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Complexity of classical dynamics of molecular systems. I. Methodology
Dmitry Nerukh, George Karvounis, and Robert C. Glen
Unilever Centre for Molecular Informatics, Department of Chemistry, Cambridge University,
Cambridge CB2 1EW, United Kingdom

~Received 17 July 2002; accepted 9 September 2002!

Methods for the calculation of complexity have been investigated as a possible alternative for the
analysis of the dynamics of molecular systems. ‘‘Computational mechanics’’ is the approach chosen
to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been
developed for symbolization of a continuous physical trajectory of a dynamic system. A method for
calculating statistical complexity has been implemented and tested on representative systems. It is
shown that the computational mechanics approach is suitable for analyzing the dynamic complexity
of molecular systems and offers new insight into the process. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1518010#

I. INTRODUCTION

The motions of atoms and molecules in the condensed
phase is so complicated that it is often considered as random.
However, when rigorously defined this motion ischaotic.
That is, the underlying dynamics of seemingly very compli-
cated motion can be completely deterministic and even very
simple. There is direct evidence of the chaotic nature of mo-
lecular motions.1,2 The first criterion of the chaotic character
of a dynamic process is its Lyapunov exponents. It has been
shown1,2 that biomolecular systems have positive Lyapunov
exponents, which is the condition for a system to be chaotic.
Even a simple linear triatomic molecule possesses chaotic
dynamics, which is rigorously proved in Ref. 3 by the exis-
tence of the transversal homoclinic points in a Poincare´ map
of the system. Together with these numerical simulations
there is experimental evidence of chaos on the microscopic
level4 showing positive Lyapunov exponents of the motion
of a Brownian particle immersed in liquid.

Another distinctive feature of molecular systems is their
multiparticle nature. The dynamics of the system is made up
of the motion of a large number of small, relatively simple
interacting particles. Such systems, sometimes referred to as
large systems, are capable of producing very complex dy-
namics. Their time evolution has a self-organizing
character—a qualitatively new complex behavior emerges
from simple laws of interactions between the constituent
parts.5 It is also now being recognized that this type of be-
havior is quite generic for the class of nonlinear chaotic
systems.6

Molecular systems are Hamiltonian nonlinear dynamical
systems made of a large number of simply interacting parts.
This, therefore, makes them potentially capable of exhibiting
complex, self-organizing, emergent behavior. The diversity
of physical–chemical processes from phase transitions to
protein folding is a consequence of this characteristic. It is
thus of great interest to study the emergent nature of molecu-
lar systems in more detail.

The key point in understanding emergent behavior is to
find a way of analyzing the complexity of the system. The

complexity and, particularly, the dynamical complexity is ul-
timately related to self-organization and emergence. The
term ‘‘complexity’’ is loosely defined. There are many ap-
proaches to calculating complexity that vary considerably in
their definition and implementation. Nevertheless, they all
aim to estimate the same characteristic of the system,
namely, how sophisticated are the dynamical laws governing
the time evolution of the system.

In order to make complexity analysis a practical ap-
proach, a method for calculating complexity must be chosen.
It should be noted that complexity measures are mostly ap-
plied to abstract mathematical models exhibiting chaotic
dynamics.7 For our purposes, however, a practical method
for estimating the complexity of a continuous physical tra-
jectory is desired. If we devise a method for calculating com-
plexity quantitatively we can apply it to specific molecular
characteristics. This should then describe the key features of
the system and be a suitable descriptor of the phenomena
under study.

The mathematical abstraction used to analyze complex-
ity is in describing the system in terms of ‘‘symbolic dynam-
ics’’; a signal is replaced by a sequence of symbols from an
‘‘alphabet’’ of finite size. In the simplest case the alphabet
consists of zeros and ones and ‘‘symbolization’’ becomes a
binary coding. Even though complexity has only recently
become an active field of research it rests on such well-
known approaches as Shannon entropy and Kolmogorov–
Chaitin algorithmic complexity.

Shannon entropy is widely used for characterizing the
informational content of a signal and in fact was originally
introduced to describe the information capability of a com-
munication channel.8 Its close connection with thermody-
namic entropy and the theory of information makes it popu-
lar in the analysis of many physical processes.9,10 The
‘‘excess entropy’’ concept11 is a step towards a quantitative
measure of complexity. It gives a measure of the ‘‘memory’’
of a dynamical system thus giving an estimate of the sophis-
tication of the dynamical law that defines the behavior of the
system. It was first introduced by Crutchfield and Packard11
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and recognized as ‘‘an effective measure of complexity’’ by
Grassberger.12

Kolmogorov–Chaitin~KC! complexity is the length of
the minimal program for a Universal Turing Machine which
when run reproduces the process at hand. This is a math-
ematically well-developed approach which is unfortunately
not realizable in practise. Nevertheless, it provides the foun-
dation for many variations and extensions. This measure of
complexity is related to Shannon entropy because they both
estimate the size of the informational description of the pro-
cess.

Currently a number of approaches are being developed.
Among them is the ‘‘approximate entropy’’ approach,13 a
method exploring Fisher information14 and even some
‘‘simple’’ algorithms15 ~which are however open to
criticism16,17!.

One of the most valuable insights offered by the appli-
cation of complexity analysis is that it can reveal the mecha-
nism of the appearance of qualitatively new, complex behav-
ior from simple elementary events, in other words, an
explanation of emergent behavior in physical systems. This
set of problems also plays a significant role in evolution
theory and is extensively developed by Kauffman.5 One of
the main postulates is that in this class of dynamical systems
which show self-organization, the ability to process informa-
tion is most effective when the system is ‘‘on the edge of
chaos.’’ In other words, if a system exhibits both types of
dynamics: deterministic and chaotic depending on the pa-
rameters, the richest informational content of its behavior is
found for the intermediate values of the parameters.

The same ideas are present in the more formal field of
nonlinear chaotic dynamics. For example, emergence may be
elucidated from an abstract map at the onset of chaos.18 This
is, however, only a hypothesis and there are doubts on how
general this rule is.19

For our purposes we adopted the approach by Crutch-
field et al. termed ‘‘computational mechanics.’’20–23This ap-
proach combines and implements the ideas from both Shan-
non entropy and KC algorithmic complexity theories. Here a
symbolic sequence is used to reconstruct an algorithmic au-
tomaton that propagates the system from one state~the so-
called ‘‘causal state’’! to the next one. ‘‘Computational’’ sig-
nifies that the complexity of the system~a ‘‘statistical
complexity’’ in this case! is equal to the complexity of this
automaton. Being well developed from the formal math-
ematical point of view this approach provides a practical
algorithm for calculating the complexity of real systems. It
has been applied to a number of systems, both mathematical
and real physical models.22,24–26

If we are to calculate the statistical complexity of mo-
lecular systems we have to resolve a number of issues. Most
importantly, an algorithm for converting a continuous trajec-
tory of the systems to a symbolic sequence should be de-
vised. A general solution to the generation of a symbolic
representation~the concept of a generating partition! is, un-
fortunately so far applicable to only a very limited number of
abstract mathematical maps.7 The other difficulty in imple-
menting the original computational mechanics methodology
is that the reconstruction of the causal states automata is not

always straightforward and may require nontrivial methods.
That is why we use, at least at the current stage of this
investigation, a variation of the original Crutchfield method
suggested by Perry and Binder.27

This paper primarily deals with a methodology for the
calculation of statistical complexity of a molecular system.
The theory, computational details and testing of the algo-
rithm on simple model signals is described. The accompany-
ing paper,28 the application of the method to Na1 –water
classical MD simulation is discussed. In the forthcoming pa-
pers we will deal with more complex biochemical and other
systems that exhibit self-organizing features.

II. THEORY

In the following symbolic dynamics is considered, i.e.,
the signal consists of discrete symbols assigned to discrete
time steps. Let a set of symbols corresponding to each time
step t i form a sequenceS. To calculate the statistical com-
plexity S is decomposed into a set of leftsi

l ~past! of length
l and rightsi

r ~future! of length r halves joined together at
time pointst i . Consider a particular left subsequences1

l and
all left subsequences equivalent to it:s2

l ands3
l . Collect a set

of all right subsequences following this unique left subse-
quence~Fig. 1!. Each right subsequence has its probability
conditioned on the particular left one: Pr(sr usi

l). The equiva-
lence relation between any two left subsequences can now be
defined. Two unique left subsequencessi

l andsj
l are equiva-

lent if their right distributions are the same up to some tol-
erance valued : Pr(sr usi

l)5Pr(sr usj
l )1d. A set of all equiva-

lent left subsequences forms an ‘‘equivalence class.’’ The
equivalence classes have their own probabilities (Ai) equal
to the sum of probabilities of the constituent left subse-
quences.

The importance of the notion of equivalence classes is
that they represent the states of the system that define the
dynamics at future moments—the ‘‘causal states.’’ The time
evolution of the system can be viewed as traversing from one
causal state to the other with a probability defined by
Pr(sr usi

l). The set of the causal states together with the tran-

FIG. 1. A schematic representation of the equivalence relations. The left
~‘‘past’’ ! subsequencess1

l , s2
l , ands3

l ~all symbols on the@ tpast,t i # interval!
are the same. They lead to a distribution of right~‘‘futures’’ ! subsequences
s1

r , s2
r , ands3

r (@ t i ,t future#).
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sition probabilities constitute a so-called ‘‘e-machine.’’
e-machines represent the minimal computation necessary to
reproduce the dynamics of the system.

For example, a simple sequence consisting of alternating
zeros and ones has ane-machine shown in Fig. 2. Here state
A is an equivalence class consisting of just one left subse-
quence ...01010. StateB consists of a subsequence ...10101.
The transition probabilities are equal to 1.0 because each
state always leads to the other.

The statistical complexity is defined as the informational
size of thee-machine. The measure of this is the Shannon
entropy of the causal states,

C[2(
Ai

Pr~Ai !log2 Pr~Ai !, ~1!

whereAi are causal states. In contrast to KC complexity this
measure provides a zero complexity forboth extremes—a
constant signal and a purely random process. The maximum
value of complexity lies somewhere in between these two
limits.

This approach to calculating complexity gives an exten-
sive opportunity for analyzing the intrinsic mechanism of the
dynamics. In particular, thee-machines can be classified by
the algorithmic languages required to construct them. Their
hierarchy represents various levels of complexity. It is
suggested22 that the transition from one level to the other
upwards in the hierarchy represents the event of emergence.
Thus, the analysis of the reconstructede-machine is a key
point in studying dynamical complexity of the system.

In this work we use a simplified version of statistical
complexity due to Perry and Binder27 denoted ‘‘finite statis-
tical complexity.’’ It avoids the explicit reconstruction of the
e-machine but converges to statistical complexity. This, on
the one hand, simplifies the algorithm and makes it more
robust, however on the other it lacks the detailed explanatory
power of the original approach.

The approach considers substrings of lengthl for the left
subsequence and of lengthr for the right. It then estimates
the occurrence frequencies of the left subsequencesP(xl)
and for eachxl the occurrence frequencies of the right sub-
sequencesP(xr uxl). Then the equivalence classes$xl% i are
formed by comparing the distributions of the right strings.
Finally the finite statistical complexity is calculated by the
formula,

C52(
i

P~$xl% i !log2 P~$xl% i !, ~2!

whereP($xl% i) is a probability of each equivalence class.

III. COMPUTING FINITE STATISTICAL COMPLEXITY

A. Signal symbolization

The crucial part in the implementation of the methodol-
ogy is converting a continuous real signal into a sequence of
symbols, ‘‘symbolization.’’ There is a review on
symbolization29 reflecting the current state of affairs in this
field. The rigorous approach to symbolization is to use a
‘‘generating partition.’’7 There is a mathematical foundation
for this type of encoding of the trajectory.30 Unfortunately,
there is no practical algorithm for constructing a generating
partition for an arbitraryn-dimensional signal. The generat-
ing partitions are known for some, low dimensional systems,
for example the Henon map.31 Various criteria for partition-
ing are discussed in Ref. 32. For practical applications the
partitioning is often chosen arbitrarily. This, however, may
lead to erroneous conclusions about the dynamics of the sys-
tem. Some of the problems arising when a misplaced binary
partition is used are discussed in Ref. 33.

We have paid special attention to the symbolization of
molecular trajectories. Because of the lack of rigorous defi-
nition of a partition for a general case, we simply divide the
whole interval covered by the signal intok equal parts~Fig.
3! and investigate the behavior of the algorithm at different
values ofk. We also devised a special approach for generat-
ing the symbols based on the given partition.

The one-dimensional case is shown in Fig. 3. The signal
is considered as a continuous function represented by the
dots at the discrete experimental data points. The alphabet is
constructed by the partitioning and fork53, consists of three
symbols: $s0 ,s1 ,s2% ~Fig. 3!. The resulting symbolic se-
quence is shown at the bottom row in Fig. 3. The algorithm
for the symbolization is as follows:

~1! Find the intersection points of a signal with the partition
lines (t1 , t2 , t3) @take the first and the last points of the
signal as well (t0 , t4)#.

~2! Find the smallest interval in timeDt ~which is equal to
the length of@ t0 ,t1# for this example!.

FIG. 2. e-machine reconstruction.A and B are two causal states of the
system. Numbers on the arrows show the transition probability between the
states.

FIG. 3. Symbolization of a continuous signal. Only discrete data points~the
dots! representing the continuous signal~the solid curve! are available.
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~3! For each interval find the number of symbols produced
by this interval by dividing its length byDt.

~4! Form the final sequence by choosing the symbol from
the partition space where the signal falls between the
intersection points~Fig. 3!.

It is important to consider the intersection pointst i as time
interval boundaries and not the data points themselves. Oth-
erwise, if the data points do not fall in the points of natural
periodicity an artificial randomness is introduced into the
final symbolic sequence. Also, generating a sequence of re-
peating symbols like the ones on the@ t1 ,t2# interval pre-
serves more information from the original signal.

In choosingDt some tolerance was used andDt was not
allowed to be less than this tolerance~typically 10% of the
time step!. Also, when comparing different signals the same
value ofDt was used for all signals.

A continuous trajectory is normally not available since
we have only a discrete set of experimental points therefore
an interpolation must be used. We used a simple linear inter-
polation as shown in Fig. 4. A higher order scheme may be
introduced if necessary. However, if the points are dense
enough the linear approximation does not introduce a signifi-
cant error into the final result.

The algorithm is straightforwardly generalized to the
n-dimensional case. The partition lines are now hyperplanes
and the signal is a curve inn11 dimensional space~Fig. 5!.
Also, there arekn number of symbols in the alphabet, where
k is the number of partitions. The intersection pointst i are
the time coordinates of the intersections of the hyperplanes
with the signal curve.

B. Symbolic dynamics

The algorithm for computing the finite statistical com-
plexity follows the method described in Ref. 27:

~1! Go through all left subsequences of lengthl (xl) and the

following right subsequences of lengthr (xr). Calculate
the occurrence frequencies for the left subsequences
P(xl).

~2! Collect all unique left subsequencesxi
l . Form the sets of

right subsequences$xr% i for each left subsequence. For
each set$xr% i calculate the occurrence frequencies of
each right subsequence within the set making them the
distributions.

~3! Form the equivalence classes by comparing the right
subsequence distributions. If they are equal, add the cor-
responding left subsequences to the same equivalence
class.

FIG. 6. The definition of the equivalence of two distributions of symbolic
sequences. The probabilities number 2 and 8 from distribution 1 are smaller
than the maximal difference between the equal sequencesDP. Thus, these
two distributions are equal.

FIG. 4. Linear interpolation for finding the intersection points of the signal
and the partition lines.t is a true intersection point,t8 is the one used in the
calculation.

FIG. 5. Two-dimensional signal symbolization. The dots and the straight
lines joining them represent the continuous signal. The time interval bound-
aries (t1 ,t2) are found by projecting the points of intersection of the signal
with the partitioning planes. The symbolic alphabet consists of four sym-
bols: s00 ,s01 ,s10 ,s11 .
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~4! Calculate the equivalence class probabilities as a sum of
the occurrence frequencies of the left subsequences
P(xl) belonging to the class.

~5! The finite statistical complexity is calculated by the for-
mula ~2!.

The important point is the criteria for comparing the distri-
butions of right subsequences~step 3!. According to the
original approach by Crutchfield, they must be equal in the
statistical sense up to a toleranced. In our algorithm we
adopted rather loose criterion. First, the distributions should
have common sequences. Second, the unequal ones should
have a probability less then the biggest difference between
the probabilities of the equal ones~Fig. 6!.

Special attention must be paid to the cases of signifi-
cantly random processes. Figure 7 shows a case of a
6-symbol alphabet and left and right subsequences of length

2. The upper panel contains the probabilities of the left sub-
sequences and the bottom one those for the right. The prob-
ability of occurrence of a particular left subsequence~upper
panel! is shown with the corresponding right subsequences
~lower panel!. For a purely random process each left subse-
quence leads to all possible right subsequences with the same
probability, so that the lower panel in Fig. 7 is covered with
bars of the same height. This means that thee-machine con-
sists of a single causal state which is visited an infinite num-
ber of times.

In reality, however, the finite number of subsequences
leads to a situation in which the distribution on the lower
panel is not uniform or some subsequences are even com-
pletely missing. This will make the algorithm produce artifi-
cial causal states and, consequently, increase the probability
of those states. To avoid this, a sufficient set of subsequences
must be accumulated, in other words, the original signal
must be long enough to provide the correct approximation of
the right subsequences distributions. For an alphabet ofm
symbols and right subsequences of lengthr it needs at least
mr symbols to cover all possible right subsequences. Keep-
ing in mind the exponential dependence of the length of the
alphabet on the dimensionality of the signal it is obvious that
to get a correct zero value complexity for a purely random
signal we need a very long data stream, especially for high-
dimensional cases.

In the worst situation, when only one right sequence
corresponds to each left sequence, we havemr equivalence
classes each with probabilitymr . The formula for the com-
plexity becomes

C52(
i 51

mr

1

mr log2

1

mr 5r log2 m, ~3!

and this indicates that for a large number of partitions the
complexity is log2 m dependent. It is worth stressing that this
is only true for signals with a random component. For deter-
ministic signals the logarithmic dependence may arise for
another reason discussed in the next section.

FIG. 7. An example of the left subsequence~upper panel! and following
right subsequences~lower panel! probabilities. The subsequences length is
equal to 2 and the alphabet consists of 6 symbols~see text!.

FIG. 8. Test signals. From bottom to top:

f015H t22i , i 5¯21,0,1,2̄ for tP@2i ,2i 11#

2t12i , i 5¯21,0,1,2̄ for tP@2i 21,2i #
;

f s5sin(t);f2s5sin(at)1sin(bt); f 5s5( i 51
5 sin(ait); f r : straight lines joining

the points@ i ,r #, where i 5¯21,0,1,2... andr are random number in the
interval @0,3#.

FIG. 9. The dependence of the complexity on the number of partitions for
various length of left and right subsequences for thef 01 test signal.
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IV. RESULTS AND DISCUSSION

We tested the algorithm on the model signals shown in
Fig. 8. Once the procedure for comparing the right sequence
distributions is established the only parameters the algorithm
depends on are the length of the subsequencesl ~we assumed
the lengths of left and right subsequences are equal in all
calculations! and the number of partitionsk. We investigated
the complexity of the test signals at various values of both
these parameters.

The expected values of complexity are in this order: the
lowest for the random signal, thenf 01, f s , f 2s , and the most
complex f 5s .

Apparently, the more partitions that are used for symbol-
ization, the more information is encoded in the symbolic
sequence and the higher complexity we obtain. There is an-
other reason for increasing complexity withk. It can be
proven that Shannon entropy has2 log2 D dependence in the
D→0 limit, whereD is a discretisation interval.34 As far as
statistical complexity is a Shannon entropy measure, its limit
should also have logarithmic dependence.

Dependence on the lengthl is important because, ac-
cording to Ref. 27, finite statistical complexity converges to

statistical complexity with increasingl . Therefore, we have
to make sure that our results converge with increasingl .

Thek-dependence of the complexity of the test functions
at variousl are shown in Figs. 9–12. The logarithm of the
number of partitions (k) is also included for comparison.

For nonrandom signals there is a clear convergence with
increasingl . A very simple function likef 01 does not exhibit
any dependence onl which means that the correct dynamics
is captured for the shortest possible left and right substrings,
those of length 2.

The sine function displays an interesting feature: with
increasingl the deviation from the converged value starts
appearing at higher values ofk. In other words it requires
more information~the higherk the more information is trans-
ferred from the continuous signal to the symbolic sequence!
to reach the true complexity as we increase the length of the
time behavior that is analyzed.

The convergence for the sum of sine functions~not
shown heref 5s graph is very similar tof 2s) is obvious even
though the deviation from the logarithmic dependence be-
come significant at high values ofl . The nature of this is not
clear, yet a possible reason is that a nonoptimal condition for
comparison of right sequence distributions has been chosen.
It is worth stressing that for nonrandom signals the logarith-
mic dependence onk comes from the natural limit of the
Shannon entropy and not from the finiteness of the data
stream@Eq. ~3!#.

The situation with the random signal is somewhat more
complicated. The curves converge for low values ofl . For
lengthsl higher then 5 the curves show high, divergent val-
ues of complexity that we attribute to the lack of statistics.

FIG. 10. Same as Fig. 9 but forf s .

FIG. 11. Same as Fig. 9 but forf 2s .

FIG. 12. Same as Fig. 9 but forf r .

TABLE I. Finite statistical complexities of the test functions.

Function Finite statistical complexity

f r 6.14
f 01 6.88
f s 7.34
f 2s 10.88
f 5s 11.07
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For small l , however, all the curves converge to approxi-
mately the same value which is significantly different from
the other models.

Table I summarizes the data for the test function com-
plexities at k560. The converged value ofl is taken for
nonrandom functions andl 55 for the random one. The ex-
pected trend in complexity values of the signals with respect
to each other is seen, i.e., the lowest is found for random
values, thenf 01, sine and sums of sines is observed.

The difference betweenf 2s and f 5s is not very big but it
is clearly present. The small value of the difference is most
probably caused by using criteria that are not sufficiently
strict for the right side sequence distributions comparison.

V. CONCLUSIONS

Among the diversity of modern approaches for calculat-
ing dynamical complexity, computational mechanics by
Crutchfieldet al.22 promises great opportunities in the inves-
tigation of emergent behavior in molecular systems. To apply
them to real molecular trajectories, an algorithm for symbol-
ization of a continuous trajectory has been developed. It is
demonstrated that the algorithm reproduces the expected val-
ues of complexity for various test functions. The dependence
on the number of partitioning intervalsk of a real signal is
investigated. It is shown thatk -dependence has a logarith-
mic character as predicted by the theory. The approach al-
lows us to apply it to a real molecular system. This is pre-
sented in the companion paper.28 In future we plan to analyze
in more detail the various algorithms for the comparison of
right sequence distributions. This will most probably affect
the resulting complexity, especially for systems with a high
random component. It may also help to make the
k-dependence of the complexity smoother.

Finally, it will be very interesting to reconstruct the
e-machine implicitly and study a hierarchy of the algorithmic
languages, getting a deeper understanding of the emergent
and information processing nature of physical trajectories.
This direction of research is currently in progress in our
group.
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