the number
of partitions used to symbolize original data. Also, the de-
pendence on the number of data points, or time interval used
to collect the trajectories, should be checked to insure that
enough data has been collected.

The complexity of two typical water molecules are al-
most identical for alll in the range 2–10. For consistency we
usedl 53 for all our calculations.

Similar to the test cases1 the k dependence of the com-
plexity roughly follows the binary logarithm function. As
was discussed, this dependence may come from two sources.
First, the incomplete sampling of data may produce unnatu-
ral equivalence classes leading to an artificial increase in
complexity. Second, the theoretical limit of the Shannon en-
tropy at k→` has a logarithmic dependence. The former
source would be indicated by the strong influence ofl value
and number of data points on the resulting curves. The latter,
on the other hand, is an intrinsic property of the systems and
would not be dependent on any parameters of the numerical
algorithm, provided that we have enough data points.

The number of data points~or the overall time interval!
does not influence the resulting values of complexity. The
results are practically the same for all various number of data
points down to an 8 ns interval.

The weak dependence of complexity on both thel value
and the number of data points implies that thek dependence
of the complexity comes primarily from the natural limiting
value of Shannon entropy for continuous signals.

The complexities of the cosa andd trajectories for ana-
lyzed water molecules are plotted in Figs. 4 and 5.

Overall there is a well-defined difference in complexity

for orientational and translational dynamics of water mol-
ecules in ss and away from the ion at all values ofk. The
molecules surrounded by the other water molecules~not in
ss! show distinctively higher complexity than those mol-
ecules in the ss. Because the motion of the ion is slower than
the water molecules,a can be considered for the distant wa-
ter molecules as an orientational characteristic with respect
to some point fixed in space. In other words, this character-
istic serves as an estimate to the orientational dynamics of
water molecules with respect to their immediate neighbors.
Similarly, d can be used as a measure of the translational
motion. Higher values of complexity imply that the dynam-
ics of a water molecule exhibits richer behavior, processes
more information and requires more informational memory
when it is in a ‘‘cage’’ of other water molecules. On the
contrary, when a molecule is constrained by the electric field
of the ion, even though it undergoes as big local fluctuations
as bulk molecules do, its motion is noticeably less compli-
cated, there is less of a pattern in its time evolution.

Interestingly, different results are produced for different
accuracies of symbolization. For one molecule~number 5,

FIG. 3. cosa of the water molecules used in the analysis. Water molecule
numbers are in the column on the right.

FIG. 4. Thek dependence of the orientational dynamics complexity (C) of
water molecules at various distances from the ion.

FIG. 5. Thek dependence of the translation dynamics complexity (C) of
water molecules at various distances from the ion.
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depicted by a bold solid line in Figs. 4 and 5! a high accu-
racy ~high number of partitionsk) is required to extract all
information from the continuous trajectory. Therefore, thek
-dependence of the complexity for this molecule shows a
transition from higher to lower values with increasingk.

The complexity of the translational dynamics~Fig. 5! is
more sensitive to the distance to the ion than the orienta-
tional one. However, for both characteristics the bulk mol-
ecules exhibit far less variations in the value of complexity
than the molecules in ss.

To emphasize the new information that can be learned
from this sort of complexity analysis, we present the aver-
aged values of cosa and distances from the ion~Table I!.
According to these data the dynamics of molecules num-

bered 5–9 is almost indistinguishable by bothcosa and d̄.
The finite statistical complexity however, shows distinct dif-
ferences in the dynamics. Interestingly, some details of the
motion of molecules 7 and 8 make them follow more com-
plex reorientations. As for the translations, the trajectories of
molecules 5, 8, and 9 are more complex than the other two
molecules in ss. These differences may be an indication of
the start of the exchange event. We do not have enough evi-
dence for a more definite conclusion yet and this transitional
behavior is the subject of our current research.

In contrast to this, the averagecosa of the bulk mol-
ecule differs from each other significantly. Nevertheless the
complexity of all three characteristics of their dynamics~re-
orientation, translation, and space trajectories! is virtually the
same.

The complexities calculated from the three-dimensional
spatial coordinates of the oxygen atoms of the same mol-
ecules are presented in Fig. 6. Again, the distinctively differ-
ent values of complexity for the atoms in ss and in the bulk
are found. However, when comparing the complexity of re-
orientation between ss and bulk molecules we observe the
opposite trend. The atoms from the ss molecules have higher
complexity than those in the bulk. This emphasizes that the
most significant features of the dynamics of bulk molecules
come from their motion as a whole and not from the dynam-
ics of individual atoms.

IV. CONCLUSIONS

It is shown that computational mechanics can be applied
to the analysis of the dynamical complexity of molecular
motion. It clearly demonstrates the sensitivity of the statisti-
cal complexity to the details of water molecule dynamics in
the solvation shell of the ion and in the bulk. The reorienta-
tional and translational motion of the bulk molecules shows
distinctively more complex character then those in the field
of the ion. Complexity analysis gives more details of the
motion of the molecules in the vicinity of the ion. It provides
information about the differences of seemingly indistinguish-
able trajectories. The nature of these differences is currently
under investigation.

In the future we plan to improve the algorithm which we
hope will be even more sensitive to subtle differences in the
dynamics. Also, studying the events of water exchange in the
solvation shell may bring valuable insight into the under-
standing of emergent behavior. The same is true for bulk
molecules. More developed algorithms may shed light on the
details of water movements in the cage of surrounding water
molecules.

The next step in our research will be the consideration of
the trajectory in its phase space, i.e., the inclusion of the
velocities into the analysis. Also, taking into account groups
of molecules of various size will most probably give new
valuable information. Currently the algorithm is being tested
for high-dimensional problems~up to 20! and it demon-
strates robustness. This also suggests that this methodology
may uncover some of the mysteries of high-dimensional dy-
namics in the condensed phase.

Finally, it will be extremely promising to apply compu-
tational mechanics analysis to large molecular systems and in
particular proteins. We believe that this novel approach will
bring new insight into the process of protein folding and
other complex self-organizing phenomena.

TABLE I. Average cosa and distancesd̄ from the ion for various water
molecules.

Molecule
number cosa d̄

Bulk
1 0.07 0.78
2 0.00 1.14
3 20.10 0.49
4 0.28 0.55

Solvation shell
5 0.49 0.23
6 0.49 0.23
7 0.54 0.23
8 0.42 0.24
9 0.43 0.23

FIG. 6. The k dependence of dynamics complexity (C) for three-
dimensional coordinates of oxygen in water molecules at various distances
from the ion.
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