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ABSTRACT 
 
We describe a free space quantum cryptography system which is designed to allow continuous unattended key 
exchanges for periods of several days, and over ranges of a few kilometres. The system uses a four-laser faint-pulse 
transmission system running at a pulse rate of 10MHz to generate the required four alternative polarization states. The 
receiver module similarly automatically selects a measurement basis and performs polarization measurements with four 
avalanche photodiodes. The controlling software can implement the full key exchange including sifting, error correction, 
and privacy amplification required to generate a secure key.  
 
INTRODUCTION 
 
We have designed and built a quantum cryptography system which is intended to perform free space key exchanges at 
ranges of a few kilometres. The system has been designed specifically to be implemented quickly and easily. The Bob 
and Alice optical heads are compact and transportable.  We use the BB84 protocol1 and have implemented the full set of 
error correction and privacy amplification schemes in order to generate identical private keys at each end of the 
communication link. 
 
RECEIVER HARDWARE 
 
 

 
Figure 1. The optical arrangement of the receiver. 

 
   Our QKD receiver module was built by Ludwig Maximillian University, Munich. The optics is based on a standard 
beamsplitter design (Figure 1) Light from the transmitter module is collected by a 12.5 cm focal length objective lens 
and focussed by a 1.25 cm imaging lens. Between the lenses is a 100 micron diameter pinhole acting as a spatial filter. 
The primary purpose of this is to limit the sensitivity of the receiver module to ambient illumination. 
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   After the imaging lens is the non-polarizing beam splitter. If an incoming photon is transmitted its polarization will be 
measured in the diagonal basis. This measurement is performed by the half-wave plate and polarizing beam splitter. At 
the output of the beam splitter are two photon counting silicon avalanche photodiodes (APD’s) (Perkin Elmer C30902S) 
one of which finally detects the photon and determines the outcome of the measurement. If the incoming photon is 
reflected by the non-polarizing beam splitter then a second polarizing beam splitter and two more APD’s perform a 
polarization measurement in the other  basis. 
   Incorporated into the detection module are the electronics which performs various functions. The detectors are cooled 
by Peltier effect coolers and the electronics incorporate temperature controllers to stabilise detector temperatures. This 
helps to keep the dark count rate to the order of 700 /s. There is also a high voltage power supply, passive quenching 
circuitry and discriminators to generate a logic level pulse whenever a photon is detected. For compatibility with the 
hardware used to interface the detection events to the receiver computer, the four detector channels need to be reduced to 
two. This is done by delaying the pulses produced by one detector and combining them using an OR gate, with the pulses 
from another detector. Repeating this process generates two output channels each carrying pulses from two detectors. 
Since detections of photons emitted by the transmitter module should take place at specific times, it is possible to 
determine whether a pulse was delayed or not, and so reconstruct the outputs of four detectors from the two available 
channels. However, this cannot be done with events associated with dark counts or ambient illumination. 
     A GT658 card (Guide Technology Inc) is installed in a rack mount PC and the two timing inputs of the card are 
connected to the pulse outputs of the receiver module. The PC also contains a temperature controlled quartz crystal 

oscillator (TCXO) with a frequency stability of approximately one part in 910 . This oscillator is used as the time base for 
the GT658 card, which can then measure the arrival time of each detection event with high accuracy. 
 

 
Figure 2. Optical layout of the Alice transmitter unit. 

 
TRANSMITTER HARDWARE 
 
Figure 2 shows the layout of the core transmitter optics. A pair of 670 nm laser diodes, one vertically polarized and one 
horizontally polarized, are mounted so that their output beams are combined by a beam splitter. A second similar pair are 
combined and the polarizations are rotated by a half-wave plate. A third beam splitter combines all four beams and 
passes them through a 100 micron diameter pinhole, followed by a second pinhole. The combination of two pinholes acts 
as a spatial filter which ensures that the output from each of the four lasers are in nearly the same spatial mode. The first 
pinhole also provides a substantial attenuation, bringing the intensity of each pulse down to a few photons per pulse. 
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   An additional beamsplitter between the pinholes allows another laser to be introduced into the beam. This laser is 
focussed through the output pinhole and provides a higher intensity source used to align the transmitter and receiver 
modules; it is switched off during normal operation. Further to this the four  laser channels can be operated in CW mode 
allowing alignment to be completed with a significant intensity of photons prior to pulsed operation, where alignment 
will be assured. A telescope with a magnification of 20 (not included in Figure 2) is used to reduce the divergence of the 
output. This should give a beam diameter of the order of 0.5m at a distance of 1km.  
   The transmitter head includes a printed circuit board which controls the laser output. Another TCXO similar to the one 
in the receiver PC provides an accurate 10MHz time base. An eight bit parallel connection from the PC is used to control 
high speed pulsing circuitry which delivers approximately 500ps pulses to the laser diodes. Normally one laser at a time 
is pulsed in a random sequence at 100ns time intervals, although all lasers can be pulsed simultaneously if required. 
 
SOFTWARE 
 
   The PCs connected to the transmitter and receiver modules were provided with sufficient software to align and test the 
performance of the optics heads, as well as perform all necessary functions required for a quantum cryptographic key 
exchange. 
The receiver system needs to be sufficiently synchronised to the transmitter so that it is possible to associate detection 
events with the individual pulse that caused it. This synchronisation process was performed in two stages. The receiver 
software maintains a virtual clock which runs continuously and is kept closely synchronised with the transmitter clock 
whenever a sufficiently large detection rate (above about 1000 events per second) is maintained. This is done by 
continually monitoring the arrival time of the detected photons and adjusting the rate of the software clock to maintain 
synchronisation. 
     The above procedure ensures that the software clock is running at the correct rate but is unable to distinguish one 
cycle of the clock from another. A common reference time is established by transmitting a header consisting of a fixed 
pattern of intensity modulation generated from a pseudo random bit sequence (PRBS). The detection rate is significantly 
lower than the transmission rate and the PRBS is repeated many times.  The receiver correlates the detected time 
sequence with the expected PRBS intensity pattern and can determine the time at which the header finishes and the 
cryptographic data starts to be transmitted. 
     The software also performs the standard cryptographic functions required for a full key exchange. The sifting process 
identifies those photons which were successfully received and which were detected in the correct polarization basis. 
After restricting attention to these events, a raw key is available at each end of the system. The two keys will not be 
identical, because of errors caused by imperfections in the system and possibly the effect of eavesdropping attempts. It is 
then necessary to correct these errors by exchanging information while limiting the amount given away to those 
monitoring the public communication channel. This is done by using a variant of the Cascade algorithm2. At the end of 
the error correction process the original error rate is known exactly. Making the conservative assumption that the errors 
are caused by eavesdropping, an upper bound on the amount of information obtained by the eavesdropper can be 
obtained. As long as the eavesdroppers information is significantly less than the size of the raw key, it is possible to use 
privacy amplification techniques3 to generate a shorter key which has no errors and which is effectively private. This 
means that the amount of information the eavesdropper has about the new key is negligible. We have implemented such 
a privacy amplification process in order to produce the final key. 
 
RESULTS 
 
   The system has been tested at short ranges (4m) and at the intermediate range of 40m. At the intermediate range, using 
an intensity of 0.2 photons per pulse from the transmitter, the receiver detected raw key at a rate of over 12kbit/s and the 
quantum bit error rate (QBER) was 5.6% This corresponds to a final key exchange rate of more that 1kBit/s, after taking 
into account all the losses associated with the cryptography protocols, and also the limited duty cycle imposed by the 
software, which has to devote a certain amount of time to overhead activities. The result of QBER measurements from 
an extended trial over 40m is shown in figure 3. 
   In order to determine the reliability of the system, we allowed it to run unattended at short range for a period of two 
days. The data rates were observed to show changes of approximately 20%, but otherwise otherwise it was found that 
key exchanges could be performed reliably throughout the test.  
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Figure 3. Results of key exchange tests over 40m.   
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