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Abstract 50 
This present study compares the efficacy of microsphere formulations, and their method of antigen 51 
presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on 52 
poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide 53 
(DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single 54 
emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their 55 
ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method 56 
of antigen association, had a pronounced effect on the type of immune response achieved from the 57 
microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped 58 
antigen favoured a cellular response.  59 
 60 
 61 
KEY WORDS Adjuvant, DDA, ESEM, Microspheres, PLGA, Subunit vaccine.  62 
 63 

64 



3 
 

Introduction 65 
 66 
Biodegradable polymers commonly contain chemical linkages such as anhydride, ester or amide bonds. 67 

These polymers degrade in vivo either enzymatically or non-enzymatically to biocompatible and non-toxic 68 

by-products. Biodegradable polymers not only have been extensively used in controlled delivery systems, 69 

but also extended to medical devices [1]. Synthetic biodegradable polymers have gained more popularity 70 

than natural biodegradable polymers. The major advantages of synthetic polymers include high purity of 71 

the product, more predictable lot-to-lot uniformity, and reduced concerns of immunogenicity [2]. In 72 

particular, the thermoplastic aliphatic poly(esters) like polylactide (PLA), polyglycolide (PGA), and 73 

especially poly(lactide-co-glycolide) (PLGA) have generated interest [3], due to their ability to control the 74 

release of bioactive macromolecules, such as some peptides or proteins. PLGA is approved by the US FDA 75 

and European Medicine Agency (EMA) in various drug delivery systems in humans [4] such as in 76 

sutures[5], bone implants [6]  and screws [7], as well as implants for sustained drug delivery [8]. The 77 

polymers are commercially available and appropriate selection, depending on the molecular weight and 78 

copolymer ratio, allows the degradation time to be varied from several months to several years [9, 10].  79 

 80 

When used in the form of polymeric microspheres, PLGA can increase the potency of a vaccine 81 

formulation [11-14]. As particulate delivery systems, polymeric microparticles can promote uptake, 82 

transport and/or presentation of the antigen to antigen presenting cells (APCs) (particularly in the sub-10 83 

μm size range [15]) and PLGA microparticles have been shown to exhibit an adjuvant effect for both 84 

humoural [16, 17] and cell-mediated immunity [18]. In addition, Kanchan et al (2009) [19] carried out 85 

studies designing PLGA particles with different release kinetics and suggested that slow and continuous 86 

release from polymer particles is critical in eliciting improved memory antibody responses from single 87 

point immunisation. However, studies have indicated that immune responses from micron-sized particles 88 

generally promotes humoral (Th2) responses [20], while particles (<1000 nm) tend to promote cellular 89 

(Th1) responses [21, 22].  90 

 91 

A comparison of humoural responses from a range of particle sizes was also carried out by Katare et al 92 

(2005) [23] after administration of very large particles (50-150 µm), microparticles optimal for 93 
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phagocytosis (2-8 µm) and small particles (<2 µm). The authors found an improvement in the antibody 94 

response for particles in the size range of 2-8 µm, in particular compared to the very large particles. 95 

Furthermore, Kanchan and Panda (2007) [24] showed that HBsAg-loaded polylactide microparticles (2-8 96 

µm) elicited higher and long-lasting antibody titers, and although not taken up by macrophages,  were on 97 

their surface. In addition, microparticles promoted IL-4 secretion and upregulation of MHC class II 98 

molecules and favoured Th2 immune response. On the other hand, the administration route of particles may 99 

influence the immune response elicited. Mohanan et al (2010) [25] have studied the bias of the immune 100 

response in mice when immunised by different routes, such as the subcutaneous, intradermal, 101 

intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl-chitosan 102 

nanoparticles (NPs) and PLGA microparticles, all with and without immune-response modifiers. This study 103 

has demonstrated that the IgG2a response, associated with Th1 immune response, is sensitive to the route of 104 

administration, whereas IgG1 response, associated with Th2 response, was relatively insensitive to the 105 

administration route of particulate delivery systems. 106 

 107 

In terms of using microspheres as vaccine adjuvants, microspheres are commonly prepared by the double 108 

emulsion solvent evaporation method (w/o/w): the initial primary w1/o emulsion is formed by dispersion of 109 

an aqueous antigen solution (w1) into an organic polymer solution. This primary emulsion is then mixed by 110 

high-speed homogenisation into a secondary water phase (w2), often containing an emulsion stabiliser or 111 

surfactant such as poly(vinyl alcohol) (PVA) or chitosan, in order to form a secondary w1/o/w2 emulsion. 112 

The organic solvent is then allowed to evaporate to facilitate the formation and hardening of the 113 

microparticles. This formulation technique, originally developed by Vranken and Claeys (1970) [26] and 114 

modified by Ogawa et al (1988) [27] , prevents the partition of hydrophilic antigens into the aqueous phase, 115 

thereby achieving efficient and reproducible entrapment. On the other hand, a variation of w/o/w process is 116 

the single oil-in-water process (o/w), whereby the initial formation of the w1/o emulsion is omitted, 117 

microparticles are formed and then antigen is adsorbed to their surface following harvesting [28-30]. This 118 

alternative process eliminates exposure of antigen to organic solvents during the formulation process and 119 

results in a different spatial location of the antigen compared to formulations prepared by the double 120 

emulsion method. In this study, 0.75% (w/v) chitosan (low molecular weight) was used as the emulsion 121 
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stabiliser in the external aqueous phase. The concentration was chosen due to previous reports of the use in 122 

microsphere formulation [31-33]. Chitosan is a hydrolysed (deacetylated) derivative of chitin, a biopolymer 123 

widely distributed in nature and biologically safe [34]. Chitosan has been shown to stimulate macrophage 124 

function [35,36] and cytokine production [37] and facilitate adjuvant activity [38]. 125 

 126 

The ability of microspheres to effectively stimulate appropriate immune responses requires more than 127 

effective delivery. Therefore, to potentiate immune responses, immunostimulatory agents are often 128 

employed within the formulations [13]. For example, a surfactant currently being investigated as an 129 

adjuvant is dimethyldioctadecylammonium bromide (DDA) [39-44]. DDA is a synthetic amphiphilic lipid, 130 

comprising a hydrophilic positively charged dimethylammonium headgroup attached to two hydrophobic 131 

18-carbon alkyl chains [45]. DDA acts as a delivery vehicle serving to promote uptake and presentation of 132 

the vaccine antigen in the relevant subset of antigen-presenting cells (APCs). DDA is known to induce cell-133 

mediated immunity and, along with its cationic nature and surfactant properties, has been shown to be an 134 

effective adjuvant in numerous applications including microspheres [13-14]. The adjuvant activity of DDA 135 

has been previously reviewed by Hilgers and Snippe (1992) [46] who assessed DDA to be a 136 

moderate/strong Th2 inducer and a strong Th1 inducer, and the mechanism of action behind the adjuvant 137 

effect of DDA has been attributed to its positive surface charge and its ability to associate with antigens 138 

[47]. Therefore, in this study the immunostimulatory agent DDA was investigated and included within 139 

PLGA microspheres stabilised with chitosan. PLGA, as the base polymer, will form the main matrix of the 140 

microspheres, with DDA likely interspersed throughout (although certainly some of it is on the surface, 141 

which aids protein binding). Since chitosan is used as an emulsion stabiliser, it is intended to both aid 142 

formulation, and imparts a positive charge to the particle by being located (predominantly) on the external 143 

surface. However given the cationic nature of both DDA and chitosan, there is the potential for electrostatic 144 

interactions between PLGA and DDA and/or chitosan. The impact of the method of preparation on the 145 

structural attributes is proposed in Figure 1. 146 

 147 

Given the ability of microspheres to enhance antigen delivery and, in combination with an adjuvant, 148 

enhance immunogenicity of antigens, this present study considers two key aspects of microsphere adjuvant 149 
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formulation 1) antigen presentation by the delivery system, by directly comparing microspheres formulated 150 

with antigen incorporated within their polymer matrix core and those with surface adsorbed antigen and 2) 151 

the impact of using the immunostimulatory agent DDA. 152 

 153 

 154 

Materials and methods 155 

Materials 156 

Poly(DL-lactide-co-glycolide) (PLGA) (75:25) (Mw 90,000-126,000), Chitosan (Low molecular weight), 157 

Sephadex® G-75, Phosphate buffered saline (PBS) and Chloroform were purchased from Sigma-Aldrich 158 

Co. Ltd. (Dorset, UK). Tris base (ultra pure) was from ICN Biomedicals (Aurora, OH). Dimethyl 159 

dioctadecylammonium bromide (DDA) was obtained from Avanti Polar Lipids (Alabaster, AL). The purity 160 

of the compounds was > 99% by HPLC. Non his-tagged protein Ag85B-ESAT-6 was produced in 161 

Escherichia coli as described previously for the His-tagged version [48], purified by column 162 

chromatography and dissolved in 10 mM Tris-buffer, pH 7.4, at a concentration of 0.5 mg/ml. Iodo-gen® 163 

pre-coated iodination tubes were purchased from Pierce Biotechnology (Rockford, IL). 125I (NaI in NaOH 164 

solution) was purchased from Amersham Biosciences (Bucks, UK). 165 

 166 

Preparation of PLGA (75:25) microspheres 167 

Double emulsion solvent evaporation (w/o/w) 168 

PLGA (75:25) microspheres were prepared using a modified w/o/w double emulsion solvent evaporation 169 

process, similar to that described elsewhere [13, 27]. Briefly, an aqueous solution of Ag85B-ESAT-6 was 170 

emulsified with an organic solution of PLGA (3 % (w/v)) and DDA (0.6% (w/v)) in chloroform by vortex 171 

mixing for 1.5 minutes. In order to try and maintain protein integrity and reduce shear forces, vortex 172 

mixing, rather than the more commonly used high-speed homogenisation, was employed at this stage. The 173 

primary w/o emulsion was then transferred to an aqueous solution of Chitosan (0.75%, w/v in 3% (w/v) 174 

acetic acid), and a secondary w/o/w emulsion was produced using high speed homogenisation (Silverson 175 

SL2 homogeniser at 6000 rpm), before being left under magnetic stirring for 12-18 hours at ambient 176 

conditions to allow for the evaporation of the organic solvent. Chitosan has previously been employed in 177 
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the formulation of particulate delivery vehicles [33, 49, 50], initiating enhanced Th1 immune responses 178 

[51], and therefore appears to be a viable alternative to PVA in the formulation of PLGA based 179 

microspheres. The microspheres were then harvested by centrifugation (20 minutes at 10000 x g), and 180 

washed three times with 10 ml of double distilled water. Harvested microspheres were either resuspended 181 

in ddH2O for physico-chemical characterisation, or freeze-dried in the presence of 10% (w/v) sucrose for 182 

immunological investigation and then resuspended in ddH2O prior to immunisation with the final 183 

concentration of Ag85B-ESAT-6 and DDA being fixed at 0.04 mg/ml and 1.25 mg/ml, respectively.  184 

 185 

Single emulsion solvent evaporation (o/w) 186 

For comparison, PLGA (75:25) microspheres were also prepared using an o/w single emulsion solvent 187 

evaporation process. Briefly, an organic solution of PLGA (3%, w/v) and DDA (0.6%, w/v) in chloroform 188 

was emulsified with an aqueous solution of chitosan (0.75%, w/v in 3% (w/v) acetic acid) using high speed 189 

homogenisation (Silverson SL2 homogeniser at 6000 rpm), before being left under magnetic stirring for 12-190 

18 hours at ambient conditions to allow for the evaporation of the organic solvent. The microspheres were 191 

then harvested by centrifugation (20 minutes at 10000 x g), and washed three times with 10 ml of double 192 

distilled water. 193 

 194 

The resultant microspheres were then resuspended in 2 ml double distilled water, and mixed with an 195 

aqueous solution of Ag85B-ESAT-6 (20.35 µl, 0.98 mg/ml) in order to facilitate surface adsorption of the 196 

antigen to the microspheres. For immunological investigations, formulations were freeze-dried in the 197 

presence of 10% (w/v) sucrose, and then resuspended in double distilled water prior to immunisation, with 198 

the final concentrations of Ag85B-ESAT-6 and DDA being fixed as before at 0.04 mg/ml and 1.25 mg/ml, 199 

respectively. 200 

 201 
Particle size distribution analysis  202 

Low angle laser light scattering was used to determine particle size and size distribution of microspheres 203 

with a Sympatec Helos (Sympatec, Germany). Samples were added to a magnetically stirred cell containing 204 

filtered double distilled water. The mean particle size in this case represents the De Brouckere mean 205 
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diameter, otherwise referred to as the volume or mass moment mean (D[4,3]), which avoids any need for 206 

particle counting.   207 

 208 

 209 

Zeta potential analysis of microspheres 210 

Surface charge on the microspheres was measured indirectly as zeta potential. The measurements were 211 

performed at 25 °C using a ZetaPlus instrument (Brookhaven Instrument Corporation, NY) by 212 

appropriately dispersing the microsphere dispersion in 2 ml 0.01M PBS solution. The reported 213 

measurements were the mean values of three independent samples, each of which was the mean value of 10 214 

readings. 215 

 216 
125I radio labelling of Ag85B-ESAT-6 217 

Radiolabelling of Ag85B-ESAT-6 was performed using the Iodo-gen® pre-coated iodination tubes (Pierce 218 

Biotechnology, Rockford, IL). Briefly, Ag85B-ESAT-6 was diluted with 50 µl Tris-buffer (25 mM, pH 8) 219 

and added to the pre-coated iodination tube. A pre-determined activity of 125I (3.7 MBq) was then diluted 220 

up to 30 µl with 25 mM Tris-buffer and added to the iodination tube. This mixture was then left for 15 221 

minutes, with intermittent shaking, to facilitate radio labelling of Ag85B-ESAT-6. Removal of the 222 

unlabelled Ag85B-ESAT-6 was performed by Sephadex G-75 gel column separation. In order to make the 223 

column, Sephadex G-75 (1%, w/v) was first soaked in double distilled water at 90 °C for 1 hour, with 224 

stirring. The swollen gel was then packed into a 5 ml column and equilibrated with the 25 mM Tris-buffer. 225 

 226 

Prior to separation, the reaction mixture from the iodination tube was further diluted with the Tris-buffer, 227 

and then passed through the column with 25 mM Tris-buffer as mobile phase. Aliquots of the eluted 228 

solution (0.5 ml) were collected and measured for gamma radiation using a Cobra™ CPM Auto-Gamma® 229 

counter (Packard Instruments Company inc., IL, USA) and also for UV absorbance at 280 nm, so as to 230 

confirm the presence of radiolabelled Ag85B-ESAT-6.  The appropriate aliquots were then pooled and 231 

stored at -20 °C until required for further use. 232 

 233 
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Determination of Ag85B-ESAT-6 entrapment 234 

The degree of adsorption of Ag85B-ESAT-6 to the microspheres prepared by the single emulsion (o/w) 235 

technique was determined by 125I radiation. Radiolabelled Ag85B-ESAT-6 was added to microspheres 236 

prepared as described above, mixed, and then allowed to stand for 10 minutes at ambient conditions. The 237 

formulation was then pelleted by ultracentrifugation (100,000 x g for 1 hour), resuspended, and then 238 

measured for gamma radiation. Adsorption of Ag85B-ESAT-6 was determined on the basis of 125I 239 

radioactivity recovered in the suspended pellets. Similarly, microspheres were prepared by the w/o/w 240 

process as described above, with the addition of 125I labelled antigen to the internal aqueous phase in order 241 

to spike the non-radioactive Ag85B-ESAT-6. To harvest the radioactive microspheres, Beckman Quick-242 

Seal™ centrifuge tubes (Beckman Instruments inc., Spinco division, Palo Alto, CA) were used, and 243 

entrapment efficiency was calculated from the difference of measured gamma radiation emitted from both 244 

supernatant and resuspended microspheres.  245 

 246 

Immunological analysis of formulations 247 

Experimentation strictly adhered to the 1986 Scientific Procedures Act (UK). All protocols have been 248 

subject to ethical review and were carried out in a designated establishment.  Groups of five female 249 

BALB/c mice, approximately six weeks old, received doses of microsphere vaccine formulations 250 

containing 2 µg of Ag85B-ESAT-6 in a 50 µl volume. Naïve groups received the appropriate volume of 251 

PBS. Vaccine formulations were administered intramuscularly, and each mouse received three doses at 252 

intervals of two weeks. Serum samples were taken at 12 days after the first administration and at two week 253 

intervals thereafter. Blood was drawn from the tail vein upon a small incision, obtaining 50 µl with 254 

micropipette capillary tubes lightly coated in heparin solution (0.1% w/v in PBS). The blood was 255 

subsequently added to 450 μl PBS (giving a final dilution of 1/10) and centrifuged using a micro centrifuge 256 

at 13,000 rpm for 5 minutes. The supernatants of each mouse sample was collected and transferred to a 257 

fresh eppendorf prior to storage at -20 °C for future analysis. As a result, assuming that the haematocrit or 258 

packed cell volume is approximately 50%, sera obtained from each mouse consisted of a final 20-fold 259 

dilution. 260 

 261 
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Analysis of Ag85B-ESAT-6 specific antibody isotypes 262 

Sera samples obtained at different time intervals after immunisation were analysed for the presence of anti-263 

Ag85B-ESAT-6 IgG, IgG1 and IgG2b antibodies (AbD serotec, Oxfordshire, UK) by enzyme-linked 264 

immunosorbent assay (ELISA). ELISA plates were coated with 60 µL of Ag85B-ESAT-6 per well (3 265 

µg/ml) in PBS and incubated at 4ºC overnight. Unbound antigen was aspirated and residual washings were 266 

removed by blotting firmly onto paper towel. Plates were blocked with 0.2 ml per well of 4% w/v Marvel 267 

in PBS. Serially diluted serum samples (60 µl per well) were transferred to washed plates and incubated for 268 

1 h at 37 ºC. Anti-Ag85B-ESAT-6 antibodies were detected by addition of horseradish peroxidase 269 

conjugated anti-mouse isotype specific immunoglobulin (goat anti-mouse IgG, IgG1 or IgG2b), and 270 

subsequent addition of substrate solution, 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) in citrate 271 

buffer incorporating 5 µl of 30% H2O2/50 ml following repeated incubation and washing with PBST buffer. 272 

Absorbance was measured at 405 nm. 273 

 274 

Spleen cell culture preparation 275 

Upon termination of experiments, mice were humanely culled and their spleens aseptically removed and 276 

placed into ice-cold sterile PBS. Spleens were treated as follows: A crude suspension of spleen cells in 10 277 

ml working media (RPMI 1640 cell culture medium supplemented with 10% (v/v) foetal bovine serum, 2 278 

mM L-glutamine, penicillin (100 U/ml) and streptomycin (100 µg/ml) (Gibco-Invitrogen, Paisley, UK)) 279 

was prepared by gently grinding the spleen on a fine wire screen. After allowing the cell suspension to 280 

settle for approximately 5 minutes the liquid was transferred to sterile 20 ml ‘Falcon’ tubes, without 281 

disturbing the cellular debris at the bottom. The cell suspension was centrifuged at 200 g for 10 min. After 282 

centrifugation the supernatant was removed, the cell pellet resuspended in 10 ml fresh working media and 283 

the centrifugation procedure was repeated. These single cell suspensions were used to assess antigen 284 

specific cytokine production and antigen specific recall responses.  285 

 286 

Analysis of spleen cell proliferation 287 

For study of antigen specific proliferative responses, aliquots of 150 µl volumes of sterile media or antigen 288 

in sterile media (at the concentrations stated (0.5 or 5 µg/ml)) were seeded onto 96 well suspension culture 289 
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plates and 150 µL volumes of viable splenocytes (approximately 1 × 107 cells/ml) added to each well. As a 290 

positive control, cells were co-cultured with concanavalin A at a concentration of 3 µg/ml. Covered plates 291 

were incubated at 37 ºC for 72 h. After 72 h incubation, half a microcurie of [3H] thymidine (Amersham, 292 

UK) in 40 µL volumes of freshly prepared sterile working media was added to each well, and the 293 

incubation continued for a further 24 h. The well contents were harvested onto plain filter mats (Molecular 294 

Devices Ltd., Wokingham, UK) using a cell harvester (Titertek). After drying, the discs representing each 295 

well were punched from the filter mats into 5 ml volumes of scintillation fluid (Optiphase Hisafe III, Fisher 296 

Scientific UK Ltd. Loughborough) and the incorporation of [3H] thymidine into the cultured cells was 297 

measured using a Tri-carb 3100TR liquid scintillation analyser (Packard BioScience Co., Meriden, CT, 298 

USA) standard counting procedures. 299 

 300 

Analysis of cytokine production 301 

Cytokines were detected by taking cell culture supernatants after 48 hours incubation with 2.5 µg/ml 302 

Ag85B-ESAT-6 fusion protein. The cell medium was separated by centrifugation, collected in eppendorfs 303 

and stored at -70 ºC until analysed using DuoSet® capture ELISA kits (mouse IFN-γ, IL-2, IL-5) purchased 304 

from R&D systems, Abingdon, UK, according to the manufacturers instructions. Briefly, ELISA plates 305 

were first coated with capture antibody, followed by washing and blocking. Samples of cell culture 306 

supernatants were then added and cytokines detected by addition of detection antibody, enzyme marker 307 

(Streptavidin-HRP) and substrate solution following repeated incubation and washing steps. Absorbance 308 

was measured at 405 nm. 309 

 310 

Environmental Scanning Electron Microscopy (ESEM) of microspheres 311 

ESEM analysis was performed using a Philips XL30 ESEM-FEG (Philips Electron Optics (FEI), 312 

Eindhoven). Ag85B-ESAT-6 loaded PLGA microspheres, incorporating DDA, were prepared as described 313 

above. Following harvesting and resuspension, microsphere suspensions were loaded onto gold-sputtered 314 

mica plates in order to yield high resolution ESEM images. Gradual reduction of pressure in the sample 315 

chamber of the ESEM instrument resulted in the controlled dehydration of the sample environment (Perrie 316 

et al 2007; Mohammed et al 2004). 317 
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 318 

Statistical Analysis 319 

Statistical analyses were performed using GraphPad Instat 3 software (Version 3.06, GraphPad Software). 320 

For in vitro investigations, analysis of variance (ANOVA) followed by Tukey test was performed to 321 

compare the mean values of different groups. For in vivo data, Kruskall-Wallis’ non-parametric rank sum 322 

test followed by Dunn’s post test was used for differences in humoural and cellular immune responses.  323 

Statistical significance was considered at p< 0.05 in all the studies. 324 

 325 

Results and discussion 326 

To investigate the effect of antigen location when PLGA microspheres were employed as vaccine 327 

adjuvants, microspheres were prepared by the double emulsion solvent evaporation method (w/o/w), and 328 

compared to those prepared via the single oil-in-water emulsion solvent evaporation method (o/w). Table 1 329 

shows the particle size, zeta potential and Ag85B-ESAT-6 association efficiency of the microsphere 330 

delivery systems. Due to the presence of DDA, methods of preparation produced cationic particles of a 331 

similar diameter, although there is a slight increase and heterogeneity in measured size for those prepared 332 

by the single emulsion (o/w) method (3.0 µm and 4.7 µm for the double emulsion and single emulsion 333 

method, respectively; Table 1). The surface charge of the microspheres produced is also similar for both 334 

methods of preparation; however, the slight decrease seen for the o/w method, whilst not significant, may 335 

be due to the adsorbed layer of antigen masking the positive charge (39 mV and 34 mV for the double 336 

emulsion and single emulsion method, respectively; Table 1). This masking of the positive charge may 337 

explain the increase in mean diameter, through a reduction in electrostatic repulsion between the particles. 338 

Nevertheless, adsorption of the antigen to the surface of the microspheres does prove to be a more efficient 339 

method of association, with an increase of approximately three-fold when compared to the double emulsion 340 

method (Table 1). This result may be expected, since adsorption of the antigen to pre-formed particles adds 341 

the advantage of avoiding potential loss of antigen through migration from the internal aqueous phase 342 

during formation of the secondary emulsion, and also eliminates potential loss on washing.  343 

 344 
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The release of antigen from the microspheres formulated via the single emulsion method exhibits a notable 345 

burst release, particularly over the first 24 hours, followed by prolonged, sustained release (Figure 2), 346 

suggesting that the majority of the initial antigen load remains adsorbed to the microspheres, potentially 347 

facilitating enhanced delivery within antigen presenting cells (APCs). Following this, over the time period 348 

studied, approximately 15 - 18% of loaded antigen is released from the microsphere formulations. This 349 

delayed release may potentially be attributable to the presence of chitosan, since there is a possibility that 350 

due to its gel forming attributes and varying solubility at elevated pH, there may be a surface coating of 351 

chitosan inhibiting antigen release. However, this theory would require further investigation. For the 352 

microspheres prepared by the double emulsion method, over time a similar percentage of antigen release 353 

was found for the DDA alone formulation as to the single emulsion method.  354 

 355 

ESEM analysis 356 

ESEM analysis was undertaken to investigate any morphological differences between the microspheres 357 

produced by either the w/o/w or the o/w method (Figure 3). The average diameter of the particles imaged 358 

by ESEM is shown to be heterogeneous and correlated well to the volume mean diameters calculated by 359 

laser light diffraction (Table 1). Although the diameters of the individual particles appear to be similar for 360 

microspheres produced by both the w/o/w method (Figure 3A) and o/w method (Figure 3B), the location of 361 

the antigen seems to be different depending on the method of preparation, as can be expected theoretically. 362 

The presence of a surface coating, possibly of antigen, was distinguishable as a corona-like ring on the 363 

surface of the particles produced by the o/w method, which was then seen to bubble off i.e. was detached 364 

from the surface of the particle as the pressure in the sample chamber was reduced (Figure 3B). This 365 

phenomenon was only made visible by the nature of the microscopic technique, since ESEM not only 366 

allows visualisation of the sample in the hydrated state, but also allows for the alteration of the environment 367 

within the sample chamber, in this case pressure. Further investigations of antigen-free microspheres 368 

would, however, be needed to confirm this, although this was not evident for the microspheres with 369 

entrapped antigen produced by the w/o/w method (Figure 3A).  370 

 371 
 372 
Antibody production 373   
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Analysis of the ability of the delivery systems to raise anti-Ag85B-ESAT-6 IgG, IgG1 and IgG2a 374 

antibodies was performed at regular intervals by enzyme-linked immunosorbent assay (ELISA) (Figure 4). 375 

In terms of microsphere formulation type, the location of the antigen has an influence on the type and level 376 

of antibody response achieved; considering IgG levels, the o/w formulation (antigen adsorbed) showed 377 

increased levels (p<0.001) of  antibodies investigated as compared to microspheres with entrapped antigen 378 

(the w/o/w) formulation (Figure 4A) and, in general, the o/w formulation (antigen adsorbed) shows 379 

increased levels of all antibodies investigated compared to the w/o/w (antigen entrapped) microspheres of 380 

the same formulation (Figure 4A-E). In addition, the o/w formulation shows a mixed antibody response, 381 

with both Th1 and Th2 type antibodies showing increased levels as compared to the naïve control. For 382 

IgG1 levels, PLGA+DDA microspheres with entrapped antigen tended to show a slower onset of response 383 

(Figure 4C) and a more rapid decrease (Figure 4E) in response levels compared to PLGA+DDA 384 

microspheres with adsorbed antigen (p<0.01), with comparable levels only being achieved 38 days after 385 

immunisation (Figure 4D). For liposome based formulations, studies have demonstrated that formulations 386 

with surface-adsorbed antigens can be highly stable and elicit robust antibody and cell-mediated responses 387 

in mice and ferrets [52, 53], This has been suggested to be due to surface-conjugated antigen being 388 

available on the particle surface for antibody or B cell receptor (BCR) recognition, whereas encapsulated 389 

antigen requires some measure of processing or vesicle disruption to be accessible [54, 55]. 390 

 391 

 392 

Cell proliferation 393 

Each formulation was also investigated for its ability to initiate antigen-specific spleen cell proliferation 394 

(Figure 5). Cells undergoing proliferation increase their rate of protein and DNA synthesis. The increase in 395 

DNA synthesis can be measured by adding [3H] thymidine, a radioisotope-labelled DNA precursor, to the 396 

cell culture medium. The amount of tritium taken up by the dividing cells is correlated to the level of 397 

cellular proliferation.  When comparing the microsphere formulation type, in contrast to the antibody 398 

responses, the results show very little positive immunological effect for the microspheres prepared with 399 

surface adsorbed antigen, with PLGA+DDA microspheres formed using the w/o/w process (and hence 400 

antigen incorporated within the microspheres) promoting significantly higher levels of proliferation 401 



15 
 

(p<0.05). For the w/o/w formulation this suggests an increased ability to facilitate clonal expansion in 402 

response to re-stimulation with Ag85B-ESAT-6.  403 

 404 

Cytokine production 405 

The formulations were also investigated for Ag85B-ESAT-6 specific cytokine production, with indicators 406 

for Th1 (IFN-γ and IL-2) and Th2 (IL-5) type immunity (Figure 6A-C). The antigen incorporated w/o/w 407 

DDA formulation showed significantly enhanced production of IFN-γ and IL-2 cytokines studied compared 408 

to the o/w formulation (p<0.05; Figure 6), which showed little effect immunologically, with no significant 409 

difference to the control group in terms of INF-γ, IL-2 and IL-5.   410 

 411 

This study acts to compare the method of preparation and, hence, method of antigen association and 412 

presentation of microsphere systems as subunit vaccine delivery vehicles, both in terms of physico-413 

chemical characteristics and immunological efficacy. A common factor for the systems investigated is their 414 

associated cationic charge (Table 1), which is considered advantageous in terms of interacting with the 415 

cells of the immune system [56-58], a process deemed as the rate-limiting step for the uptake of both drug 416 

and particulate carrier [59, 60]. Chitosan was chosen as the emulsion stabiliser for the microsphere 417 

formulation due to the relatively high associated cationic charge, which would not only allow for effective 418 

adsorption of antigen, but also inherent Th1 biased adjuvanticity, potentially allowing for stimulation of 419 

macrophages and cytokine production [37, 42, 51, 61].  420 

 421 

In terms of the ability of the formulations to initiate antigen specific antibody production, the apparent 422 

difference in immune response between the two microsphere preparation techniques may be attributable to 423 

several factors, including size and zeta potential [57, 58, 62, 63], although the most probable cause is the 424 

way in which the antigen is released and presented to the cells of the immune system. As revealed by the in 425 

vitro release profiles of the systems (Figure 2), the microsphere formulation with adsorbed antigen (o/w) 426 

shows an initial burst of antigen and it is this immediate accessibility to the cells of the immune system and 427 

persistence of antigen that may explain the enhanced antigen specific antibody responses.  428 

 429 
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With regards to the cell mediated response initiated by the formulations, the microsphere preparations show 430 

the converse result to the antigen specific antibody production, with those produced by the w/o/w method 431 

achieving greater levels of cell proliferation (Figure 5) and cytokine production (Figure 6A-C) as compared 432 

to the o/w method. Again, this is likely to be related to the release kinetics of the antigen from the 433 

particulate delivery system, with the burst release of antigen likely to be the cause of the high antibody 434 

responses, whereas the low levels of cell proliferation and cytokine production initiated by the o/w 435 

microsphere preparation intimate that such rapid release systems are not ideal for promoting cell mediated 436 

immunity.  437 

 438 

Conclusion 439 

The particulate nature of microspheres can lead to recognition and recruitment of cells of the immune 440 

system and the consequent immunological cascade [15, 64]. However, the ability of these systems to retain 441 

and control the delivery of antigens is an important consideration. The results from the above studies 442 

demonstrate that the choice of manufacturing protocols for particulate vaccines can be used to control the 443 

physical location and release kinetics of antigens from microsphere adjuvants, with surface binding of an 444 

antigen promoting the burst release of antigen, which could promote its efficient recognition and 445 

processing, however in a soluble antigen format rather than in combination with an adjuvant. In contrast, 446 

for both antigen and adjuvant uptake, particle size is a key attribute [65], and may play a part in the 447 

immune response initiated by the various formulations [59, 66]. In our studies, the PLGA+DDA 448 

microspheres prepared using the o/w or w/o/w method were of similar size, but gave notably different 449 

results, suggesting that, in this study, the release kinetics and localisation of the antigen were the 450 

controlling factor in the immune responses. Overall, the results presented here underline the importance of 451 

considering formulation parameters and physico-chemical attributes of delivery systems to their ability to 452 

act as effective adjuvants for sub-unit vaccine antigens. In terms of microsphere preparations, the location 453 

of antigen plays a significant role on the type of immunity induced, with surface bound antigen favouring a 454 

humoural response, whereas entrapped antigen shows a propensity for cell mediated immunity.  455 

 456 
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Figures and Tables 472 
 473 
Table 1. The effect of preparation method on the physico-chemical characteristics of PLGA+DDA 474 
microspheres produced. Microspheres composed of PLGA were prepared by the double emulsion solvent 475 
evaporation (w/o/w) and the single emulsion solvent evaporation (o/w) method. Size was measured using a 476 
Sympatec Helos (Sympatec, Germany). Zeta potential was measured using a Brookhaven Zetaplus 477 
(Brookhaven, NY). Ag85B-ESAT-6 entrapment was determined on the basis of radioactivity of 125I-478 
labelled Ag85B-ESAT-6 recovered in the suspended pellets after ultracentrifugation. Results represent 479 
mean ± SD of triplicate experiments. 480 
 481 
 482 
Figure Legends 483 
Fig. 1.  Schematic representation of microsphere formulation by emulsion solvent evaporation 484 
processes. 485 
A. water-in-oil-in-water double emulsion solvent evaporation process (w1/o/w2). Initially, an aqueous 486 
solution of antigen is emulsified with an organic, polymer containing phase by vortex mixing to form a 487 
primary water-in-oil (w1/o) emulsion (a).  This is then transferred to an external, surfactant containing 488 
aqueous phase (w2) under homogenisation to yield the water-in-oil-in-water (w1/o/w2) emulsion (b).  489 
Solvent is then allowed to evaporate, and hardened microspheres are harvested by centrifugation (c). 490 
B. oil-in-water single emulsion solvent evaporation process (o/w). A polymer containing organic phase is 491 
first emulsified with a surfactant containing aqueous phase under homogenisation, to yield an oil-in-water 492 
emulsion (o/w) (a). Solvent is then allowed to evaporate, and hardened microspheres harvested by 493 
centrifugation. Microspheres are then resuspended, and mixed with antigen solution by vortex mixing (b) to 494 
facilitate surface adsorption of antigen (c). 495 
 496 
Figure 2. Cumulative antigen release (%, w/w) vs time. PLGA + DDA (o/w), PLGA +DDA (w/o/w) 497 
were incubated in Tris-HCl, pH 7.4 at 37°C. Ag85B-ESAT-6 release was determined on the basis of 498 
radioactivity of 125I-labelled Ag85B-ESAT-6 recovered in the suspended pellets after ultracentrifugation. 499 
Results represent percentage release of initially loaded antigen expressed as mean ± SD of triplicate 500 
experiments.  501 
 502 
Figure 3. ESEM micrographs of PLGA+DDA microspheres formulated via the w/o/w process (A) 503 
and o/w process (B). Arrow indicates presence of an adsorbed layer, possibly of antigen, as a corona-like 504 
ring associated with the surface of the microspheres (B), which was seen to “bubble off” at reduced 505 
pressures within the sample chamber. 506 
 507 
Figure 4. Ag85B-ESAT-6 specific antibody titres. Groups of five female C57BL/6 mice, approximately 508 
six weeks old, received doses of vaccine formulations containing 2 µg of Ag85B-ESAT-6 in a 50 µl 509 
volume. Vaccine formulations were administered intramuscularly, and each mouse received three doses at 510 
intervals of two weeks. Sera samples obtained at A: IgG antibodies, B: after day 12, C: after day 26, D: 511 
after day 40 and E: after day 54 for the antibody subsets of IgG1 (white bars) and IgG2b (black bars) 512 
antibodies by enzyme-linked immunosorbent assay (ELISA). * denotes significantly increased proliferation 513 
in comparison to naïve controls (n=5, p<0.05) ** denotes significantly increased levels in comparison to 514 
naïve controls (n=5, p<0.01) *** denotes significantly increased levels in comparison to naïve controls 515 
(n=5, p<0.001). 516 
 517 
Figure 5. Spleen cell proliferation in response to stimulation/re-stimulation with Ag85B-ESAT-6 518 
antigen. Cell proliferation was measured by incorporation of 3H into cultured splenocytes.  519 
** denotes significantly increased proliferation in comparison to naïve controls (n=5, p<0.01) 520 
*** denotes significantly increased proliferation in comparison to naïve controls (n=5 p<0.001) 521 
 522 
Figure 6. Ag85B-ESAT-6 specific cytokine production. Cytokines were detected using DuoSet® capture 523 
ELISA kits (mouse IFN-γ (A), IL-2 (B), IL-5 (C)) purchased from R&D systems, Abingdon, UK, 524 
according to the manufacturers instructions. * denotes significantly increased levels in comparison to naïve 525 
controls (n=5, p<0.05) ** denotes significantly increased levels in comparison to naïve controls (n=5, 526 
p<0.01) *** denotes significantly increased levels in comparison to naïve controls (n=5, p<0.001)  527 
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Preparation Volume mean 
diameter (µm) Zeta potential (mV) Ag85B-ESAT-6 

entrapment efficiency (%) 

DDA o/w 4.7 ± 1.1 34.2 ± 2.3 77.4 ± 6.5 

DDA w/o/w 3.0 ± 0.1 39.1 ± 1.6 24.2 ± 4.2 

Table 1.  
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