Aston University Engineering & Applied Science

Pulse shaping by phase-modulated fiber gratings in transmission

Miguel A. Preciado,^{1,*} Xuewen Shu,¹ Kate Sudgen,¹

¹Aston Institute of Photonic Technologies, Aston University, Birmingham, B4 7ET, UK. Email:m.preciado@aston.ac.uk

Introduction

We propose a novel approach to pulse shaping using phase-modulated fiber Bragg gratings (FBGs) in transmission. This enables the simplification of the device while retaining the fabrication substantial advantages of FBGs in transmission.

Numerical design method

A numerical optimization algorithm calculates the grating modulated phase, or equivalently $\Lambda(z)$, in order to obtain a spectral response in transmission that attempts to better approach the objective spectral response in transmission in terms of least minimum squares over a desired bandwidth.

Conclusions

- No optical circulator or additional element
- Typically optimal energy efficiency
- Phase response is less sensitive to grating fabrication errors
- The coupling strength remains basically uniform in the grating
- The phase-modulation profile can be directly encoded on a phase mask, and therefore has very high reproducibility.

Preliminary experimental in good agreement with the theoretical and numerical results

When all of this is considered, the use of phase-modulated FBGs in transmission appears to be a very attractive solution for pulse shaping.

Examples and results

Fig. 3. (Color online) Grating period (blue-solid) and strength (green-dotted) of the phase-modulated FBGs for examples (a) to (f).

Fig. 5. (Color online) Resulting output waveforms by applying a 7ps FWHM Gaussian pulse to the designed FBGs for examples (a) to (f).

As examples we design six phase-modulated FBGs in transmission for several waveforms generation.

- (a) 40-ps flat-top pulse shaper.
- (b) 40-ps saw tooth pulse shaper
- (c) 80-ps dark parabolic shaper
- (d) 40-ps bright parabolic shaper.
- (e) 80-ps double saw-tooth pulse shaper type I.
- (f) 80-ps double saw-tooth pulse shaper type II

Preliminary experimental results from fabricated FBGs

The designed grating structure was fabricated with the UV laser direct-writing system

- Grating created pitch-by-pitch.
- Hydrogen-loaded photosensitive fiber
- Stabilized by annealing at 80°C for 60 hours

The temporal results are obtained from experimental measured spectral responses of the fabricated FBGs, which phase was numerically recovered by using the Hilbert transform relation. A Gaussian pulse with 7-ps input was assumed.

Saw-tooth

