Numerical Investigations of the transport of submerged insulation particle

Gregory Cartland-Glover and Eckhard Krepper

Institut für Sicherheitsforschung

Sören Alt and Wolfgang Kästner

Institut für Proßtechnik, Prozessautomatisierung und Meßtechnik

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Forschungszentrum Dersden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

- Experimental study uses
 - + Laser PIV
 - + High-speed video

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Experimental study uses

- + Laser PIV
- + High-speed video
- + Ultrasound velocity
- + Turbidity
- + Pertinent concentrations

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - + Pertinent concentrations
- Numerical study can examine
 - + Whole channel

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Experimental study uses

- + Laser PIV
- + High-speed video
- + Ultrasound velocity
- + Turbidity
- + Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - + Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller
 - + Flow disruption by baffles

HULE ZITTAU/GÖRLITZ

Forschungszentrum Dresden Rosendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

1 / 13

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller
 - + Flow disruption by baffles
- To determine the impact
 - of
 - + Local velocity field
 - + Local concentration profiles
 - + Viscosity
 - + Buoyancy, drag and turbulence dispersion forces

HULE ZITTAU/GÖRLITZ versity of Applied Sciences Vitalied der Leibniz-Gemeinschaft

Sedimentation and resuspension of submerged particles in a horizontal flow

Eulerian-Eulerian multiphase flow

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Eulerian-Eulerian multiphase flow
- SST turbulence

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Eulerian-Eulerian multiphase flow
- ► SST turbulence
- Virtual particle (1)

TAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Eulerian-Eulerian multiphase flow
- SST turbulence
- Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (5)
 - + Continuous phase eddy viscosity (6) and (7)

- Eulerian-Eulerian multiphase flow
- SST turbulence
- Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (5)
 - + Continuous phase eddy viscosity (6) and (7)
- ▶ Interphase forces (8) to (11)
 - + Buoyancy (8)
 - + Drag (9)
 - + Turbulent Dispersion (10) and (11)

- Eulerian-Eulerian multiphase flow
- SST turbulence
- Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (5)
 - + Continuous phase eddy viscosity (6) and (7)
- ▶ Interphase forces (8) to (11)
 - + Buoyancy (8)
 - + Drag (9)
 - + Turbulent Dispersion (10) and (11)
- Boundary and initial conditions 1

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

The virtual particle

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

The virtual particle

0.10

0.15

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

▲□▶ 3 / 13

0.15

The virtual particle

0.10

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

▲□▶ 3 / 13

The virtual particle

Forschungszentrum Diesden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

The virtual particle

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

The virtual particle

HULE ZITTAU/GÖ<u>RLITZ</u>

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

The virtual particle

74

CHULE ZITTAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf

Institut für Sicherheitsforschung

Mitglied der Leibniz-Gemeinschaft

The virtual particle

• Iteratively resolve C_D

► Terminal velocity ≡ measured

mean velocities was obtained

- + $d_p = 5 \text{ mm}$ + $\rho_c = 997 \text{ kg m}^{-3}$ + $\rho_f = 2800 \text{ kg m}^{-3}$
- $+ ~
 ho_p =$ 1030 kg m $^{-3}$

JLE ZITTAU/GÖRLITZ sity of Applied Sciences Mitglied der Leibniz-Gemeinschaft

The virtual particle

E ZITTAU/GÖRLITZ

- + $\rho_c = 997 \text{ kg m}^{-3}$ + $\rho_f = 2800 \text{ kg m}^{-3}$
- $+ \rho_p = 1030 \text{ kg m}^{-3}$
- This also gives a particle share of 0.018

$$\alpha_p = \frac{\rho_p - \rho_c}{\rho_f - \rho_c} \tag{1}$$

Forschungszentrum Diesden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Viscosities

$$\mu_{cp} = \mu_c \mu_r \tag{2}$$

$$\mu_r = 1 + \begin{cases} 0 & r_p < 0.6\\ r_p^3 10^4 & r_p \ge 0.6 \end{cases}$$
(3)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Viscosities

$$\mu_{cp} = \mu_c \mu_r \tag{2}$$

$$\mu_r = 1 + \begin{cases} 0 & r_p < 0.6 \\ r_p^3 10^4 & r_p \ge 0.6 \end{cases}$$
(3)

 \blacktriangleright Dispersed phase eddy viscosity where $\nu=\mu/\rho$

$$\nu_{tp} = \frac{\nu_{tc}}{\sigma_{tc}} \tag{4}$$

Viscosities

$$\mu_{cp} = \mu_c \mu_r \tag{2}$$

$$\mu_r = 1 + \begin{cases} 0 & r_p < 0.6 \\ r_p^3 10^4 & r_p \ge 0.6 \end{cases}$$
(3)

 \blacktriangleright Dispersed phase eddy viscosity where $\nu=\mu/\rho$

$$\nu_{tp} = \frac{\nu_{tc}}{\sigma_{tc}} \tag{4}$$

Continuous phase eddy viscosity

$$\nu_{tc} = c_{\mu} \frac{k_c^2}{\varepsilon_c} \tag{5a}$$

$$\nu_{tc} = \frac{c_{\mu}^{0.5} k_c}{f_{\max} \left(c_{\mu}^{0.5} \omega_c, 2\tau_{ij} \tanh\left[f_{\max} \left(\frac{2k_c^{0.5}}{c_{\mu}\omega_c y}, \frac{500\nu_c}{y^2\omega_c} \right)^2 \right] \right)}$$
(5b)
$$\tau_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$
(6)

ZITTAU/GÖRLITZ of Applied Sciences Mitglied der Leibniz-Gemeinschaft

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

Drag Force

$$M_{cp}^{D} = \frac{3}{4} \frac{C_{D}}{d_{p}} r_{p} \rho_{c} \left| \mathbf{U}_{p} - \mathbf{U}_{c} \right| \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

► Drag Force

$$M_{cp}^{D} = \frac{3}{4} \frac{C_{D}}{d_{p}} r_{p} \rho_{c} \left| \mathbf{U}_{p} - \mathbf{U}_{c} \right| \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

 \blacktriangleright C_D was estimated by using the Schiller-Naumann drag correlation

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

Drag Force

$$M_{cp}^{D} = \frac{3}{4} \frac{C_{D}}{d_{p}} r_{p} \rho_{c} \left| \mathbf{U}_{p} - \mathbf{U}_{c} \right| \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

- \blacktriangleright C_D was estimated by using the Schiller-Naumann drag correlation
- \blacktriangleright Particle Reynolds number $Re_p=d_pU_{np}/\nu_c$ was based on the terminal or relative velocities

$$C_D = \begin{cases} \frac{24}{Re_p} & Re_p \ll 1\\ \frac{24}{Re_p} \left(1 + 0.15Re_p^{0.687}\right) & 1 < Re_p < 10^3\\ 0.44 & 10^3 < Re_p < 2 * 10^5 \end{cases}; \mathbf{U}_{Tp} = \sqrt{\frac{4}{3}\mathbf{g}\frac{\rho_p - \rho_c}{\rho_c}d_p\frac{1}{C_D}} \quad (9)$$

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

7.ITTAU/GORLITZ

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

► Drag Force

$$M_{cp}^{D} = \frac{3}{4} \frac{C_{D}}{d_{p}} r_{p} \rho_{c} \left| \mathbf{U}_{p} - \mathbf{U}_{c} \right| \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

- \blacktriangleright C_D was estimated by using the Schiller-Naumann drag correlation
- \blacktriangleright Particle Reynolds number $Re_p=d_pU_{np}/\nu_c$ was based on the terminal or relative velocities

$$C_D = \begin{cases} \frac{24}{Re_p} & Re_p \ll 1\\ \frac{24}{Re_p} \left(1 + 0.15Re_p^{0.687}\right) & 1 < Re_p < 10^3\\ 0.44 & 10^3 < Re_p < 2*10^5 \end{cases}; \mathbf{U}_{Tp} = \sqrt{\frac{4}{3}\mathbf{g}\frac{\rho_p - \rho_c}{\rho_c}d_p\frac{1}{C_D}} \quad (9)$$

Turbulent dispersion force of Lopez de Bertodano

$$M_{cp}^{TD} = C_{TD}\rho_p k_c \nabla r_p \tag{10}$$

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Buoyancy and interfacial forces

Buoyancy force

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

Drag Force

$$M_{cp}^{D} = \frac{3}{4} \frac{C_{D}}{d_{p}} r_{p} \rho_{c} \left| \mathbf{U}_{p} - \mathbf{U}_{c} \right| \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

- \blacktriangleright C_D was estimated by using the Schiller-Naumann drag correlation
- \blacktriangleright Particle Reynolds number $Re_p=d_pU_{np}/\nu_c$ was based on the terminal or relative velocities

$$C_D = \begin{cases} \frac{24}{Re_p} & Re_p \ll 1\\ \frac{24}{Re_p} \left(1 + 0.15Re_p^{0.687}\right) & 1 < Re_p < 10^3\\ 0.44 & 10^3 < Re_p < 2 * 10^5 \end{cases}; \mathbf{U}_{Tp} = \sqrt{\frac{4}{3}g\frac{\rho_p - \rho_c}{\rho_c}d_p\frac{1}{C_D}} \quad (9)$$

Turbulent dispersion force of Lopez de Bertodano

$$M_{cp}^{TD} = C_{TD}\rho_p k_c \nabla r_p \tag{10}$$

Turbulent dispersion force of Burns

$$M_{cp}^{TD} = C_{TD} \frac{3}{4} \frac{C_D}{d_p} r_p \rho_c \left| \mathbf{U}_p - \mathbf{U}_c \right| \frac{\nu_{tc}}{\sigma_{tc}} \left(\frac{\nabla r_p}{r_p} - \frac{\nabla r_c}{r_c} \right)$$
(11)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

□ • □ • 5 / 13

Turbulent dispersion force

Wikipedia:: Galilean Transformation Journal of Engineering Mathematics 41: 259–274, 2001. D.A. Drew / Nuclear Engineering and Decign 235 (2005) 1117–1128

Characterises deviations in particle trajectories caused by turbulent eddies

7.ITTAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Turbulent dispersion force

Wikipedia:: Galilean Transformation Journal of Engineering Mathematics 41: 259–274, 2001. D.A. Drew / Nuclear Engineering and Decign 235 (2005) 1117–1128

- Characterises deviations in particle trajectories caused by turbulent eddies
- Particle transport can be considered as an averaged phenomena

Turbulent dispersion force

Wikipedia:: Galilean Transformation Journal of Engineering Mathematics 41: 259–274, 2001. D.A. Drew / Nuclear Engineering and Decign 235 (2005) 1117–1128

- Characterises deviations in particle trajectories caused by turbulent eddies
- Particle transport can be considered as an averaged phenomena
- Spread or dispersion of particles is dependent on:
 - + Particle response time
 - + Timescale of turbulent eddies
 - + Gradient of the volume fraction with respect to spatial variation
 - + Gradient of the volume fraction with respect to velocity variation

Boundary and initial conditions

Condition	Velocity (m s ^{-1})	Re_{Ch} 🗡	Re_{Ch} 🗸	Re_p	r_p
A	0.01	616	2037	112	0.0414
B	0.10	6162	20370	560	0.0414
C	0.50	30810	101850	2801	0.0414

Transition to turbulence occurs over the range 4000-11000 of the channel Reynolds number

Model	M_{cp}^{TD}	C_{TD}
1	No force	0
2	(10)	$\frac{\beta_L}{\beta_n} \frac{\beta_L}{\beta_L + \beta_n}$
3	(11)	1

Where β_p and β_L are the particle relaxation time and the Lagrangian time–scale

Volume fraction contours at condition A

	1A	1B	1C	2A	2B	2C	ЗA	3B	3C
Re_{Ch}	2037	20370	101850	2037	20370	101850	2037	20370	101850
M_{cp}^{TD}	0	0	0	(10)	(10)	(10)	(11)	(11)	(11)

HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of Applied Sciences Mitglie

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

🗆 🔹 💶 🍡 8 / 13

Volume fraction contours at condition B

	1A	1B	1C	2A	2B	2C	ЗA	3B	3C
Re_{Ch}	2037	20370	101850	2037	20370	101850	2037	20370	101850
M_{cp}^{TD}	0	0	0	(10)	(10)	(10)	(11)	(11)	(11)

HOCHSCHULE ZITTAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

▲□▶ 9 / 13

Volume fraction contours at condition C

	1A	1B	1C	2A	2B	2C	ЗA	3B	3C
Re_{Ch}	2037	20370	101850	2037	20370	101850	2037	20370	101850
M_{cp}^{TD}	0	0	0	(10)	(10)	(10)	(11)	(11)	(11)

HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of Applied Sciences Witglied der Leibniz-Gemeinschaft

forschung Cartland-Glover emeinschaft Krepper

Cartland-Glover, Alt, Kästner & Krepper

I0 / 13

Gradient profiles

	1A	1B	1C	2A	2B	2C	ЗA	3B	3C
Re_{Ch}	2037	20370	101850	2037	20370	101850	2037	20370	101850
M_{cp}^{TD}	0	(10)	(11)	0	(10)	(11)	0	(10)	(11)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Conclusions

Qualitatively correct phenomena observed at different velocity conditions

Future work

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- ► Turbulent dispersion force modifies the particle transport

Future work

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- Turbulent dispersion force modifies the particle transport
- Particle drag influences the response of the particles to the turbulence and is shown to have a strong influence on the magnitude of the turbulent dispersion force

Future work

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- Turbulent dispersion force modifies the particle transport
- Particle drag influences the response of the particles to the turbulence and is shown to have a strong influence on the magnitude of the turbulent dispersion force
- Selected relative viscosity could also influence particle transport

Future work

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- Turbulent dispersion force modifies the particle transport
- Particle drag influences the response of the particles to the turbulence and is shown to have a strong influence on the magnitude of the turbulent dispersion force
- Selected relative viscosity could also influence particle transport

Future work

- Investigate
 - + Increases to C_{TD} of (11)
 - + Alternative viscosity closure models
 - + Alternative drag correlations
 - + Appropriate boundary conditions and phase definitions

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- Turbulent dispersion force modifies the particle transport
- Particle drag influences the response of the particles to the turbulence and is shown to have a strong influence on the magnitude of the turbulent dispersion force
- Selected relative viscosity could also influence particle transport

Future work

- Investigate
 - + Increases to C_{TD} of (11)
 - + Alternative viscosity closure models
 - + Alternative drag correlations
 - + Appropriate boundary conditions and phase definitions
- Scale-up to containment vessel size simulations and experiments

Conclusions

- Qualitatively correct phenomena observed at different velocity conditions
- Turbulent dispersion force modifies the particle transport
- Particle drag influences the response of the particles to the turbulence and is shown to have a strong influence on the magnitude of the turbulent dispersion force
- Selected relative viscosity could also influence particle transport

Future work

- Investigate
 - + Increases to C_{TD} of (11)
 - + Alternative viscosity closure models
 - + Alternative drag correlations
 - + Appropriate boundary conditions and phase definitions
- Scale-up to containment vessel size simulations and experiments
- Increase model complexity to incorporate more phenomena
 - $\ + \$ Particle size distributions and agglomeration and fragmentation
 - + Multiphase interactions (gas-liquid-solid) with descending hot water jets

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Acknowledgments

Project partners:

+ IPM Zittau

Thoralf Gocht, Rainer Hampel, Alexander Kratzsch, Stefan Renger, Andre Seeliger and *Frank Zacharias*

+ FZD

Alexander Grahn

 German Federal Ministry of Economy and Labor Contracts No. 1501270 and 1501307

