
Architecting Self-aware Software Systems

Funmilade Faniyi
School of Computer Science
University of Birmingham
Birmingham B15 2TT, UK

fof861@cs.bham.ac.uk

Peter R. Lewis
School of Engineering and Applied Science

Aston University
Birmingham B4 7ET, UK

p.lewis@aston.ac.uk

Rami Bahsoon, Xin Yao
School of Computer Science
University of Birmingham
Birmingham B15 2TT, UK

{r.bahsoon—x.yao}@cs.bham.ac.uk

Abstract—Contemporary software systems are becoming in-
creasingly large, heterogeneous, and decentralised. They operate
in dynamic environments and their architectures exhibit complex
trade-offs across dimensions of goals, time, and interaction, which
emerges internally from the systems and externally from their en-
vironment. This gives rise to the vision of self-aware architecture,
where design decisions and execution strategies for these concerns
are dynamically analysed and seamlessly managed at run-time.
Drawing on the concept of self-awareness from psychology, this
paper extends the foundation of software architecture styles for
self-adaptive systems to arrive at a new principled approach
for architecting self-aware systems. We demonstrate the added
value and applicability of the approach in the context of service
provisioning to cloud-reliant service-based applications.

Keywords—Self-adaptation, Architecture style, Self-awareness

I. INTRODUCTION

As users of software systems find more sophisticated
use for computing capabilities, the ensuing complexities of
modern software systems are manifold. These systems are
generally large scale and require managing heterogeneous and
time-varying objectives. The autonomic computing vision [1]
was initiated in response to these challenges, with the goal
of making computing systems self-managing. The intended
benefit being a reduction in the administrative cost and burden
of controlling complex software systems.

Architecture-based self-adaptation [2] [3] has been recog-
nised as one of the prominent ways of designing so-called
autonomic systems. In the architecture approach, the system
to be managed is endowed with a managing system, which
typically consists of an adaptive engine equipped with sensors
for monitoring and effectors for impacting the system. The
adaptation engine is composed of architectural models for
reasoning about adaptation actions in response to sensed data
from the system and environment. Adhering to principles of
architecture styles that abstract common features of architec-
ture instances in a specific domain [4] is known to serve as a
useful guide to the architect when designing software systems.

A handful of architecture styles has been contributed in
line with the vision of architecture-based self-adaptation. These
approaches often make simplified assumptions when modelling
and managing possible trade-offs encountered in dynamic,
open systems. As a result, the quality of self-adaptation tends
to be limited as it does not fully capture complex trade-offs
arising from heterogeneity of the interacting nodes, the oper-
ating scale, openness and dynamism of the environment. We
have observed that “fine-grained” representation of knowledge
when coupled with a multi-level online learning framework

can provide the necessary primitives for more reliable and
efficient self-adaptation [5] [6]. Inspired by the concept of
self-awareness from psychology, we characterise the primitives
of knowledge representation required to architect self-adaptive
systems.

System self-awareness has long been recognised as an
enabler for advanced autonomic behaviour [1]. To better rea-
son about self-awareness in technical systems, concepts from
psychology and cognitive science have been reinterpreted in
a computational context [6]. Accordingly we define a self-
aware computational node as one that “possesses information
about its internal state and has sufficient knowledge of its
environment to determine how it is perceived by other parts
of the system” [6].

Our self-aware architecture style builds on the primitives
of knowledge representation, adaptation of knowledge, and
provides extensible support for online learning at multiple lev-
els of abstraction. It adheres to tested architectural principles
such as separation of concern, and extends them to improve
architectural analysis. Drawing on a case study of adaptive
resource allocation to cloud-reliant service-based applications,
we motivate the need for enriching the capabilities of self-
adaptive architectures with computational self-awareness. We
contribute to an approach for architecting self-adaptive soft-
ware systems using the principles of self-awareness, leading to
the self-aware architecture style. Scenarios from the case study
are used to demonstrate the applicability of the approach.

The rest of the paper is structured as follows. Section
II motivates the case study. The self-aware style and its
underlying primitives are presented in sections III-V. Section
VI illustrates the applicability of the approach. Related work
are discussed in section VII. Section VIII concludes the paper.

II. MOTIVATING EXAMPLE: ADAPTIVE CLOUD
APPLICATION

We consider service-based applications (SBAs) deployed
in a cloud environment. Every SBA is composed of abstract
services, which are instantiated by functionally equivalent
concrete services at run-time. Each SBA has the goal of
satisfying its QoS requirements. These goals are not the same
for every SBA. Additionally, the architecture of each SBA
differs in topology and its constituent abstract services. Each
SBA has only a local perspective of its goal, which may change
over time, for example due to a need to respect new SLAs.
SBAs share a common pool of cloud services. Cloud services
offer various QoSes at prices which may change with time,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78893643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Design time goals
Learnt 
models

Self-expressionSelf-expression

Self-awarenessInternal
sensors
Internal
sensors

External
sensors
External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators
External
actuators

Internal
actuators
Internal

actuators

Data flow

Control

Fig. 1. Overview of Self-Aware Architecture Style

for example due to over subscription from multiple competing
applications. Externally, SBAs interact via the shared service
infrastructure and possibly interfere with one another when
competing for services. Consequently, there is a tension be-
tween each application’s local goal satisfaction and the (global)
objective of fair resource distribution.

In order to manage application dynamics, each SBA is
endowed with an adaptive component. The objective of the
component is to manage the pool of available services on
behalf of the SBA and ensure its QoS goals are met. Thus
the component makes service selection decisions. It also reacts
to the time-varying workload patterns by making on-demand
request for services and releasing them in an elastic manner
to avoid under/over-provision. Moreover, the adaptive compo-
nents owned by different SBAs autonomously coordinate and
resolve conflicts among themselves to ensure their goals are
achieved whilst respecting the global objective.

To realise this self-adaptive capability, the software archi-
tecture of the adaptive component should cater for fine-grained
representation of knowledge pertaining to changing goals,
workload, and service availability. The self-aware style offers
primitives for modelling this knowledge using an approach that
simplifies run-time trade-off analyses.

III. OVERVIEW OF SELF-AWARE ARCHITECTURE STYLE

We describe an architecture-style for self-awareness by
looking at a self-aware node. In this context, a node need not
be a specific physical system, but instead provides a conceptual
container for the system being considered: the element in that
context which is being referred to as self. A node could there-
fore be, for example, an autonomous agent, a running thread,
a physical machine, or a collective of these. Importantly, the
node represents a level of abstraction at which knowledge
acquisition, representation and behaviour determination occurs.

Figure 1 depicts the internal composition of a constituent
node in the said style. It describes their structure, interaction,
and relationship with the environment. The style describes
the primitives for knowledge acquisition, representation, and
behavioural processes for self-adaptation. It introduces a multi-
level approach that capture concerns related to goals, inter-
action, and time when analysing and reasoning about self-
adaptation and the emergent trade-offs.

Due to the unpredictability associated with both deploy-
ment environments and the dynamics within them, one key
challenge in realising self-awareness and self-expression in
computing systems is the appropriate use of effective online
learning schemes. In the self-aware architectural style, online
learning algorithms instantiate two conceptual components in
order to provide adaptive knowledge acquisition and behaviour
in the self-awareness component: (i) sensor data is collected,
analysed and, if appropriate, knowledge obtained from it is
represented in learnt models (ii) behavioural learning (e.g.
action selection and strategy selection) takes place, informed
by knowledge present as part of the node’s self-awareness.

Self-awareness processes are able to collect information
both from internal sensors (regarding private experiences in-
ternal to the node and typically externally unobservable) and
external sensors (regarding experiences of the node’s physical
environment as well as of other nodes). Additionally, self-
awareness processes are able to observe the actions taken by
the node, and have access to goals specified for the node at
design time.

Self-expression processes make use of knowledge obtained
and represented by self-awareness processes and determine
appropriate actions as a result. The self-expression compo-
nent therefore has control over actuators. The self-expression
component has no privileged direct access to the design-time
goals, however in a typical instantiation, a self-awareness
process will be responsible for representing goal information
in a meaningful, useful and efficient manner (e.g. through
a utility function), to the self-expression component. In this
way, though a node may be designed with multiple complex
and context dependent goals, it may possess the ability to be
aware of which goals are relevant given its current context,
and expose only those to the self-expression component at a
given time. This separation can act to simplify the required
self-expression behaviour.

IV. SELF-AWARENESS AND TYPES OF KNOWLEDGE

Lewis et al. [6] highlighted three key aspects of the
psychological literature on self-awareness: 1) the notions of
public and private self-awareness, concerned with external
and internal sources of knowledge respectively, 2) that self-
awareness is not a binary property, but there exist various levels
of self-awareness, corresponding to the capability to represent
and reason about various types and complexities of knowledge,
and 3) that self-awareness can be a property of a collective
system as well as a single system. Since in this paper we
are concerned with the architecture of a single system, we do
not address the third aspect. In this section however, we draw
attention to the first and second.

Firstly, the architecture style deals with the concept of
public and private self-awareness [6], by specifying both
external and internal sources of data, from which the self-
awareness component constructs knowledge. Data connectors
clearly establish this relationship.

Secondly, we have found it particularly useful to develop
a novel computational interpretation of the levels of self-
awareness introduced by Neisser [7]. Neisser’s levels, dis-
cussed in a computational context in [6], describe increas-
ingly complexity in terms of an individual’s self-awareness



capabilities. Building on this, we have developed five levels
of computational self-awareness, which in a similar way,
can be used to describe a computing system’s self-awareness
capabilities. Our five levels of computational self-awareness
(see figure 2) follow, along with their relevance to either public
or private self-awareness or both.

Stimulus-aware: A node is stimulus-aware if it has knowledge
of stimuli. The node is not able to distinguish between the
sources of stimuli. It does not have knowledge of past/future
stimuli. It enables the ability in a node to respond to events.
It is a prerequisite for all other levels of awareness. Since
stimuli may originate both internally and externally, stimulus-
awareness can be both private and public.

Interaction-aware: A node is interaction-aware if it has
knowledge that stimuli and its own actions form part of
interactions with other nodes and the environment. It has
knowledge via feedback loops that its actions can provoke,
generate or cause specific reactions from the social or physical
environment. It enables a node to distinguish between other
nodes and environments. Interaction-awareness is typically
based on external phenomena and is therefore a form of public
self-awareness, however one can also envisage a system which
learns about the effects of internal interactions with itself,
which would constitute a form of private self-awareness.

Time-aware: A node is time-aware if it has knowledge of
historical and/or likely future phenomena. Implementing time-
awareness may involve the node possessing an explicit mem-
ory, capabilities of time series modelling and/or anticipation.
Since time-awareness can apply to both internal and external
phenomena, it can either be both private and public.

Goal-aware: A node is goal-aware if it has knowledge of
current goals, objectives, preferences and constraints. It is
important to note that there is a difference between a goal
existing implicitly in the design of a node, and the node having
knowledge of that goal in such a way that it can reason about it.
The former does not describe goal-awareness; the latter does.
Example implementations of such knowledge in a node include
state based goals and utility based goals. Since goals may exist
privately to the node, or collectively as a shared or externally
imposed goal, goal-awareness can be both private and public.

V. REASONING ABOUT ADAPTATION ACTIONS VIA
META-SELF-AWARENESS

The most advanced of the levels of self-awareness, the fifth
level, concerns meta-self-awareness, an awareness of ones own
self-awareness capabilities (or lack thereof). Therefore, in a
self-aware system, learning can occur not only at the adaptation
level, but also at the meta level [5]. Online learning at the meta
level, as shown in figure 2, occurs in a meta-self-awareness
component, where models of the node’s own behaviour are
built online, and acted upon.

As an example of the role of the meta-self-awareness
component, consider that at the adaptation level, it would
be possible for various instances of (possibly the same or
different) online learning algorithms to instantiate several
conceptual components, to achieve different purposes simul-
taneously. For example, a node may instantiate a complex
form of time-awareness and a more simplistic form of goal-
awareness. But the node’s changing run-time context may

Private Public

Stimulus awareness

Interaction awareness

Time awareness

Goal awareness

Run time goals

Design time goals

Learnt 
models

Self-expressionSelf-expression

Meta-
self-awareness

Meta-
self-awareness

Self-awarenessInternal
sensors
Internal
sensors

External
sensors
External
sensors

Physical
and social

environment

Physical
and social

environment

External
actuators
External
actuators

Internal
actuators
Internal

actuators

Data flow

Control

Fig. 2. Levels of Self-Awareness

require a change to a more complex form of goal-awareness to
achieve sufficient adaptivity. Conversely, the node may become
aware (at the meta level) that the overhead associated with
performing highly complex time series modelling is wasteful,
when considered in a trade-off with the benefits arising from
such modelling. In this case, it may be beneficial for the node
to cease such modelling.

In general, we anticipate firstly that algorithms will be
selected for each component and tuned according to their role
in a particular application, and secondly that this algorithm
selection and tuning will be managed during run-time by a
node’s meta-self-aware capability, as context changes.

VI. APPLICABILITY OF THE APPROACH

In the scenario described in section II, SBAs are allocated
a budget based on their wiliness to compete in the service
market. Likewise, cloud services charge a time-varying fee.
Cloud service and application QoS are represented by a tuple
consisting of performance, availability etc.

The external sensor firstly compares application’s required
QoS with service provider’s offered QoS. Stimulus-aware
component characterises the dynamic change in user requests.
This model is derived from workload generated in response to
user request. User requests are distinguished by SLA classes.
The goal-aware component makes use of an utility function
(see equation 1) to deduce the candidate services which are
likely to provide optimal QoS, where wb is initialised based
on the application SLA class. k is a sensitivity factor for tuning
the affinity of the application for demanded services. βprice is
the price demanded by the service provider at the time the
service is requested.

U(service) = wb + (k ∗ βprice) (1)

Time-aware component makes use of a locally managed
performance repository to store rating of services, in terms
of the level to which the service met promised QoS, and the
duration of their use. Interaction-aware component captures
knowledge about the interaction between services and users
clustered in different SLA classes using the performance
repository. The objective is to ensure that the local objectives of



the interacting applications are met, taking into consideration
the various SLA classes.

Self-Expression component makes service selection deci-
sions based on allocation strategies. Two example strategies are
(a) Strategy 1: choose service with the lowest price possible.
That is, the selling price must be the lowest among available
services. If more than one service offers the lowest price,
then one is chosen at random; (b) Strategy 2: choose services
at random, provided the price is acceptable, i.e., price less
or equals application’s budget. Depending on the strategy
selected, there exist a trade-off between the time to select
a service and the cost of the service. More details about
these strategies and how the resulting trade-off spaces can be
managed using market-based computational mechanisms can
be found in [8][9].

VII. RELATED WORK

MAPE-K [1] is a widely adopted autonomic architecture
style. The (K)nowledge component is shared by the (M)onitor,
(A)nalyser, (P)lanner and (E)xecutor components. MAPE-K
provides primitives for encoding experts’ knowledge about a
domain in K. This knowledge is used to reason about run-time
adaptation. Our style takes the view of architecting interacting
computing systems (self-aware nodes), which are deployed in
settings where knowledge about the correct adaptation is a
priori unknown. MAPE-K models knowledge at a coarse grain,
without explicit distinction between knowledge concerns for
goals, time, or interaction.

SEEC is another framework that claims self-aware ca-
pabilities [10]. SEEC relies on the (O)bserve-(D)ecide-(A)ct
(ODA) [10] architecture style. The O and A components in
ODA are equivalent to M and E components in MAPE-K
respectively, while analysis and planning tasks are subsumed
in the Decide component. Our self-aware style decouples the
decider (D) into two smaller subunits: learnt knowledge (self-
awareness) and decider (self-expression). We may therefore
describe our style as an Observe-Learn-Decide-Act (OLDA)
architecture style, since the self-awareness component provides
primitives for learning. The meta-self-awareness variant of our
style is one in which an additional Monitor/Controller acts as
an observer to the Learning (L) and Decision (D) processes
in the OLDA. Similar to MAPE-K and ODA styles, the self-
aware style emphasises a separation or decoupling between
the acquisition and representation of the learnt knowledge
and the decision making process. However, the knowledge
representation component in our style explicitly models goals,
time, and interaction concerns of the system-to-be.

Our work complements learning-inspired architecture
styles. FUSION, a framework for tuning self-adaptive software
system at run-time, was proposed by [11]. FUSION uses
feature-based approach and online learning for analysis and
adaptation. Whereas [11] takes the view of a centrally managed
self-adaptive system, our style is not limited to centralised sys-
tems, and is able to cope with the heterogeneity of interacting
nodes at a fine-grain. Additionally, [11] promotes the use of
reinforcement learning, we provide an extensible framework,
where the choice of learning mechanism is adaptively deter-
mined by the meta-self-aware component based on trade-offs
for goals, time, and interaction.

VIII. CONCLUSION

We have described an approach for architecting self-
adaptive software systems using the principles of self-
awareness. A distinctive feature of the style is that it elaborates
the knowledge representation at a fine-grained level to handle
complex trade-offs across the dimensions of goals, time, and
interaction. The style offers extensible support for various
learning approaches, while ensuring coherence between the
three key activities of self-awareness, self-expression and
meta-self-awareness.

We plan to contribute to a catalogue of architectural
patterns which architects can exploit to inform the design
decisions for self-awareness and measure the added value of
partial/full instantiation of its primitives in an application. We
will also support the catalogue with metrics for assessing
the quality of adaptation on dimensions related to accuracy,
improved adaptability, dependability, and incurred overhead.

ACKNOWLEDGMENT

This research was supported by the EPiCS project and re-
ceived funding from the European Union Seventh Framework
Programme under grant agreement no 257906.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[2] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An architecture-
based approach to self-adaptive software,” Intelligent Systems and their
Applications, IEEE, vol. 14, no. 3, pp. 54–62, 1999.

[3] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic et al., Software
engineering for self-adaptive systems: A research roadmap. Springer,
2009.

[4] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52,
Oct 1992.

[5] T. Becker, A. Agne, P. Lewis, R. Bahsoon, F. Faniyi, L. Esterle,
A. Keller, A. Chandra, A. Jensenius, and S. Stilkerich, “EPiCS: En-
gineering proprioception in computing systems,” in Proc. of the 15th
IEEE International Conf. on Computational Science and Engineering
(CSE), 2012, pp. 353–360.

[6] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bah-
soon, J. Torresen, and X. Yao, “A survey of self-awareness and its
application in computing systems,” in Proc. Int. Conf. on Self-Adaptive
and Self-Organizing Systems Workshops (SASOW), 2011, pp. 102–107.

[7] U. Neisser, “The roots of self-knowledge: Perceiving self, it, and thou,”
Annals of the NY AoS., vol. 818, pp. 19–33, 1997.

[8] P. R. Lewis, F. Faniyi, R. Bahsoon, and X. Yao, “Markets and clouds:
Adaptive and resilient computational resource allocation inspired by
economics,” in Adaptive, Dynamic, and Resilient Systems, N. Suri and
G. Cabri, Eds. Taylor & Francis, 2013.

[9] F. Faniyi and R. Bahsoon, “Economics-driven software architecting
for cloud,” in Economics-driven Software Architecture, I. Mistrik,
R. Bahsoon, R. Kazman, K. Sullivan, and Y. Zhang, Eds. Elsevier,
2013.

[10] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “SEEC: A framework for self-aware computing,” 2010.

[11] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: a framework for
engineering self-tuning self-adaptive software systems,” in Proc. of the
eighteenth ACM SIGSOFT Int. symposium on Foundations of software
engineering, ser. FSE ’10, 2010, pp. 7–16.


