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Introduction Numerical Models Results Conclusions Future Work

Debris generation and transport in BWR and PWR

I Typical particles include paint chips, metal casings, lost tools and
mineral wool fibres

I Generated by LOCA steam jets destroying insulation material on
local infrastructure

I Transported to the wetwell pool in the containment sump

I Fine particles can remain suspended for several days, whilst
heavier particles descend to the base of the sump

I Water jets and recirculation pumps cause wetted fibres and
agglomerated particles to be transported to strainers and pumps

I Increases in pressure drop across the strainers can exceed pump
specifications

I Can quickly compromise the defense-in-depth concept
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Project Scope

I Particle debris generation by steam
blasting

I Terminal velocity and sinking
characteristics in a vertical column

I Sedimentation and resuspension of
submerged particles in a horizontal flow

I Pressure drop analysis with the
accumulation of particles in
filters/strainers

I Multiphase water jet injection

I Scale-up to containment sump scale

with

+ typical geometries
+ multiphase interactions and

phenomena
+ equipment (pumps, filters, etc)
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Study of sedimentation and resuspension of submerged
particles in a horizontal flow

I Experimental study uses

+ Laser PIV
+ High-speed video
+ Ultrasound velocity
+ Turbidity
+ Pertinent concentrations

I Numerical study can

examine

+ Whole channel
+ Channel section upstream

of the impeller
+ Flow disruption by baffles

I To determine the impact

of
+ Local velocity field
+ Local concentration

profiles
+ Viscosity
+ Buoyancy, drag and

turbulence dispersion
forces
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Overview of numerical models used

I Eulerian-Eulerian multiphase flow

I SST turbulence

I Virtual particle (1)
I Viscosity closure models (2) to (7)

+ Relative and mixture (2) and (3)
+ Dispersed phase eddy viscosity (4)
+ Continuous phase eddy viscosity (5) and (6)

I Interphase forces (7) to (12)
+ Buoyancy (7)
+ Drag (8)
+ Turbulent Dispersion (9)

I Boundary and initial conditions
+ Low velocity, sedimenting conditions
+ Medium velocity, sedimenting and resuspending conditions
+ High velocity, transport of solids with little sedimentation
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The virtual particle

I Particles can be

classified by

+ sphericity
+ compactness
+ convexity

Class Particles

1

2

3

4

5

I Measured distribution of
agglomerate velocities

I Mean terminal velocity of particles
0.05 m s−1

I Assumed spherical agglomerate of
fibres

I Drag = Buoyancy

I Iteratively resolve CD

I Terminal velocity ≡ measured

mean velocities was obtained

+ dp = 5 mm

+ ρc = 997 kg m−3

+ ρf = 2800 kg m−3

+ ρp = 1030 kg m−3

I This also gives a particle share of
0.018

αp =
ρp − ρc
ρf − ρc

(1)

d = diameter; α = particle share; ρ = density; Subscripts: c = continuous; p = dispersed; f = fibre;
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Molecular Viscosities

I Mixture viscosity
µcp = µcµr (2)

I Relative viscosity

µr1 = 1 +

{
0 rp < 0.6

r3
p104 rp ≥ 0.6

(3a)

µr2 =

(
1−

rp

rpmax

)−µinrpmax

(3b)

µr3 = 1 + µinrp + Chydr
2
p (3c)

Chyd = hydrodynamic constant = 6.2; r = volume fraction; µ = dynamic viscosity; µin = intrinsic viscosity = 2.5; Subscripts: c =
continuous; cp = mixture; r = relative; p = dispersed; pmax = maximum dispersed phase fraction;
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Eddy Viscosities

I Dispersed phase eddy viscosity, where ν = µ/ρ

νtp =
νtc

σtc
(4)

I Continuous phase eddy viscosity

νtc = cµ
k2
c

εc
(5a)

νtc =
c0.5µ kc

fmax

(
c0.5µ ωc, 2τij tanh

[
fmax

(
2k0.5
c

cµωcy
, 500νc
y2ωc

)2
]) (5b)

τij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(6)

Cµ = turbulence constant = 0.09; fmax = maximum function; k = turbulent kinetic energy; U = mean velocity vector component; x
= position vector component; y = distance to nearest wall; ε = eddy dissipation rate; ν = kinematic viscosity; σ = turbulent Prandtl

number; τ = shear rate tensor; ω = eddy frequency; Subscripts: c = continuous; i = ith direction vector component; j = jth direction
vector component; p = dispersed; t = turbulent eddy;
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Interphase forces

I Buoyancy force characterises the motion of the particles

SBcp = grp (ρp − ρc) (7)

I Drag Force characterises the resistance of the particles to fluid
flow

MD
cp = CD

cp (Up −Uc) (8)

I Turbulent dispersion force characterises the response and spread
of particles due to turbulent eddies

MTD
cp = CTDC

D
cp

νtc

σtc

(
∇rp
rp
−
∇rc
rc

)
(9)

CDcp = momentum exchange coefficient; CTD = turbulence dispersion coefficient; g = gravitational acceleration; M = interfacial

force; r = volume fraction; S = body or external force; U = mean velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent
Prandtl number; Subscripts: c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; Superscripts: B = buoyancy; D = drag;
TD = turbulence dispersion
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Key terms in drag and turbulent dispersion forces

I Eddy diffusivity hypothesis resolves the spread of volume fraction by velocity
fluctuations

r′ku
′
k =

νtk

σtk
∇rk (10)

I Analogous to eddy viscosity hypothesis

u′ku
′
k = νtk∇uk (11)

I CD
cp = momentum exchange coefficient

CDcp =
3

4

CD

dp
rpρc |Up −Uc| (12a)

CD =





24
Rep

Rep � 1
24
Rep

(
1 + 0.15Re0.687p

)
1 < Rep < 103

0.44 103 < Rep < 2 ∗ 105

(12b)

Rep =
dpUnp

νc
(12c)

UTp =

√
4

3
g
ρp − ρc
ρc

dp
1

CD
(12d)

CD = drag coefficient; d = particle diameter; Re = Reynolds number; r = volume fraction; r′ = fluctuating volume fraction; U =

mean velocity vector; u′ = fluctuating velocity vector; ν = kinematic viscosity; ρ = density; σ = turbulent Prandtl number; Subscripts:
c = continuous; cp = mixture; p = dispersed; t = turbulent eddy; T = terminal settling velocity
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Effect of relative viscosity

Horizontal velocity of continuous phase
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I SST Turbulence: thick solid lines; Laminar: thin solid lines;

I Relative viscosities:

Red :µr1 = 1 +

{
0 rp < 0.6

r3p10
4 rp ≥ 0.6

; Blue : µr2 =

(
1− rp

rpmax

)−µinrpmax
; Black: µr3 = 1 + µinrp + Chydr

2
p;
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Effect of coefficient of turbulence dispersion (1)
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I Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines;
TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

I Relative viscosity: µr2 =

(
1− rp

rpmax

)−µinrpmax
;
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Effect of coefficient of turbulence dispersion (2)

Product of eddy diffusivity and volume fraction gradient
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I Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines;
TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

I Relative viscosity: µr2 =

(
1− rp

rpmax

)−µinrpmax
;
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Effect of coefficient of turbulence dispersion (3)
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I Coefficient of turbulent dispersion: TDF = 0: thick black solid lines; TDF = 1: thick red lines; TDF = 50: thick blue solid lines;
TDF = 100: thick cyan solid lines; Laminar: thin black solid lines;

I Relative viscosity: µr2 =
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1− rp
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)−µinrpmax
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Conclusions

I Qualitatively correct phenomena observed at different velocity
conditions

I Selected relative viscosity correlations show no significant effects

I Requires a modified turbulent dispersion force to give qualitative
phenomena

I Modification made through CTD

I Influence of momentum exchange on the turbulence dispersion
force is shown at higher velocities

I Influence of viscosity is strongest in the particulate layer at lower
velocities

I Direct experiments to gain further information on the transport
properties of the particles
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Future Work

I Acquire experimental data to select and validate applied closure and
interfacial force models

I Use higher velocities to measure turbulence dispersion force

I To resolve the momentum exchange term
+ Particle description
+ Particle drag coefficient
+ Particle contact area

I Relative viscosity has an influence at lower velocities and higher volume

fractions
+ Particle shape and orientation
+ Intrinsic viscosity
+ Volume fraction dependency

I Modify flow by introducing baffles

I Scale-up to containment vessel size

I Increase complexity
+ Particle size and shape distributions
+ Agglomeration and fragmentation models
+ Multiphase interactions (gas-liquid-solid) with descending hot water jets
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