Application of multiphase flow modeling techniques to the transport of submerged mineral wool fibers

Gregory Cartland-Glover and Eckhard Krepper

Institut für Sicherheitsforschung

Sören Alt and Wolfgang Kästner

Institut für Proßtechnik, Prozessautomatisierung und Meßtechnik

11^{th} July 2007

Forschungszentrum Dresden Kossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

 Typical particles include paint chips, metal casings, lost tools and mineral wool fibres

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

Transported to the wetwell pool in the containment sump

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

- Transported to the wetwell pool in the containment sump
- Fine particles can remain suspended for several days, whilst heavier particles descend to the base of the sump

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

- Transported to the wetwell pool in the containment sump
- Fine particles can remain suspended for several days, whilst heavier particles descend to the base of the sump
- Water jets and recirculation pumps cause wetted fibres and agglomerated particles to be transported to strainers and pumps

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

- Transported to the wetwell pool in the containment sump
- Fine particles can remain suspended for several days, whilst heavier particles descend to the base of the sump
- Water jets and recirculation pumps cause wetted fibres and agglomerated particles to be transported to strainers and pumps
- Increases in pressure drop across the strainers can exceed pump specifications

- Typical particles include paint chips, metal casings, lost tools and mineral wool fibres
- Generated by LOCA steam jets destroying insulation material on local infrastructure

- Transported to the wetwell pool in the containment sump
- Fine particles can remain suspended for several days, whilst heavier particles descend to the base of the sump
- Water jets and recirculation pumps cause wetted fibres and agglomerated particles to be transported to strainers and pumps
- Increases in pressure drop across the strainers can exceed pump specifications
- Can quickly compromise the *defense-in-depth* concept

Project Scope

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Project Scope

- Particle debris generation by steam blasting
- Terminal velocity and sinking characteristics in a vertical column

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Project Scope

- Particle debris generation by steam blasting
- Terminal velocity and sinking characteristics in a vertical column
- Sedimentation and resuspension of submerged particles in a horizontal flow

Forschungszentrum Diesden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Project Scope

- Particle debris generation by steam blasting
- Terminal velocity and sinking characteristics in a vertical column
- Sedimentation and resuspension of submerged particles in a horizontal flow
- Pressure drop analysis with the accumulation of particles in filters/strainers

7.ITTAU/GÖRLITZ

Project Scope

- Particle debris generation by steam blasting
- Terminal velocity and sinking characteristics in a vertical column
- Sedimentation and resuspension of submerged particles in a horizontal flow
- Pressure drop analysis with the accumulation of particles in filters/strainers
- Multiphase water jet injection

7.ITTAU/GÖRLITZ

Project Scope

- Particle debris generation by steam blasting
- Terminal velocity and sinking characteristics in a vertical column
- Sedimentation and resuspension of submerged particles in a horizontal flow
- Pressure drop analysis with the accumulation of particles in filters/strainers
- Multiphase water jet injection
- Scale-up to containment sump scale with
 - + typical geometries
 - + multiphase interactions and phenomena
 - + equipment (pumps, filters, etc)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Experimental study uses

Forschungszentrum Diesden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Experimental study uses

- + Laser PIV
- + High-speed video

Forschungszentrum Diresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Study of sedimentation and resuspension of submerged particles in a horizontal flow

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Study of sedimentation and resuspension of submerged particles in a horizontal flow

Experimental study uses

- + Laser PIV
- + High-speed video
- + Ultrasound velocity
- + Turbidity
- + Pertinent concentrations

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - + Pertinent concentrations
- Numerical study can examine
 - + Whole channel

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Experimental study uses

- + Laser PIV
- + High-speed video
- + Ultrasound velocity
- + Turbidity
- + Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - + Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller
 - + Flow disruption by baffles

E ZITTAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Experimental study uses
 - + Laser PIV
 - + High-speed video
 - + Ultrasound velocity
 - + Turbidity
 - + Pertinent concentrations
- Numerical study can examine
 - + Whole channel
 - + Channel section upstream of the impeller
 - + Flow disruption by baffles
- To determine the impact of
 - + Local velocity field
 - + Local concentration profiles
 - + Viscosity
 - + Buoyancy, drag and turbulence dispersion forces

Overview of numerical models used

► Eulerian-Eulerian multiphase flow

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Overview of numerical models used

- Eulerian-Eulerian multiphase flow
- SST turbulence

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Overview of numerical models used

- Eulerian-Eulerian multiphase flow
- ► SST turbulence
- Virtual particle (1)

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Overview of numerical models used

- Eulerian-Eulerian multiphase flow
- SST turbulence
- Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (4)
 - + Continuous phase eddy viscosity (5) and (6)

Overview of numerical models used

- Eulerian-Eulerian multiphase flow
- ► SST turbulence
- Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (4)
 - + Continuous phase eddy viscosity (5) and (6)
- ▶ Interphase forces (7) to (12)
 - + Buoyancy (7)
 - + Drag (8)
 - + Turbulent Dispersion (9)

Overview of numerical models used

- Eulerian-Eulerian multiphase flow
- SST turbulence
- ► Virtual particle (1)
- Viscosity closure models (2) to (7)
 - + Relative and mixture (2) and (3)
 - + Dispersed phase eddy viscosity (4)
 - + Continuous phase eddy viscosity (5) and (6)
- ▶ Interphase forces (7) to (12)
 - + Buoyancy (7)
 - + Drag (8)
 - + Turbulent Dispersion (9)
- Boundary and initial conditions
 - + Low velocity, sedimenting conditions
 - + Medium velocity, sedimenting and resuspending conditions
 - $+\,$ High velocity, transport of solids with little sedimentation

I P M

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

Cartland-Glover, Alt, Kästner & Krepper

5

Results

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

Cartland-Glover, Alt, Kästner & Krepper

5

Results

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

Cartland-Glover, Alt, Kästner & Krepper

0.15

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

The virtual particle

16 12 8 Λ 0 0.00 0.05 0.10 0.15 Vsink [m/s]

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

The virtual particle

- Particles can be Measured classified by Mean term + sphericity Mean term
 - + compactness
 - + convexity

Class Particles

5

- Measured distribution of agglomerate velocities
- Mean terminal velocity of particles 0.05 m s⁻¹
- Assumed spherical agglomerate of fibres
 - Drag = Buoyancy
- Iteratively resolve C_D
 - Terminal velocity \equiv measured
 - mean velocities was obtained

+
$$d_p = 5 \text{ mm}$$

+ $\rho_c = 997 \text{ kg m}^{-3}$
+ $\rho_f = 2800 \text{ kg m}^{-3}$
+ $\rho_r = 1030 \text{ kg m}^{-3}$

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

The virtual particle

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;

Cartland-Glover, Alt, Kästner & Krepper

Molecular Viscosities

Mixture viscosity

$$\iota_{cp} = \mu_c \mu_r \tag{2}$$

 C_{hyd} = hydrodynamic constant = 6.2; r = volume fraction; μ = dynamic viscosity; μ_{in} = intrinsic viscosity = 2.5; Subscripts: c = continuous; cp = mixture; r = relative; p = dispersed; pmax = maximum dispersed phase fraction;

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Introduction	Numerical Models	Results	Conclusions	Future Work

Molecular Viscosities

Mixture viscosity

$$\mu_{cp} = \mu_c \mu_r \tag{2}$$

Relative viscosity

$$\mu_{r1} = 1 + \begin{cases} 0 & r_p < 0.6 \\ r_p^3 10^4 & r_p \ge 0.6 \end{cases}$$
(3a)
$$\mu_{r2} = \left(1 - \frac{r_p}{r_{p \max}}\right)^{-\mu_{in}r_{p \max}}$$
(3b)
$$\mu_{r3} = 1 + \mu_{in}r_p + C_{hyd}r_p^2$$
(3c)

 C_{hyd} = hydrodynamic constant = 6.2; r = volume fraction; μ = dynamic viscosity; μ_{in} = intrinsic viscosity = 2.5; Subscripts: c = continuous; cp = mixture; r = relative; p = dispersed; pmax = maximum dispersed phase fraction;

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

1 - >

Eddy Viscosities

• Dispersed phase eddy viscosity, where $u = \mu/ ho$

$$\nu_{tp} = \frac{\nu_{tc}}{\sigma_{tc}} \tag{4}$$

 C_{μ} = turbulence constant = 0.09; f_{\max} = maximum function; k = turbulent kinetic energy; U = mean velocity vector component; x = position vector component; y = distance to nearest wall; ε = eddy dissipation rate; ν = kinematic viscosity; σ = turbulent Prandtl number; τ = shear rate tensor; ω = eddy frequency; Subscripts: c = continuous; i = ith direction vector component; j = jth direction vector component; p = dispersed; t = turbulent eddy;

Introduction	Numerical Models	Results	Conclusions	Future Work			
Eddy Viscosities							
 Dispersed phase eddy viscosity, where $u = \mu/ ho$ 							
		$ u_{tp}=rac{ u_{tc}}{-}$		(4)			

Continuous phase eddy viscosity

 σ_{tc}

 C_{μ} = turbulence constant = 0.09; f_{max} = maximum function; k = turbulent kinetic energy; U = mean velocity vector component; x = position vector component; y = distance to nearest wall; ε = eddy dissipation rate; ν = kinematic viscosity; σ = turbulent Prandtl number; τ = shear rate tensor; ω = eddy frequency; Subscripts: c = continuous; i = ith direction vector component; j = jth direction vector component; c = turbulent eddy;

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Interphase forces

Buoyancy force characterises the motion of the particles

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

 C_{cp}^{D} = momentum exchange coefficient; C_{TD} = turbulence dispersion coefficient; \mathbf{g} = gravitational acceleration; M = interfacial force; r = volume fraction; S = body or external force; \mathbf{U} = mean velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; Superscripts: B = buoyancy; D = drag; TD = turbulence dispersion

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Interphase forces

Buoyancy force characterises the motion of the particles

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

 Drag Force characterises the resistance of the particles to fluid flow

$$M_{cp}^{D} = C_{cp}^{D} \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

 C_{cp}^{D} = momentum exchange coefficient; C_{TD} = turbulence dispersion coefficient; \mathbf{g} = gravitational acceleration; M = interfacial force; r = volume fraction; S = body or external force; \mathbf{U} = mean velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; Superscripts: B = buoyancy; D = drag; TD = turbulence dispersion

Interphase forces

Buoyancy force characterises the motion of the particles

$$S_{cp}^{B} = \mathbf{g}r_{p}\left(\rho_{p} - \rho_{c}\right) \tag{7}$$

 Drag Force characterises the resistance of the particles to fluid flow

$$M_{cp}^{D} = C_{cp}^{D} \left(\mathbf{U}_{p} - \mathbf{U}_{c} \right)$$
(8)

 Turbulent dispersion force characterises the response and spread of particles due to turbulent eddies

$$M_{cp}^{TD} = C_{TD} C_{cp}^{D} \frac{\nu_{tc}}{\sigma_{tc}} \left(\frac{\nabla r_p}{r_p} - \frac{\nabla r_c}{r_c} \right)$$
(9)

 C_{cp}^D = momentum exchange coefficient; C_{TD} = turbulence dispersion coefficient; \mathbf{g} = gravitational acceleration; M = interfacial force; r = volume fraction; S = body or external force; \mathbf{U} = mean velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; Superscripts: B = buoyancy; D = drag; TD = turbulence dispersion

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Key terms in drag and turbulent dispersion forces

Eddy diffusivity hypothesis resolves the spread of volume fraction by velocity fluctuations

$$\overline{r'_k \mathbf{u}'_k} = \frac{\nu_{tk}}{\sigma_{tk}} \nabla \overline{r_k} \tag{10}$$

 C_D = drag coefficient; d = particle diameter; Re = Reynolds number; r = volume fraction; r' = fluctuating volume fraction; \mathbf{U} = mean velocity vector; \mathbf{u}' = fluctuating velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; T = terminal settling velocity

Key terms in drag and turbulent dispersion forces

Eddy diffusivity hypothesis resolves the spread of volume fraction by velocity fluctuations

$$\overline{r'_k \mathbf{u}'_k} = \frac{\nu_{tk}}{\sigma_{tk}} \nabla \overline{r_k} \tag{10}$$

Analogous to eddy viscosity hypothesis

$$\overline{\mathbf{u}_{k}'\mathbf{u}_{k}'} = \nu_{tk}\nabla\overline{\mathbf{u}_{k}} \tag{11}$$

 C_D = drag coefficient; d = particle diameter; Re = Reynolds number; r = volume fraction; r' = fluctuating volume fraction; \mathbf{U} = mean velocity vector; \mathbf{u}' = fluctuating velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; T = terminal settling velocity

Key terms in drag and turbulent dispersion forces

Eddy diffusivity hypothesis resolves the spread of volume fraction by velocity fluctuations

$$\overline{r'_k \mathbf{u}'_k} = \frac{\nu_{tk}}{\sigma_{tk}} \nabla \overline{r_k} \tag{10}$$

Analogous to eddy viscosity hypothesis

$$\overline{\mathbf{u}_{k}'\mathbf{u}_{k}'} = \nu_{tk}\nabla\overline{\mathbf{u}_{k}} \tag{11}$$

• C_{cp}^D = momentum exchange coefficient

$$C_{cp}^{D} = \frac{3}{4} \frac{C_D}{d_p} r_p \rho_c \left| \mathbf{U}_p - \mathbf{U}_c \right|$$
(12a)

$$C_D = \begin{cases} \frac{24}{Re_p} & Re_p \ll 1\\ \frac{24}{Re_p} \left(1 + 0.15Re_p^{0.687}\right) & 1 < Re_p < 10^3\\ 0.44 & 10^3 < Re_p < 2 * 10^5 \end{cases}$$
(12b)

$$Re_p = \frac{d_p U_{np}}{\nu_c} \tag{12c}$$

$$\mathbf{U}_{Tp} = \sqrt{\frac{4}{3}\mathbf{g}\frac{\rho_p - \rho_c}{\rho_c}d_p\frac{1}{C_D}}$$
(12d)

 C_D = drag coefficient; d = particle diameter; Re = Reynolds number; r = volume fraction; r' = fluctuating volume fraction; \mathbf{U} = mean velocity vector; \mathbf{u}' = fluctuating velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; T = terminal settling velocity

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Effect of relative viscosity

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitalied der Leibniz-Gemeinschaft

Effect of coefficient of turbulence dispersion (1)

Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines; TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

Relative viscosity: $\mu_{r2} = \left(1 - \frac{r_p}{r_p \max}\right)^{-\mu_{in} r_p \max};$

SCHULE ZITTAU/GÖRLITZ

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Effect of coefficient of turbulence dispersion (2)

Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines; TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

Relative viscosity:
$$\mu_{r2} = \left(1 - \frac{r_p}{r_p \max}\right)^{-\mu_{in} r_p \max};$$

HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of Applied Sciences Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

Effect of coefficient of turbulence dispersion (3)

Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines; TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

Relative viscosity: $\mu_{r2} = \left(1 - \frac{r_p}{r_p \max}\right)^{-\mu_{in} r_p \max};$

HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of Applied Sciences Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Cartland-Glover, Alt, Kästner & Krepper

■ • ■ • 13 / 16

 Qualitatively correct phenomena observed at different velocity conditions

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects
- Requires a modified turbulent dispersion force to give qualitative phenomena

7.ITTAU/GORLITZ

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects
- Requires a modified turbulent dispersion force to give qualitative phenomena
- Modification made through C_{TD}

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects
- Requires a modified turbulent dispersion force to give qualitative phenomena
- Modification made through C_{TD}
- Influence of momentum exchange on the turbulence dispersion force is shown at higher velocities

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects
- Requires a modified turbulent dispersion force to give qualitative phenomena
- Modification made through C_{TD}
- Influence of momentum exchange on the turbulence dispersion force is shown at higher velocities
- Influence of viscosity is strongest in the particulate layer at lower velocities

- Qualitatively correct phenomena observed at different velocity conditions
- Selected relative viscosity correlations show no significant effects
- Requires a modified turbulent dispersion force to give qualitative phenomena
- Modification made through C_{TD}
- Influence of momentum exchange on the turbulence dispersion force is shown at higher velocities
- Influence of viscosity is strongest in the particulate layer at lower velocities
- Direct experiments to gain further information on the transport properties of the particles

Future Work

 Acquire experimental data to select and validate applied closure and interfacial force models

Forschungszentrum Diresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- Use higher velocities to measure turbulence dispersion force

Forschungszentrum Dresden Rossendorf Institut für Sicherheitsforschung Mitglied der Leibniz-Gemeinschaft

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- Use higher velocities to measure turbulence dispersion force
- To resolve the momentum exchange term
 - + Particle description
 - + Particle drag coefficient
 - + Particle contact area

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- Use higher velocities to measure turbulence dispersion force
- To resolve the momentum exchange term
 - + Particle description
 - + Particle drag coefficient
 - + Particle contact area
- Relative viscosity has an influence at lower velocities and higher volume fractions
 - + Particle shape and orientation
 - + Intrinsic viscosity
 - + Volume fraction dependency

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- ▶ Use higher velocities to measure turbulence dispersion force
- To resolve the momentum exchange term
 - + Particle description
 - + Particle drag coefficient
 - + Particle contact area
- Relative viscosity has an influence at lower velocities and higher volume fractions
 - + Particle shape and orientation
 - + Intrinsic viscosity
 - + Volume fraction dependency
- Modify flow by introducing baffles

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- Use higher velocities to measure turbulence dispersion force
- To resolve the momentum exchange term
 - + Particle description
 - + Particle drag coefficient
 - + Particle contact area
- Relative viscosity has an influence at lower velocities and higher volume fractions
 - + Particle shape and orientation
 - + Intrinsic viscosity
 - + Volume fraction dependency
- Modify flow by introducing baffles
- Scale-up to containment vessel size

Future Work

- Acquire experimental data to select and validate applied closure and interfacial force models
- Use higher velocities to measure turbulence dispersion force
- To resolve the momentum exchange term
 - + Particle description
 - + Particle drag coefficient
 - + Particle contact area
- Relative viscosity has an influence at lower velocities and higher volume fractions
 - + Particle shape and orientation
 - + Intrinsic viscosity
 - + Volume fraction dependency
- Modify flow by introducing baffles
- Scale-up to containment vessel size
- Increase complexity
 - + Particle size and shape distributions
 - + Agglomeration and fragmentation models
 - + Multiphase interactions (gas-liquid-solid) with descending hot water jets

Acknowledgments

Project partners:

+ IPM Zittau

Thoralf Gocht, Rainer Hampel, Alexander Kratzsch, Stefan Renger, Andre Seeliger and *Frank Zacharias*

+ FZD

Alexander Grahn

 German Federal Ministry of Economy and Labor Contracts No. 1501270 and 1501307

