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Abstract We present a novel optical comb generation technique based on the use of a multi-harmonic 

electrical signal for driving the MZM. The proposed scheme is highly power efficient and gives rise to 

square shaped combs of advanced flatness and side mode suppression ratio while maintaining a 

stable performance over a long time period  

Introduction 
Optical comb generation is a topic of intense 
interest due to its wide application range in 
different areas of photonic technology. Of 
particular importance is its potential role in the 
development transmitter units for advanced 
multi-carrier signal formats, i.e. orthogonal 
frequency division multiplexed signals (OFDM) 
in next generation optical networks [1]. Apart 
from increasing the attainable spectral density, it 
may also bring significant cost and power 
consumption benefits as well as simpler system 
designs by reducing the number of temperature 
controlled laser sources and wavelength lockers 
required. For this application field any potential 
comb generation technique should concentrate 
a number of key merits. It should produce high 
coherent and stable optical combs of square 
shape and in a power efficient way, with uniform 
amplitudes for the wanted comb lines, and 
excellent intrinsic suppression of the unwanted 
comb lines. The corresponding configuration 
should be also simple, cost effective and 
compact, enabling subsequent integration.  
 Not many of the techniques that have been 
proposed in literature meet the aforementioned 
requirements. For example, mode-locking, of 
semiconductor [2] or Er:Yb: glass lasers [3] can 
provide a good optical signal-to-noise ratio 
(OSNR), however, they require equalizing filters 
to enable reasonable flatness, and the line 
spacing of the produced comb is fixed by the 
cavity length. Techniques based on highly 
nonlinear fibers by using four-wave mixing 

effects [4] may enable combs of wide optical 
bandwidth, but they are bulky and require optical 
power pumps. Alternatively, the use of external 
Mach-Zehnder modulators (MZM) has recently 
demonstrated very attractive features for the 
development of future transmitter units [5-8]. 
Techniques of this family, apart from their 
advanced flatness, low jitter and stable 
performance, offer also flexibility in the control of 
the line spacing, independence in the choice of 
the central wavelength, as well as the potential 
for integration. The frequency response and the 
tolerance in the RF driving power of the 
modulator limit the number of lines that can be 
generated from a single stage. However, making 
use of cascaded MZM configurations [7] optical 
combs of larger bandwidth and number of lines 
can be produced.  
 Up to date, to achieve advanced flatness 
performance over an increased line number 
required strong RF powers levels driving the 
MZM. This brings a significant efficiency issue 
as a lot of power goes to a large number of 
unwanted sideband optical frequencies giving a 
“bell” shape to the generated comb. The result 
of this effect is also the need of an advanced 
filter structure, i.e. a wavelength selective switch 
(WSS), to square the shape of the comb which 
will elevate the cost and the complexity of a 
future transmitter unit.  
 In this paper we introduce a new concept, up 
to our knowledge, to drive the MZM by using a 
multi-harmonic electrical signal to generate an 
optical comb of high quality in terms of flatness 

 
 

Fig. 1: Experimental setup of the optical comb generator 
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and spectral shape from a single stage. When 
combined with cascaded MZM modulators, it 
was possible to extend the comb bandwidth, 
whilst maintaining the same advanced optical 
performance characteristics. The scheme was 
self-stabilized to maintain a reliable performance 
over a long time period.  

Experimental Setup and Results 

The implemented frequency comb generation 

scheme is illustrated in Fig. 1. It consisted of 

three cascaded MZM modulators of which the 

first modulator was driven by an electrical comb 

of four equally spaced frequency components at 

10GHz. To create the electrical comb a single 

10GHz oscillator was used. Part of its emitted 

RF signal was multiplied by a factor of 3 to 

obtain the 30GHz component, which was 

subsequently mixed with the other 10GHz part 

to create RF signals at 20GHz and 40GHz. The 

multi-harmonic signal was then amplified and 

applied to the optical modulator. Fig. 2 depicts 

the corresponding RF spectrum. Its four 

frequency components at 10, 20, 30 and 40GHz 

had power levels of -6.28, -7.73, -6.23 and -6.81 

dBm, respectively. Its flatness was controlled by 

the power level of the 10GHz source to 

counterbalance the roll-off in the frequency 

response of the data modulator used (Δf3dB 

~25GHz). The Vπ of the modulator was 3.3Volts. 

 The proposed concept to drive the MZM with 

a multi-carrier electrical signal for creating the 

optical comb is significantly more power efficient 

than using a single frequency carrier. Indeed, for 

the latter case ~1W RF driving power levels 

have been reported [9], whilst for our case the 

total electrical RF driving power of the MZM did 

not exceed -0.7dBm. This was because each 

harmonic of the electrical comb needed to 

generate just a single pair of sideband 

frequencies in the optical domain, and therefore 

they could be of considerably low power. 

Consequently, the resulting optical comb at the 

output of the modulator consisted of 4 pairs of 

sideband components around the seeding laser 

frequency, giving 9-lines in total. The 

corresponding optical spectrum is depicted in 

Fig. 3. The generated optical comb presented a 

maximum power difference between the 

channels (flatness) of only 0.3dB and a side-

mode suppression ratio (SMSR) better than 

16dB. Such advanced SMSR performance is 

reported for the first time in this paper and was 

attributed to the low power driving conditions of 

the MZM by the multi-harmonic electrical signal.  

In the proposed scheme the bandwidth of the 

MZM, and not the tolerance in RF driving power, 

limited the number of 10GHz lines that could be 

generated from a single stage. Future 

transceiver units, however, will require wider 

comb bandwidths and larger carrier number to 

enable high capacity super-channel 

transmission. In our case, we made use of a 

second comb, consisting of two cascaded 

amplitude MZMs (Vπ: 3.7Volts, 3.3Volts) to 

replicate by multiple times the input 9-line optical 

signal in a wider frequency band. The two comb 

architectures were synchronized as the 45GHz 

 
 

Fig. 3: Optical spectrum of the 9-line comb taken at 

the final output of the 1
st
 modulator of the setup 

1548.0 1548.5 1549.0 1549.5 1550.0

-60

-40

-20
flatness : 0.3dB

P
o

w
e

r 
(d

B
m

)

Wavelength (nm)

SMSR : 16dB

 
Fig. 2: RF spectrum of the multi-carrier electrical 

signal applied to the 1
st
 MZM of the setup 
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Fig. 4: Optical spectrum of the 36-line comb taken 
at the final output of the setup 
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RF driving signal of the last two MZMs had been 

produced with the help of a 4.5x multiplier from 

the common 10GHz clock. The combination of 

these two comb generator techniques delivered 

a 36 line optical comb with 10 GHz interval with 

a flatness of 1.14 dB and a SMSR better than 10 

dB. The corresponding optical spectrum is 

depicted in Fig. 4.  

   Maintaining an advanced and stable flatness 

performance for the optical comb over a long 

time period is critical for the exploitation of the 

proposed scheme in future transmitter circuits. 

In our case the principal factor affecting the 

comb flatness was found to be the balance 

between the arms of the 1
st
 MZM, mainly acting 

on the central carrier in the 9-line comb. 

Therefore, a low speed feedback loop circuit 

had been implemented to control the bias point 

of the modulator and to mitigate any flatness 

fluctuations over time. To create a suitable error 

signal for this case, we made use of a low 

frequency pilot tone (~20kHz) added on the bias 

control and subsequently extracted by a lock-in 

amplifier from the received power signal at the 

output of the modulator.  

   Fig. 5 depicts the measured flatness of the 36-

line comb versus time when the stabilization 

scheme was active as well as for the free 

running operation case. The total observation 

time was more than 40 hours and 

measurements have been taken periodically 

every 15 seconds.  Under free running operation 

of the 1
st
 MZM bias point we noticed the central 

frequency of the 9-line comb shifting slowly out 

of the limits while the other lines maintained an 

equal power level. This also degraded the 

flatness of the 36-line comb which exceeded 

2.8dB. By activating the control loop the 

degradation was mitigated and the overall 

flatness was kept bellow 2dB. The faster 

variations, with a period of 25 minutes, observed 

in the flatness performance are attributed to the 

room temperature regulation affecting the gain 

performance of the driving RF amplifiers. We 

note that the biasing as well as the RF driving 

conditions on the other two modulators did not 

affect the long term stability of the final comb.  

Conclusions 
 In this paper we have developed a new 
technique for optical comb generation based on 
driving the MZM with a multi-harmonic electrical 
signal. The proposed scheme is highly power 
efficient as it requires RF driving power of less -
0.7dBm to generate a 9-line comb spaced at 
10GHz with high flatness (0.3dB) and square 
shape (SMSR : 16dB). By combining the 
technique with a conventional architecture of 
two cascaded MZMs, 36 optical frequency 
carriers were generated with the same spacing 
and with advanced spectral characteristics of 
flatness, 1.14 dB, and SMSR > 10dB. By 
stabilizing the scheme, we managed to maintain 
the high performance merits over a long time 
period (> 40 hours). 
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Fig. 5: Long time measurement of the flatness of the 36 line comb when the bias point of the 1
st
 MZM is 

controlled by an external feedback loop (green line), and when it is free running (red line) 
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