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Abstract 

 

Single cell recordings in monkeys support the notion of lateral prefrontal cortex (PFC) 

controlling reactivation of visual working memory representations when rehearsal is 

disrupted. In contrast, recent fMRI findings yielded a double-dissociation for PFC and the 

medial temporal lobe (MTL) in a letter working memory task. PFC was engaged in 

interference protection during reactivation while MTL was prominently involved in the 

retrieval of the letter representations. We present event-related potential data (ERP) that 

support PFC involvement in the top-down control of reactivation during a visual working 

memory task with endogenously triggered recovery after visual interference. A differentiating 

view is proposed for the role of PFC in working memory with respect to 

endogenous/exogenous control and to stimulus type. General implications for binding and 

retention mechanisms are discussed.  

 

Key words: Binding, ERP, medial temporal lobe, memory reactivation, occipito-temporal 

cortex, retention. 
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Introduction 

 

An important feature of biological information processing systems in general is that all 

operations are implemented in a massively parallel and distributed architecture, which works 

by means of highly complex cooperation among a huge number of neurons as simple 

processing elements. The question therefore arises of how chaotic cross-talk in such 

architecture can be avoided, yet allow for the activity of billions of neurons to lead to 

meaningful mental representations. Controlled processing in the human brain seems to be 

primarily achieved by a severely restricted number of high-level representations that can be 

maintained and processed in parallel. Storage and manipulation of information held in 

working memory is one prototypical example for the computational requirements of a 

situation, in which several chunks of information have to be maintained online, sometimes 

even in the presence of interfering stimuli and mental operations. It is a crucial research 

question in this field, how maintenance of information in working memory is still 

accomplished when interference impedes rehearsal mechanisms to keep information online. In 

the present research, these working memory mechanisms were investigated by means of 

event-related potentials (ERPs) in the EEG.  

A growing body of evidence has been reported so far that supports the notion of 

working memory being implemented by prefrontal circuits in interaction with other cortical 

areas (see Duncan, 2001; Fuster, 1989; Goldman-Rakic, 1996; and Miller and Cohen, 2001, 

for reviews). Separate networks have been revealed for the so-called “phonological loop” and 

the “visuo-spatial sketch pad” (e.g. Gruber and von Cramon, 2003), which denote the 

fragmentation of working memory into a language-based and a visuo-spatial subsystem 

respectively (Baddeley, 1986). However, both physiological networks involve PFC (e.g. 

Gruber and von Cramon, 2003).  

For visual pattern working memory (“visual cache”, cf. Logie, 1995) the interaction 
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between lateral prefrontal cortex (PFC) and inferior temporal cortex (IT) has proven to be 

crucial (e.g. Miller et al., 1996; Ranganath et al., 2004; Tomita et al., 1999). Similar to PFC 

neurons, IT neurons fire during the delay period of a working memory task, yet firing is 

disrupted by visual distractors (Miller et al. 1996). This is not the case for PFC neurons 

(Miller et al. 1996; Goldman-Rakic, 1996). What is more, PFC seems to be able to activate 

representations in IT as reported by Tomita et al. (1999). With specific lesions of the 

transcallosal interconnections between left and right IT of monkeys the authors showed that in 

a visual association paradigm a visual stimulus was nevertheless able to activate the 

contralateral IT, although information could not access IT via bottom-up or transcallosal 

connections. The authors conclude that information was transmitted by means of inter-

hemispheric interactions within PFC and then by top-down intra-hemispheric projections to 

the corresponding neurons in IT. Support comes from the observation that PFC lesions 

disrupted performance and activation of contralateral IT. A possible conclusion regarding 

processing during external interference would be that PFC maintains information during 

interference and then re-activates information in IT when interference is over (e.g., Miller and 

Cohen, 2001). This would suggest that what persist in PFC are not representations per se but 

the “links” to where this information can be retrieved. 

The essential role of PFC in maintenance and recovery has been recently questioned by 

research that showed an even stronger involvement of the medial temporal lobe (MTL) in the 

reactivation of representations in long- and short-term memory (Nyberg et al., 1996; Nyberg 

et al., 2000; Ranganath and D’Esposito, 2001; Sakai et al. 2002) whereas lateral PFC 

activation seemed rather unaffected by the need for, or by the success of reactivation 

(Buckner and Wheeler, 2001; Maril et al., 2001; Kikyo et al., 2002; Sakai et al. 2002). Sakai 

and Passingham (2004) propose – in concordance with previous findings (Gruber and von 

Cramon, 2003; Incisa della Rocchetta and Milner, 1993; Shimamura, 1995) - that PFC might 

be primarily involved in interference protection (for a discussion, see also Kiefer, Ahlegian, 
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and Spitzer, 2004). Accordingly, Sakai and Passingham (2004) report a double-dissociation 

between MTL and lateral PFC regarding reactivation of representations and interference 

protection in working memory. That is, lateral PFC showed stronger activation with letter 

distractors than with number distractors if letters had to be maintained in a specific order in 

working memory. This suggests higher activation of lateral PFC with higher interference 

during recall (the distractors were presented just before the memory probe was given). MTL, 

in contrast, was equally activated in both tasks. Rehearsal was equally disrupted with both 

kinds of distractors (MTL), whereas interference was higher with letter distractors (PFC). In a 

second study (Sakai and Passingham, 2004) interference was kept constant (number 

distractors only) but the need for reactivation was enhanced in half of the trials by arithmetical 

operations that had to be performed on the number distractors. Here, lateral PFC revealed no 

differential activation while MTL showed a stronger activation if recovery of representations 

became necessary (with arithmetic ops) as compared to the condition where rehearsal was not 

disrupted (no arithmetic ops). The authors conclude that this double-dissociation shows that 

MTL mediates reactivation from long- and short-term memory after disrupted rehearsal while 

lateral PFC assures protection from interference.  

However, it is premature to refute a role of PFC for re-activating working memory 

representations on the basis of the Sakai and Passingham findings for several reasons: First, 

only material was used that could be encoded into the phonological loop (a specific sequence 

of letters). This leaves the question unresolved as to which extend the reported findings would 

generalize to visual working memory. Gruber and von Cramon (2003), for example, found 

modality-specific interference effects for visuo-spatial and verbal working memory (see also 

Zurowski et al., 2002; Smith et al., 1995). In fact, the above mentioned studies by Miller et al. 

(1996) and Tomita et al. (1999) suggest a role for PFC during re-activation of IT during visual 

tasks. Second and closely related to the first issue, letters are highly over-learned stimuli that 

can be easily matched to long-term concepts and, hence, can be easily encoded into, and 
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retrieved from associative memory (e.g. Chalmers and Humphreys, 2003; Guttentag, 1995; 

Westerman, 2001), prominently mediated by hippocampal and parahippocampal structures 

(e.g. Martin, 1999; Ranganath and D’Esposito, 2001; Ranganath et al. 2004; Schacter and 

Wagner, 1999; Stark, Bayley and Squire, 2002; Sutherland and Rudy, 1988). This might be 

because letters achieve deeper processing than purely perceptual features as suggested by 

Craik and Lockhart’s levels of processing framework (1972; Craik and Tulving; 1975; also 

Cleary, 2002; Hyde & Jenkins, 1969). It is possible that within a visual task, where low-level 

perceptual information has to be maintained, recovery of working memory representations 

depends more on PFC activity. 

Third, and most importantly, in the Sakai and Passingham studies interference was 

administered just before the memory probe was displayed. In such a procedure, recovery of 

representations could be strongly biased by the displayed probe. The probe provides a 

contextual cue that might directly access associative memory of the encoded letters without 

necessarily engaging lateral PFC (see also the concept of long-term working memory by 

Ericsson and Kintsch, 1995). Alternatively, activation of PFC related to recovery and not to 

interference protection might be earlier, but very transient and subtle, hence, hard to trace by 

fMRI, a method with poor temporal resolution. It would therefore be necessary to incorporate 

a longer gap between end of interference and probe. With such a procedure we predict that 

PFC would trigger recovery of information as without an external retrieval cue information in 

associative memory would have to be accessed via traces in lateral PFC. This is in 

concordance with recent findings by Ranganath et al. (2004) who showed stronger 

involvement of lateral PFC in working memory and stronger involvement of hippocampus in 

associative learning within the same study that employed faces and houses as items. 

Concluding, we are postulating an account where the involvement of lateral PFC in 

maintenance and recovery increases, the less is known about the items that have to be 

encoded and, most importantly, the more retrieval is self-initiated. 
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In the present study, we investigated the mechanisms underlying the recovery of visual 

working memory representations from interference by means of EEG. ERPs were used to 

track the time course of cortical activation with high temporal resolution in a visual working 

memory task. This was, however, traded for spatial resolution, especially regarding 

hippocampal regions. Our research therefore focused on the temporal orchestration of lateral 

prefrontal and occipito-temporal activity. We designed a task that would allow testing for 

PFC involvement in active recovery without external retrieval cue after interference. We 

adapted a paradigm initially developed by Mecklinger (1999), where geometrical shapes have 

to be encoded, but where the probe at the end of the trial was varied in size and not in identity. 

This was to prevent participants to encode the shapes solely via a linguistic code into the 

phonological loop. Instead, the participants were forced to maintain low-level perceptual 

information about visual details of the shapes to be able to solve the task. Yet, the availability 

of a cognitive concept and a linguistic label for each geometrical shape would increase the 

stability of the representations (Miyake & Shah, 1999, for a review) in the visuo-spatial 

sketch-pad, the capacity of which is known to be highly dependent on the complexity and the 

similarity of the items
1
. 

Difficulty of the working memory task was varied on two dimensions: working memory 

load and interference. Working memory load was manipulated by presenting two or four 

shapes to be encoded. Load should increase the effort of maintenance (cf. Baddeley, 1986), 

but not the need for recovery (cf. Sakai and Passingham, 2004). The need for recovery was 

implemented in our experiment by administering an interference task within the retention 

interval. A simple visual discrimination task was employed, which should be sufficient to 

induce low-level interference with the encoded information about shape size, hence, disrupt 

sustained firing. Occipito-temporal cortex has been shown to be involved in early visual 

                                                 
1
 Logie (1995) reviews findings that show capacity of only one item with complex and very similar square 

matrix patterns. Broadbent and Broadbent (1981), however, report capacity of three items with more dissimilar 

wallpaper textures. 
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stimulus discrimination (see Hopf et al, 2002 for a review). It is therefore a likely candidate 

for a module where shape integration is accomplished to an extend so that a match with 

simple target-templates can be performed. We therefore expected occipito-temporal cortex to 

be the site where maintenance of task-relevant size information is strongly threatened by 

interference (cf. Miller et al. 1996).  

External interference ended 2 sec before the memory probe was administered. This time 

point marked the beginning of the recovery interval, which lasted until onset of the probe 

presentation. During the recovery interval, subjects were released from interference and were 

instructed to prepare for the probe, thus allowing for endogenously controlled reactivation. 

After release from interference, PFC should therefore trigger recovery in occipito-temporal 

cortex. However, as compared to representations, where rehearsal was undisturbed, recovered 

representations are expected to be weaker (less rich), as only task-relevant information could 

be incorporated into PFC representations. In turn, the system would have to engage in a 

higher effort to maintain these representations. Therefore, we expected qualitative differences 

during the recovery interval at occipito-temporal sites, i.e. at occipito-temporal electrodes, 

depending on the administration of interference. 

Concluding, ERP differences between trials without interference and trials with 

interference at lateral prefrontal electrodes should be fast and transient since they should 

reflect the initiation of a recovery process in the latter case. Subsequently, strong and stable 

ERP differences at occipito-temporal electrodes should emerge that would reflect the 

qualitative differences between recovered, effortfully maintained representations (after 

interference) compared to undisturbed, rich representations. We also expected an interaction 

between load and interference. According to the account we are postulating, prefrontal 

involvement should reflect to some extend general cognitive effort, namely interference 

(“with” vs. “without”) and load (“high” vs. “low”), while posterior effects (temporo-occipital) 

should primarily reflect the qualitative differences between recovered (with interference) and 
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maintained (without interference) representations. This latter prediction is based on the 

assumption (in concordance with Sakai and Passingham, 2004) that enhanced load would 

increase the effort of maintenance but not the need for re-activation as rehearsal is not 

disrupted. Interference, in contrast, disrupts rehearsal, and recovery becomes necessary. 

Especially at occipito-temporal sites, recovered representations should qualitatively differ 

from continuously maintained (i.e., rehearsed) representations. As high load does not disrupt 

rehearsal, representations in occipito-temporal brain regions should not differ qualitatively 

between “high” and “low” load  and, hence, occipito-temporal ERP effects of load should be 

smaller than effects of interference. 

Methods 

 

Participants, experimental stimuli and apparatus 

9 female and 6 male students of Ulm University with a mean age of 25.3 were 

employed as subjects and received payment for their participation in the experiment. All were 

right-handed and had normal or corrected to normal vision. The study has been approved by 

the local Ethical committee and is in accordance with the declaration of Helsinki. 

The stimuli in this experiment were basic geometrical or symbolic shapes as shown in 

Figure 1 (Panel A). The experiment was performed on an IBM-compatible personal computer 

and each trial in the experiment was divided in four phases (Figure 2): First, “encoding” of 

shapes, second, “retention” with either a blank screen or with two visual discrimination tasks, 

third, 2 sec “recovery” of representations until the probe (fourth phase) appeared on the 

screen.  

 

Figure1 about here 

 

Encoding displays could consist either of two or four (unique) shapes in order to vary 



Kessler and Kiefer 

Prefrontal Cortex and Recovery from Interference 
9

the load imposed onto the participants’ working memory. The position of each shape was 

randomized across a 4x4 matrix of possible positions on the screen that covered an area of 6 

cm width (3.8° visual angle at a viewing distance of 90 cm) and of 4 cm height (2.5° visual 

angle). The over-all size of the relevant display was kept as small as possible to reduce the 

need for eye-movements. The geometrical shapes were 1 cm wide and 0.75 cm high in their 

basic form. As pointed out, the experiment was designed to force the participants to maintain 

perceptual information of the stimuli. Therefore, either the width or the height of a stimulus 

could vary between prime and probe by 25% (Figure 1, Panel B). Thus, we expected that 

although all shapes could be named, the task could not be solved by phonological encoding 

alone. Instead, maintenance of visual information about the actual width or height would be 

indispensable to solve the task, while the long-term concept associated with each figure could 

help to efficiently generate a working memory representation. All probes shared the concept 

with one of the primes, but their size varied on 50% of the trials (25% height and 25% width 

changes).  

 

Figure 2 about here 

 

As described, prime and probe were separated by a 5.1 sec ISI (interstimulus interval). 

During the 3.1 sec of the “retention” interval either a blank screen with a gray fixation cross 

of 0.64° visual angle was shown in the middle of the display or either the subject had to solve 

two visual discrimination tasks (Figure 1, Panel C). The latter condition was used to induce 

interference in visual areas that would also be involved in the processing of the encoded 

geometrical shapes. Each discrimination task consisted of a black random shape that was 

either “edged” or “round” embedded into another random, but gray shape (again, “edged” or 

“round”). The subjects had to decide in a “go”/”no-go” fashion if the inner black form was 

“round”. The size of each double-shape was 1.9° horizontal and vertical visual angle. Finally, 
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during the last 2 sec before the onset of the probe a blue fixation cross was displayed in all 

conditions that was of the same size as the gray cross during the baseline “retention” 

condition. The blue fixation cross signaled subjects the recovery interval. 

 

Procedure and Design 

Participants sat before the monitor at 90 cm viewing distance, with a button box in front 

of them, under dim lighting conditions.  Each participant completed a practice session of 15 

trials. Testing of the subsequent 320 experimental trials lasted approximately 70 minutes.  

Subjects had a self-paced break after the first half of the trials. The timing within a trial is 

shown in Figure 2. After self-initiating each trial, a gray fixation cross was displayed for 1 

sec. Next, two (50%) or four (50%) shapes were displayed for encoding. The subjects had 

been instructed to memorize all shapes within 4 sec. In the following 3.1 sec “retention” 

interval in half of the trials the display just turned black with a gray fixation cross in the 

middle. In the other half of the trials two of the described discrimination tasks had to be 

solved within 1500 ms each. Next, in all conditions the display turned black and a blue 

fixation cross appeared in the center of the screen exactly 3100 ms after the start of the 

retention phase to indicate the onset of the recovery interval. Subjects had been instructed that 

2 sec were left until the probe would be displayed. They were also told to retrieve the encoded 

information in preparation for the probe display. This recovery interval was of major 

importance to our investigation because recovery processes after interference would possibly 

become observable without any concurrent external stimulation. Finally, the probe appeared 

either in the same or in a different location as the corresponding prime and could be of same 

or of different size as the prime. Subjects were instructed to ignore changes in position
2
 but to 

report changes in size by pressing a key for “different size” with the right index finger or a 

                                                 
2
 The position change was introduced to investigate position-identity binding in a follow-up study with exactly 

the same stimuli. Only by changing the instruction (“Is the probe in the same location as the prime?”) - while 

keeping the stimuli and the procedure absolutely identical - it would be possible to test recovery of position-

identity representations after interference. However, this was not incorporated in the experiment presented here. 
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second key respectively for “same size” with the right middle finger. The instruction strongly 

emphasized to react as accurately and as quickly as possible. Participants could therefore 

make two kinds of errors: falsely reporting same size or falsely reporting different size. 

Concluding, we employed a 2x2x2 experimental design that included the factors “load” (low 

vs. high), “interference” (with vs. without), and “probe size” (“same” vs. “different”) with 40 

trials in each condition. As dependent behavioral measures, percentage of correct reports and 

reaction times were calculated individually for each condition. 

 

EEG 

Scalp potentials were collected using a equidistant montage of 64 sintered Ag/AgCl-

electrodes mounted in an elastic cap (Easy Cap, Falk Minow Systems). An electrode between 

Fpz and Fz was connected to the ground, and an electrode between Cz and FCz was used as 

recording reference. Eye movements were monitored with supra- and infra-orbital electrodes 

and with electrodes on the external canthi. Electrode impedance was kept below 5 kΩ. 

Electrical signals were amplified with Synamps amplifiers (low-pass filter = 70 Hz, 24 

dB/octave attenuation; 50 Hz notch filter) and continuously recorded (digitization rate = 250 

Hz), digitally band-pass filtered (high cut-off: 16 Hz, 24 dB/octave attenuation; low cut-off: 

0.2 Hz, 12 dB/octave attenuation) and segmented (200 ms before to 9100 ms after the onset of 

the encoding displays). EEG data were corrected to a 200 ms baseline prior to the onset of the 

encoding displays. ERPs were extracted by averaging artifact-free EEG segments 

synchronous to the onset of the stimulus separately for each experimental condition. In order 

to obtain a reference independent estimation of scalp voltage, the average-reference 

transformation was applied to the ERP data (Bertrand, Perrin and Pernier, 1985; Kiefer, 

Marzinzik, Weisbrod, Scherg and Spitzer, 1998a). 

The aim of our investigation was primarily focused on the recovery interval (7100 - 

9100 ms after the onset of the encoding display) in order to observe recovery processes after 
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release from interference. However, we could not ignore the rest of the trial because of two 

reasons. First, artifact rejection had to be performed throughout the trial length to ensure good 

data quality for all intervals. Second, it was important to calculate the baseline correction 

before the actual begin of the trial and not preceding the recovery interval (cf. Figure 3), 

because we expected processes during retention to differ substantially among conditions (i.e. 

“with” vs. “without” interference). Accordingly, different levels of activation preceding the 

recovery interval might reflect true differences in cognitive processing. Setting these 

differences to zero might therefore obliterate early cognitive differences yet causing artificial 

effects to emerge later in the recovery interval. For that reason, the baseline correction was 

performed on the 200 ms interval preceding the onset of each encoding display, i.e. 7300 ms 

earlier than the start of the recovery interval (Figure 3). 

 

Figure 3 about here 

 

Due to the limited amount of available trials data were averaged across false and correct 

reports in order to secure a sufficient signal-to-noise ratio (minimum of 30 trials per 

condition). Note that the analysis was restricted to the recovery interval. Hence, the probe was 

not yet visible and could not initiate matching and decision processes. We therefore expected 

similar processes to occur regardless of the behavioral outcome, although processes might 

differ in strength and efficiency depending on (subsequent) correct and false reports. In the 

worst case, however, condition effects were more likely to get deteriorated with this strategy. 

That is because frontally-driven recovery processes should be best to observe on trials where 

they are most efficiently engaged, i.e., where they lead to correct results. Therefore, by 

including incorrect trials as well, frontal effects (and their occipito-temporal consequences) 

are more likely to get attenuated than artificially enhanced. 
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Figure 4 about here 

 

We were especially interested in the different processing between anterior and posterior 

parts of the human brain. For that reason, we selected for statistical analysis four bilateral 

pairs of electrodes over frontal (AF7/AF8, F9/F10, FT7/FT8, T1/T2) and occipito-temporal 

cortex (P9/P10, P7/P8, O9/O10, O1/O2) as shown in Figure 4. ERP effects at corresponding 

frontal electrodes have been related previously to activity in lateral prefrontal cortices using 

dipole source analysis (Snyder et al., 1995; Kiefer et al., 1998a; Posner et al., 1988). 

Corresponding occipito-temporal electrodes have been employed by Ruchkin et al. (1992, 

1995) who found negative slow wave effects during retention intervals. Although the 

localizational value of ERPs has to be viewed with caution (Nunez, 1981), the topography of 

such occipito-temporal effects is well in line with reports from animal neurophysiology 

demonstrating activity in occipito-temporal cortex during visual working memory tasks. Scalp 

voltages were submitted to four-way repeated-measures ANOVAs with the within-subjects 

factors “hemisphere” (left/ right), “horizontal alignment” (frontal/ occipito-temporal), “load” 

(low/ high) and “interference” (yes/ no). 

 

Results 

Behavioral Results 

Performance accuracy (percentage of correct reports) was calculated separately for all 

conditions. Accuracy and reaction times were then included into two separate 2x2x2 

ANOVAs with the factors “load” (low/ high), “interference” (yes/ no), and “probe size” 

(“same”/ “different”). The ANOVA for accuracy yielded three significant main effects (all 

means and standard deviations for reaction times and accuracy are provided in Table 1). None 

of the interactions reached significance (F(1, 14) < 2.023; p > 0.177). It was harder for the 

participants to correctly judge probes of a different size than the prime. If the probe was of the 
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same size as the prime, significantly more correct reactions occurred (F(1, 14) = 20.605; p < 

0.0005). This general tendency to report more often that prime and probe were of the same 

size could reflect a response bias induced by the common shape for prime and probe (cf. 

Figure 1, Panel B). Furthermore, as expected, it was significantly easier to respond correctly if 

memory load was low (F(1, 14) = 23.706; p < 0.0002) and, most importantly, if no interfering 

tasks had to be performed during retention (F(14) = 5.7024; p < 0.042). 

 

Table 1 about here 

 

The ANOVA for reaction times was calculated for correct responses only and revealed 

exactly the same three significant main effects as the accuracy analysis . Participants 

responded faster to probes of the same size as the prime (F(1, 14) = 7.758; p < 0.015) 

replicating the bias observed with the accuracy data. In addition, participants were 

significantly faster with low memory load (F(1, 14) = 24.124; p < 0.0002), and without 

interference during retention (F(1, 14) = 6.546; p < 0.023). Hence, the reaction time results 

exactly mirror the accuracy results in that cognitive effort generally attenuates performance. 

 

ERP Results 

The goal of this study was to investigate whether lateral prefrontal cortex is involved in 

the recovery of visual working memory representations after interference. We therefore 

expected early ERP differences between trials with vs. without interference at frontal 

electrodes and subsequent sustained effects at occipito-temporal electrodes that would reflect 

qualitative differences between maintained (without interference) vs. recovered 

representations (after release from interference). We aimed at answering our research 

questions by applying an analysis that started with a very coarse temporal resolution (500 ms 

averaged per electrode cluster) which was then more refined (sample by sample t-tests per 
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electrode for the first 1000 ms of the recovery period). As described, distinct recovery sub-

processes are thought to be quite different with respect to their time scale: An initial top-down 

trigger of recovery might be very transient and best to identify with a high temporal 

resolution, while top-down maintenance-control as well as maintenance of recovered 

perceptual features might occur later and lead to longer-lasting effects – best to be captured 

with a coarse temporal resolution.  

 

Figure 5 about here 

 

Figure 5 shows the waveforms of all 16 electrodes in the four clusters (bilateral frontal 

and occipito-temporal clusters). As can be seen, the major expectations were met: At frontal 

electrodes interference causes stronger negative and stronger positive evoked responses, thus 

reflecting fast and transient as well as slower but stable effects. At occipito-temporal 

electrodes early negative components are stronger without preceding interference. These are, 

however, followed by stronger sustained negativity in the interference conditions, hence 

suggesting transient as well as stable differences in occipito-temporal cortex. This first 

impression is supported by our statistical analysis.  

 

Low Temporal Resolution 

Analysis with a coarse temporal resolution was based on mean voltages in four 500 ms 

time windows in the recovery interval (2000 ms length in total) starting with the onset of the 

blue fixation cross. Separate ANOVAs were performed for each time window with the factors 

“hemisphere” (left/ right), “horizontal alignment” (frontal/ occipito-temporal), “load” (low/ 

high) and “interference” (with/ without). Signals were averaged across all four electrode sites 

within each cluster. This analysis revealed a significant interaction between “interference” 

(with/ without) and “horizontal alignment” (frontal/ occipito-temporal) as shown in Figure 6 
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(Panels A, C). This effect was significant in two of the four time windows (F(1, 14) > 4.64; p 

< .049) and marginally significant in a third window. In the first time window (0-500 ms) 

both interference conditions (with vs. without) showed a significant difference between 

frontal and occipito-temporal sites (F(1, 14) > 8.52; p < .011). This difference was, however, 

even stronger for the condition without interference, which is suggested by the simple effects 

at each site: At occipito-temporal electrodes a significantly stronger negative component was 

observed without interference (F(1, 14) = 9.36; p < .008) while at frontal sites a numerically 

stronger negative component was observed with interference. In the second time window 

(500-1000 ms) this interaction did not reach significance, possibly because of a change in 

processing stages, as can be seen in Figure 5 by the crossing of the waveforms in the interval 

between 600 and 800 ms at occipito-temporal (earlier) and frontal (later) electrodes. In the 

third time window (1000-1500 ms) the interaction between “interference” (yes/ no) and 

“horizontal alignment” (frontal/ occipito-temporal) reached significance again (F(1, 14) = 

7.14; p < .018), while showing a reversed picture. Conform to Figure 5, the condition with 

interference showed the stronger effects at both sites: ERPs in trials with interference were 

significantly more negative at occipito-temporal (F(1, 14) = 13.9; p < .002) and numerically 

more positive at frontal sites than the “no interference” condition (Figure 6, Panel C). The 

same picture emerged in the third time window were the interaction almost reached 

significance (F(1, 14) = 4.47; p < .053). 

 

Figure 6 about here 

 

The only other ANOVA effect that reached significance (F(1, 14) = 6.06; p < .027) in 

one of the four 500 ms windows was the interaction between “interference” (yes/ no), 

“horizontal alignment” (frontal/ occipito-temporal), and “load” (low/ high) shown in Figure 6 

(Panel B). This 3way interaction reached significance in the first time window (7100-7600 
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ms). Basically, “load” adds the following fact to the previously discussed interaction between 

“interference” and “horizontal alignment”: This interaction was even more pronounced for the 

“low load” condition. The condition “high load without interference” yielded a similar pattern 

as the two interference conditions (low and high load), while “low load without interference” 

showed a more pronounced difference to all the other three conditions that reached 

significance at occipito-temporal sites (F(1, 14) > 16.96; p < .001). 

 

High Temporal Resolution 

To better understand the fast and transient processes at the beginning of the recovery 

interval continuous t-tests (“without” vs. “with” interference) were performed per electrode 

for each and every sample of the first second of the recovery interval. In this analysis we were 

primarily interested in where and when differences between the conditions with interference 

versus without interference would emerge. Figure 7 shows continuous t-tests (without 

interference vs. with interference and high vs. low load respectively) for two pairs of 

frontal/occipito-temporal electrodes (AF7/O1 and AF8/O2 respectively). Note that the t-tests 

compared the condition without interference to the condition with interference (the direction 

of the comparison strongly affects the valence of the resulting t-values), hence, a positive t-

test value could either indicate a stronger negative or a weaker positive ERP component in the 

condition with interference. Corresponding reflections apply to negative t-test values. To 

resolve this ambiguity the time courses of activation in each condition have to be considered 

(see Figure 5).  

 

Figure 7 about here 

 

Significant (p < .05) t-test differences (as indicated by the dotted horizontal lines in 

Figure 7) between the interference conditions within the first 400 ms of the recovery interval 
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were observed at frontal as well as occipito-temporal electrodes: Positive t-test differences at 

frontal and negative t-test differences at occipito-temporal sites respectively. This is due to 

stronger negative ERP responses being observed after interference at frontal electrodes while 

stronger negative ERP responses are revealed at occipito-temporal electrodes without 

preceding interference (compare Figure 5). However, the early differences at frontal sites 

seem to be bi-phasic in nature in that an even earlier stronger negative t-test difference 

between the interference conditions (in Figure 7 only significant for electrode AF8 in the high 

load condition) is immediately followed by the discussed significant positive t-test difference. 

Two further frontal electrodes (T1, T2) replicate this effect by yielding a significant negative 

t-test difference around 200 ms (Figure 8). This early negative difference corresponds to the 

first positive ERP component in the recovery interval as shown in Figure 5 (first black arrow 

around 200 ms), which is faster after interference. 

 

Figure 8 about here 

 

These differences clearly show that at a very early processing stage (< 600 ms) lateral 

PFC is activated stronger in the conditions with preceding interference while temporo-

occipital cortex is more involved in the conditions without preceding interference during this 

stage (conform to the ANOVA results of the 1
st
 time window reported in the previous 

section). It takes as long as 600-800 ms until stronger sustained negativity in occipito-

temporal cortex emerges in the conditions where interference was administered during 

retention (conform to the ANOVA results of the 3
rd
 time window reported in the previous 

section). Concluding, significantly stronger cortical responses for the interference conditions 

are observed very early at frontal electrodes while stronger occipito-temporal responses in 

these conditions emerge only after 600-800 ms but then remain stable until response. 
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Discussion 

 

The present study was set up in order to investigate the mechanisms underlying 

recovery of visual working memory representations after release from interference. Within a 

visual working memory task, ERPs were used to track the time course of activity in prefrontal 

and occipito-temporal regions within a recovery interval, during which subjects were 

instructed to prepare themselves for the response to a probe display. The behavioral results 

show that our experimental manipulation of interference and load was successful: Error rates 

as well as reaction times support the notion that enhanced cognitive effort (high load, 

interference) deteriorates performance. In addition, participants showed an effect in both 

dependent measures to process probes of the same size as the primes more efficiently. 

Possibly, subjects were biased by the fact that the prime and the probe shared the same long-

term memory concept.  

 

Working memory and ERPs 

Although the electrophysiological correlates of recovery of visual working memory 

representations have never been investigated before, our results are compatible with earlier 

ERP studies on retention in visual working memory. Ruchkin et al. (1992) found negative 

slow waves during the retention interval over occipital and temporal cortex. As also observed 

in the present study, these posterior negative ERPs increased as a function of cognitive effort 

(for similar slow wave effects during episodic memory encoding see Heil, Rösler and 

Hennighausen, 1996; Mecklinger, 1999; Rösler, Heil and Hennighausen, 1995). Moreover, 

Ruchkin, Canoune, Johnson and Ritter (1995) showed that this occipito-temporal negative 

ERP deflection does in fact relate to working memory operations and not simply to general 

preparatory processes. Although the localizational value of ERPs has to be viewed with 

caution (Nunez, 1981), the topography of these occipito-temporal effects is well in line with 
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reports from animal neurophysiology demonstrating activity in occipito-temporal cortex 

during visual working memory tasks. The topography of the frontal ERP effects observed in 

the present study is similar to that observed in other tasks involving prefrontal cortex such as 

semantic retrieval (Kiefer et al., 1998b; Snyder et al., 1995) and executive function (Kiefer et 

al., 1998a; Weisbrod et al., 2000). These frontal ERP effects have been related to activity in 

lateral prefrontal cortices using dipole source analysis (Snyder et al., 1995; Kiefer et al., 

1998a; Posner et al., 1988). 

 

Two processing stages 

Our ERP results suggest two major processing stages during the recovery of working 

memory representations that are highly compatible with our expectations. During the first 600 

ms of the recovery interval, the condition without interference shows stronger responses at 

occipito-temporal sites while the condition with interference shows stronger responses at 

frontal sites. The picture is different for the last 1000 ms of the recovery interval: Here, the 

condition with interference shows enhanced responses at both sites – stronger positivity at 

frontal and stronger sustained negativity at occipito-temporal sites. Furthermore, “load” only 

plays a statistically significant role during the first 500 ms of the recovery interval. Hence, 

two distinct processing stages seem to be separated in time by an interval of transition (600-

800 ms). 

 

The first processing stage  

The first stage (0-600 ms) is characterized by stronger negativity at occipito-temporal 

sites for the conditions without interference (Figures 5, 6, 7). In contrast, at frontal sites the 

conditions with interference show stronger responses (Figures 5, 6, 8): An initial dip that 

reflects an early and fast more positive response and a subsequent maximum that reflects a 

later but stable, stronger negative response. Taken all together this suggests a primarily 
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bottom-up driven process in the conditions without interference (stronger occipito-temporal 

responses), yet a more top-down driven process in the conditions with interference (stronger 

frontal responses). Furthermore, it is also of great importance in this context that the condition 

without interference but with high working memory load is quite similar to the conditions 

with interference, while the condition without interference but low load is very different from 

all the other conditions - especially at posterior sites. This points to a general modulation by 

the amount of cognitive effort at this early processing stage. Increasing the effort – either by 

interference or by load - shifts the equilibrium from occipito-temporal towards frontal 

processing resources. Concluding, the observed cortical responses support the hypothesis that 

prefrontal areas control maintenance and recovery of posterior representations under 

conditions of high cognitive effort – especially after posterior representations have been 

disturbed by new perceptual input. However, recovery could be accompanied by a certain 

loss, as indicated by an attenuated early negative component in the interference conditions at 

occipito-temporal electrodes (Figures 5, 6, 7). The data pattern is congruent with the notion of 

PFC providing a representation in form of “links” to where to retrieve the encoded 

information. Such a representation would allow for a recovery process initiated by PFC and 

has important implications on binding and retention mechanisms. 

 

The second processing stage  

The second processing stage is primarily reflected by highly stable occipito-temporal 

differences during the last 1000 ms of the recovery interval, where the interference conditions 

show stronger sustained negativity than the conditions without interference (Figures 5, 6, 7). 

This suggests that recovered representations after interference might differ qualitatively from 

undisturbed representations, because of a sustained effort to maintain the hardly recovered 

information. This is supported by stronger positive responses at frontal sites in the conditions 

with interference (Figures 5, 6, 8), which can be interpreted as top-down support for the 
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maintenance of fragile recovered representations during this second processing stage. Taken 

altogether this is strong evidence for a recovery process of representations in occipito-

temporal areas that is triggered by early PFC activation in the first processing phase. Hence, 

these data are in concordance with the notion that PFC provides information about where to 

retrieve information after disrupted rehearsal and has strong implications on mechanisms of 

binding and retention that will be discussed shortly. 

 

The role of PFC in working memory processing 

In sum, the major findings from both processing stages reveal a predominance of early 

prefrontal as well as of later occipito-temporal responses after interference. We interpret these 

findings in terms of a recovery process initiated by lateral prefrontal representations after 

disrupted rehearsal, which, subsequently, leads to strong differences at occipito-temporal 

electrodes that reflect the qualitative differences between recovered, effortfully maintained 

representations (after interference) compared to undisturbed, automatically rehearsed 

representations (without interference). 

The present pattern of results clearly speaks in favor of lateral PFC being involved in 

the endogenous control of recovery of visual working memory representations and not only in 

interference protection. Our data are in line with the above described findings by Miller at al. 

(1996) and by Tomita et al (1999) showing that prefrontal cortex might reactivate 

representations in inferior temporal cortex. Accordingly, PFC representations might serve as 

“links” to where information could be retrieved after interference. This implies quite complex 

representational structures and mechanisms that subserve reactivation of information in 

working memory, which go beyond “simply” binding the correct information together in 

order to generate a coherent mental representation. 

 

Implications for computational mechanisms of binding and retention in working memory 



Kessler and Kiefer 

Prefrontal Cortex and Recovery from Interference 
23

With respect to binding, Hommel (2004) suggests that three distinct mechanisms can be 

derived from the existing literature: Synchronization, convergence and indexing. There is a 

significant body of evidence showing that synchronized oscillatory activity is a basic 

mechanism for communication among wide-spread areas in the cortex. Singer and colleagues 

(e.g. Engel et al., 1991; Gray and Singer, 1989) were able to show that synchronous gamma 

band oscillations subserve binding-processes in visual cortex. Since this seminal work, 

oscillatory activity in the theta, alpha and beta band has been related to high-level attentional 

processes (Varela et al., 2001), to consolidation of representations (Gross et al., 2004) and 

also to (undisturbed) retention of representations in working memory (e.g. Sarnthein et al., 

1998; Weiss and Rappelsberger, 2000). From a computational point of view binding by 

synchronization is a very simple mechanism as no additional binding-structures have to be 

incorporated into the architecture of a model (e.g. Goebel, 1993; Lisman and Idiart, 1995; von 

der Marlsburg, 1999). 

However, such a simple binding mechanism could not explain retention of working 

memory representations while rehearsal is disrupted by interfering information. If 

synchronization alone would hold a representation together single elements would be lost 

without any chance for recovery in case they get de-synchronized or de-activated. Obviously 

then, representations in IT could not be reactivated after neural firing was disrupted by 

distractors (Miller et al., 1996), and performance would drop to chance level. In contrast, a 

significant body of evidence has been discussed in the present report that suggests that 

recovery of representations is possible after disrupted rehearsal. “Convergence” as a binding 

mechanism also fails to account for recovery of representations as convergence is per 

definition a “one way” process. Activated neurons at a lower level converge onto neurons at a 

higher level, but cannot be traced back by neurons from the higher level. Thus, a robust 

mechanism for retention that may explain preserved performance after interference still needs 

to be found.  
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“Indexing” refers to a binding mechanism that is based on explicit links, which 

temporarily connect the correct elements together (e.g. Dehaene, Sergent and Changeux, 

2003; De Vries and Dalenoort, 1995; Kessler and Rickheit, 1999, 2000; Smolensky, 1988). 

Although computationally more complex than synchronization and convergence, temporary 

links offer an amount of robustness and flexibility of representations that allows for recovery 

after disrupted rehearsal. Temporary links allow to trace back each element by its temporary 

connections to other elements: If an element is deactivated, for example as a result of external 

interference, then it may be reactivated by means of the temporary links. To avoid an 

exponentially exploding number of temporary links, it is plausible to assume that only task-

relevant information might get interconnected. Accordingly, recovered representations would 

be qualitatively less rich than maintained representations, which is congruent to the observed 

long-lasting occipito-temporal differences in the present report. Finally, temporary links can 

be regarded as a sort of “pointer-representation” in the sense that what persists in working 

memory is not information per se but the links to where this information can be found (e.g. 

Duncan, 2001; McClelland, McNaughton and O’Reilly, 1995; Teyler and Discenna, 1986).  

We propose that all three kinds of binding mechanisms (synchronization, convergence, 

indexing) might be employed simultaneously by the human brain to achieve “coincidence” of 

all relevant pieces of information that would allow for the formation of a coherent mental 

representation. However, we also propose that some sort of indexing is indispensable for 

robust maintenance if rehearsal is disrupted. In fact, recent physiologically plausible models 

already incorporate most of these aspects (e.g. Dehaene et al., 2003; also to some extend 

DeVries and Dalenoort, 1995). Hence, it might depend on the requirements of the situation, 

which aspect bears more relevance: In a situation were synchronized patterns can be 

maintained without external disruption, a pointer-representation might not be necessarily 

engaged. In a situation with interfering events, however, temporary links would allow to 

ensure maintenance by recovering task-relevant information. 
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Neural substrates for “pointer-representations” 

In contrast to synchronization, it is somewhat harder to define how temporary links 

would manifest themselves in neurophysiological measures. It seems plausible that specific 

brain areas might work as a pointer-representation by means of long-range connections to 

other areas that code perceptual information. These pointer-areas would remain active during 

interference and would be able to re-activate patterns in more posterior areas. Therefore, 

prefrontal cortex is a likely candidate for such representations as suggested by the described 

findings from Tomita et al. (1999), Miller et al. (1996), Goldman-Rakic (1996) and also by 

the findings in the present report. Alternatively, others have proposed that hippocampus and 

related structures might work as pointer-representations in long-term yet also in short-term 

memory (McClelland, McNaughton and O’Reilly, 1995; Teyler and Discenna, 1986). The 

Sakai and Passingham (2004) results described above support this notion by demonstrating 

stronger involvement of MTL during recovery by means of fMRI.  

As fMRI and EEG are complementary methods with respect to spatial and temporal 

resolution the differences between the Sakai and Passingham findings and the ERP results 

described in the present report have to be considered with care. Scalp ERPs might not be 

suitable to detect activity in deep brain structures such as the MTL whereas fMRI might be 

not sensitive enough to capture transient PFC activity. Nevertheless it is also possible that 

PFC and MTL play different roles in the recovery of working memory representations after 

interference. In concordance with Sakai and Passingham (2004), who also suggest a 

functional dissociation between MTL and PFC with respect to automatic vs. controlled 

processing, we propose that the MTL supports recovery of working memory representations, 

which is automatically and exogenously triggered by a retrieval cue (e.g., the probe display). 

PFC, in contrast, might be involved in controlled, endogenously initiated recovery. PFC has 

been repeatedly shown to be one of the major neural substrates for cognitive control in 
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general and for working memory control in particular (see Duncan, 2001; Fuster, 1989; 

Goldman-Rakic, 1996; Miller and Cohen, 2001,for reviews). On the other hand associative 

memory has been related to MTL (e.g. Ranganath et al. 2004; Schacter and Wagner, 1999; 

Sakai et al. 2002; Stark, Bayley and Squire, 2002; Sutherland and Rudy, 1988) and retrieval 

seems to be triggered quite automatically by an external cue (e.g. Kessler and Tipper, 2004; 

Martin, 1999; Sutherland and McNaughton, 2000). 

As described above, the type of stimuli (e.g. letters vs. shapes) might also play a role in 

addition to endogenous/exogenous control in mediating between different memory-

subsystems. Concluding, pointer-representations in PFC might be primarily engaged in tasks 

were no long-term knowledge is available for the task-relevant information and where 

recovery is triggered endogenously without any external retrieval cue, whereas hippocampus 

and related structures might be primarily engaged if long-term knowledge allows efficient 

associative encoding and if external retrieval cues provide direct (automatic) access to these 

representations. Future work should investigate these factors in more detail by equally 

employing methods with good spatial (e.g. fMRI, PET) and with good temporal (e.g. EEG, 

MEG) resolution. 
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Tables 

 

Table 1: Means (avg) and standard deviations (std.dev.) for each experimental condition 

(with/without interference; high/low load; same/different size of prime and probe). Top: 

Accuracy (ACC) in terms of percentage correct responses. Bottom: Reaction times (RT) in 

ms. 

 

 

with interference without interference

high low high low

ACC (%) same diff same diff same diff same diff

avg 72.2 57 83.7 62.5 75 61.2 83.8 66

std.dev. 8.2 9.1 12.4 12.5 9.8 13.4 12.4 11.1

RT (ms)

avg 1604 1676 1439 1551 1532 1686 1329 1503

std.dev. 374 360 331 313 335 362 354 288
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Figure captions 

 

Figure 1: Stimulus material employed in the experiment. Panel A shows all shapes that could 

be displayed for encoding. In Panel B the variation in size between prime and probe is shown: 

Either the width or the height were increased or decreased by 25%. Panel C shows two 

examples for the stimuli used in the interference task. Participants were instructed to press a 

key if the inner black shape was round and not edged (go/no-go paradigm). 

 

Figure 2: The procedure of the experiment. Further explanations in the text. 

 

Figure 3: Time course of activation across the entire trial (9.3 sec). A frontal electrode is 

shown at the top while an occipital electrode is depicted at the bottom. Baseline was 

calculated for the 200 ms prior to the onset of the encoding displays. The interval of most 

relevance for the present report were the 2 sec of recovery after interference and prior to 

probe administration. 

 

Figure 4: The four electrode clusters analyzed in the present report. Bilateral pairs of 

electrodes were selected over frontal (AF7=12/ AF8 = 46, F9 = 2/ F10 = 34; FT7 = 11/ FT8 = 

45; T1 = 3/ T2 = 35) and occipito-temporal cortex (P9 = 5/ P10 = 37; P7 = 8/ P8 = 42; O9 = 6/ 

O10 = 38, O1 = 7/ O2 = 41). 

 

Figure 5: Time course of activation in the recovery interval of the analyzed 16 electrodes. As 

described in the Methods section, epochs have been averaged relative to the onset of the trial 

(and by using the 200 ms before as a baseline). As the timing of the procedure in all trials (i.e. 

onset of the recovery period in relation to trial onset) was always identical with an accuracy 

below 1 ms (warranted by ERTS® experimental stimulation software) the depicted time 
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course of activation in the recovery interval may be regarded as being averaged relative to the 

onset of the blue fixation cross (begin of recovery period). This onset is congruent to 0 ms on 

the x-axes. Gray arrows indicate ERP components that are stronger in the condition with 

interference. At frontal sites two of these components can be identified across the electrodes 

in the time interval from 400 to 1000 ms. In addition, around 200 ms an earlier positive 

response at frontal electrodes is observed for the conditions with interference that is also 

indicated by a gray arrow. All occipito-temporal electrodes show stronger slow negative 

waves in the conditions with interference during the last 1000 ms of the recovery interval. 

Black arrows indicate ERP components that are stronger in the condition without interference. 

Such a component can only be observed at occipito-temporal electrodes at around 300-400 

ms. 

 

Figure 6: Significant effects in the 1
st
 (Panels A and B) and the 3

rd
 (Panel C) 500 ms time 

windows of the recovery interval. Panels A and C show the interaction between “interference” 

(with/without) and “horizontal alignment” (frontal/occipito-temporal) that reveals a reversed 

picture in the 1
st
 as compared to the 3

rd
 time window. Panel B depicts the 3way interaction 

between “interference” (with/without), “horizontal alignment” (frontal/occipito-temporal), 

and “load” (low/high) that was significant in the 1
st
 time window. 

 

Figure 7: Sample by sample t-tests for the comparison: without interference vs. with 

interference, separately for high load (top row) and low load (bottom row). Dotted horizontal 

lines indicate the 95% α-significance level (two-sided). A left frontal (black line, AF7) and a 

left occipito-temporal (gray line, O1) electrode are shown on the left, while the corresponding 

right hemisphere electrodes (AF8 and O2 resp.) are shown on the right. Note that due to 

polarity of the comparisons (without vs. with interference) a positive t-test value could either 

indicate a stronger negative or a weaker positive ERP component in the condition with 
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interference. Corresponding reflections apply to negative t-test values. Disambiguation of t-

test values may be accomplished by considering the time course of activation in Figure 5. 

Accordingly, the black arrows denote positive and negative t-test values at frontal sites that 

reflect stronger negative and stronger positive ERP components in the condition with 

interference (conform Figure 5). Gray arrows denote positive t-test values that reflect the 

beginning of the slow negative wave at occipito-temporal sites shown in Figure 5, which is 

also stronger in the condition with interference. 

 

Figure 8: Sample by sample t-tests for the comparison: without interference vs. with 

interference, separately for high load (top row) and low load (bottom row). Dotted horizontal 

lines indicate the 95% α-significance level (two-sided). A left frontal electrode (T1) is shown 

on the left and a right frontal electrode (T2) is shown on the right. Black arrows denote the 

negative t-test values at frontal sites that reflect an earlier, hence stronger positive ERP 

component at the time of the peak in the condition with interference (conform Figure 5).  
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