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Abstract

Two of the greatest crises that civilisation faces in the 21st century are the predicted 
rapid increases in the ageing population and levels of metabolic disorders such as obesity 
and type 2 diabetes. A growing amount of evidence now supports the notion that energy 
balance is a key determinant not only in metabolism but also in the process of cellular 
ageing. Much of genetic evidence for a metabolic activity-driven ageing process has come 
from model organisms such as worms and flies where inactivation of the insulin receptor 
signalling cascade prolongs lifespan. At its most simplistic, this poses a conundrum for 
ageing in humans – can reduced insulin receptor signalling really promote lifespan and 
does this relate to insulin resistance seen in ageing? In higher animals, caloric restriction 
studies have confirmed a longer lifespan when daily calorie intake is reduced to 60% of 
normal energy requirement. This suggests that for humans, it is energy excess which is 
a likely driver of metabolic ageing. Interventions that interfere with the metabolic fate of 
nutrients offer a potentially important target for delaying biological ageing. 

across multiple cells/organisms has produced some fascinating 
candidate regulatory molecules and pathways. From extensive 
research using Caenorhabditis elegans and rodent models, we can now 
manipulate genes associated with several key signalling pathways that 
play significant roles in the ageing process. It is fascinating that a large 
proportion of these pathways are also involved in energy balance and 
metabolic disorders (an example of the complex interplay of these 
pathways is illustrated in Figure 1). 

At one extreme of this relationship is the well-established field of 
caloric restriction (CR). It has been known for some 70 years now [8] 
that a link exists between CR and longevity. CR is currently the only 
dietary intervention that is proven to increase longevity and delay 
the onset of age-related decline [9] and has been demonstrated in a 
wide variety of organisms, including Caenorhabditis elegans [10,11], 
Saccharomyces cerevisiae [12,13], Drosophila melanogaster [14], 
rodents [15,16], but in primates CR appears to not affect longevity, 
but clearly delay age-associated disorders improving health [17-
19,20]. 

Research into the mechanisms behind the CR-longevity link has 
repeatedly pointed to either hormetic or metabolic genes/proteins 
as being of key importance. The best characterised of these are 
the sirtuins (SIRT), mammalian homologues of the yeast NAD+-
dependent deacetylase sir2 [21]. SIRT1, in particular has been shown 
to regulate CR induced increases in longevity in many organisms 
[22], although SIRT1 independent pathways have also been identified 
[23,24]. Upon closer inspection of the mechanism of action of CR-
induced SIRT1 activity, the link between ageing and metabolism first 
becomes clear.

SIRT1 catalyses the de-acetylation of a number of targets 
associated with metabolism and energy homeostasis upon activation 
by CR, and this process leads to transcriptional regulation of several 

Introduction
In the coming decades the UK faces a dual crisis of an ageing 

population and increasing levels of obesity and associated disorders, 
including diabetes. Demographic research has confirmed that the UK 
and European populations are increasingly skewed towards older 
adults [1], and that this trend is likely to continue in the future. Added 
to this, concomitant increases in obesity [2] and type 2 diabetes [3] 
represent significant social, medical and economic challenges in the 
future.

The process of ageing negatively affects many tissues in the human 
body, e.g. decreasing collagen elasticity and increasing collagen 
deposition in fibrosis, but ageing has a particularly significant impact 
on those tissues associated with nutrient metabolism such as the 
pancreas. It is well established that the incidence of the metabolic 
disorder type 2 diabetes, a disease that is characterised by elevated 
blood glucose levels, increases with age [4,5]. This may be due to 
the fact that as the human body ages, peripheral tissues become less 
sensitive to the actions of the hormone insulin, secreted from the 
pancreas in response to post-prandial increases in blood glucose [6]. 
The specific reasons for this age-related decrease in insulin sensitivity 
are not fully understood, and may reflect a failure to adapt to chronic 
metabolic stress. Diabetes itself is known to significantly decrease 
the chances of successful ageing, and notably increases the extent 
of functional impairment in vision, renal function and cognitive 
function [7]. 

Increasing evidence suggests that energy balance is central to 
both successful ageing and protection from metabolic disorders. The 
close links between these two phenomena are reviewed here.

Ageing and energy balance: restriction of nutrients

The recent proliferation of research into ageing and longevity 
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key metabolic factors such as protein tyrosine phosphatase 1B 
(PTP1B), a negative regulator of insulin signalling, IRS1 and liver 
X receptor (LXR). CR-induced activation of SIRT1 causes a de-
acetylation of LXR which, alongside down-regulation of PTP1B, 
ultimately results in decreased insulin resistance [25]. To accompany 
this decrease in insulin resistance, SIRT1 activation also causes an 
increase in insulin secretion from pancreatic β-cells [26]. Therefore, 
while SIRT1 is essential for maintaining glucose sensitivity it shows 
decreased expression in aged versus young tissues. The SIRT1-
dependent improvements in insulin homeostasis, coupled with 
increases in hepatic glucose output mediated by de-acetylation of 
the transcription co-activator peroxisome proliferator-activated 
receptor-γ (PPARγ) co-activator 1α (PGC1α) [27], which also 
induces a high efficient mitochondria biogenesis [28], indicate how 
pivotal energy balance and metabolism are to hormesis and longevity. 

It is important to indicate that the rise of NAD+ concentration 
by NADH-dependent plasma membrane dehydrogenases, which are 
activated by CR [29-31], would be also key factors to activate sirtuins 
and thus longevity [32].

Ageing and energy balance: nutrient excess 

The other extreme to CR is nutrient excess. Exposure to nutrient 
excess, frequently characterised experimentally as a ‘high-fat diet’, 
has also been shown to reduce longevity [33]. Resveratrol, which is 
considered a CR mimetic, prevents the obesity-associated diseases 
and extends obese animal lifespan [34,35]. The classical pathway 
activated by nutrients is the insulin/insulin-like growth factor-1 
(IGF-1) and forkhead box protein (FOXO) pathway, opposing 
AKT and FOXO to modulate bioenergetics in response to nutrients 

availability. In metabolic terms, insulin receptor activation is central 
to glucose homeostasis as it allows cellular uptake of glucose from 
the circulation into peripheral tissues [36]. In nutrient excess, insulin 
resistance is often seen, forming the basis for the age-related increase 
in risk for metabolic disease and type 2 diabetes [37]. Insulin has a 
role in ageing too, as adipose tissue-specific insulin receptor knockout 
mice have been shown to extend longevity [38].

An increasing amount of data now suggests that the mammalian 
target of rapamycin (mTor) pathway is involved in linking nutrient 
exposure to insulin resistance and ageing. mTor forms two separate 
complexes (known as mTORC1 or mTORC2) that have distinct 
biological activities. mTORC1 is activated by nutrient excess [39] 
and drives biogenesis mediated by the mTORC1 effector, S6K1 [40]. 
Alongside this emerging role in nutrient sensing and metabolism, 
mTor has a well-defined role in cell growth and ageing [41-43]. 
Interestingly, S6K1 -/- mice exhibit similar gene expression profiles 
to those of calorie restricted mice, with females showing extended 
longevity and reduced age-related diseases [44]. Reduction of 
mTORC1 activity in genetic mouse models is also associated with a 
reduction in age-related cancers [44,45]. This provides further linkage 
between absence of an enzyme which regulates response to nutrient 
excess, and successful ageing. 

Homologues of the insulin/IGF-1 receptor and its associated 
signalling molecules, including daf-2, age-1, daf-16 have been 
associated with changes in longevity in C elegans by a number of 
authors [46,47]. Similar genes have been identified in yeast, fruit flies 
and mice, confirming the central role of this pathway in the ageing 
process. Evidence suggests that these long-lived mutants, ranging 

Figure 1: Signalling pathways associated with caloric excess and caloric restriction. The interaction between the signalling molecules associated with 
longevity and their activation or inhibition by exposure to either excess or insufficient calories demonstrates the close links between metabolism and ageing. Key: 
AMP = adenosine monophosphate; ATP = Adenosine triphosphate IGF = insulin-like growth factor; IRS = insulin receptor substrate; AKT = protein kinase B; mTor = 
mammalian target of rapamycin; NAD = nicotinamide adenine dinucleotide; PGC-1α = Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; s6K1 
= ribosomal protein S6 kinase beta-1; PPAR = peroxisome proliferator-activated receptor.
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from yeast to mice, share important characteristics, including 
decreased insulin signalling, increased insulin sensitivity [48], 
and reduced circulating IGF-1 levels [46,49]. These observations 
strongly suggest that the insulin/IGF-1 pathway might possibly be 
fundamental to the process of aging in lower and higher organisms, 
a theory which is borne out by repeated studies into the actions of 
FOXO family members [50-52].

Does brown adipose tissue hold the key to ageing and 
metabolism?

There is one particular tissue of mammalian bodies that might 
potentially provide a decisive and exploitable link between energy 
balance and ageing. Brown adipose tissue (BAT) has developed as an 
essential thermoregulatory effector, by facilitating the dissipation of 
stored energy through the production of heat during the challenge 
of low environmental temperatures [53]. The actions of BAT are 
essentially antagonistic to the other main from of adipose tissue, 
white adipose tissue (WAT) which is predominantly responsible 
for storing excess energy as triglycerides. The thermogenic ability 
of BAT is attributable to the high mitochondrial content mediating 
proton transfer across mitochondrial membranes to produce ATP, 
in the absence of ATP production excess energy stored in the protons 
is leaked via uncoupling protein 1 (UCP-1) and released as heat, 
inducing “non-shivering” thermogenesis [54]. Consequently BAT 
was until recently thought to be only found in small hibernating 
mammals and newborns, both of which have a large surface area 
to body mass ratio and are less capable of maintaining core body 
temperature [55]. Recent studies utilising both positron emission 
tomography (PET) and computed tomography (CT) have however 
identified significant reserves of BAT in adults, using radioactively 
labelled fluorodeoxyglucose (FDG) as a means of identifying this 
metabolically active tissue [56-58]. It has been recently discovered 
that these BAT deposits corresponds to beige adipocytes that are 
activated through the novel, exercise-induced myokine irisin [59,60]. 
Recent evidence from our group has demonstrated a significant 
positive association between plasma irisin levels and telomere length 
in healthy individuals, highlighting the potential role that modulation 
of adipose tissue biology has in healthy ageing [61].

These observations, that BAT is present and active in adult 
humans, represent a huge change in the accepted paradigm of 
adipose tissue and energy balance. Of potentially key importance 
is the observation that in mice WAT can be converted to BAT by 
regulating the expression of a key transcriptional regulator, PRDM16 
[62]. This observation opens the door to potential future therapies 
aimed at recruiting BAT from existing WAT stores in humans, an 
avenue that would provide a major breakthrough in the treatment of 
obesity and type 2 diabetes. 

In a breakthrough study, the beneficial effects of enhanced 
BAT and UCP1 activity on longevity was confirmed when a study 
conducted by Molina et al. reported that mice carrying additional 
copies of the tumour suppressor gene phosphatase and tensin 
homolog (Pten), have hyperactive BAT and high levels of UCP1 
[63]. This increase in BAT levels was seen to be orchestrated by the 
PI3K/AKt/Foxo pathway and activation of UCP1 transcriptional 
promoter PPARγ coactivator 1α. This increase in energy expenditure 

protected the mice from onset of metabolic pathologies like obesity 
and diabetes, and was associated with a significantly prolonged life 
span. This fascinating study highlights not only the huge potential 
in targeting this signalling pathway as a future therapy for metabolic 
disorder and ageing, but also highlights how closely their underlying 
mechanisms are aligned. For one gene to have such a profound effect 
on two seemingly distinct biological phenomena suggests that they 
are actually not distinct but instead are likely to be integrated. In 
correcting the dysregulated energy balance associated with obesity, 
extended lifespan can be achieved.

Conclusion
Growing evidence supports the notion that energy balance is a 

key determinant in the process of cellular ageing. With the increasing 
prevalence of metabolic disorders such as obesity and diabetes, there is 
an urgent need to improve understanding of the association between 
metabolic disturbance and biological ageing in humans. Increasing 
energy expenditure rather than storage during ageing by inducing 
phenotype-switch in adipose tissue may offer a promising strategy.
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