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SYNOPSIS 

 

Transportation service operators are witnessing a growing demand for bi-directional 
movement of goods. Given this, the following thesis considers an extension to the vehicle 
routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where 
delivery and pickup demands may occupy the same route. The problem is formulated here as 
the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires 
the concurrent service of the demands at the customer location. This formulation provides the 
greatest opportunity for cost savings for both the service provider and recipient.  
 
The aims of this research are to propose a new theoretical design to solve the multi-objective 
VRPSDP, provide software support for the suggested design and validate the method through 
a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which 
requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total 
routing distance and the maximum variation between route distances (workload variation). 
The former two objectives are commonly encountered in the domain and the latter is 
introduced here because it is essential for real-life routing problems. 
 
The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an 
approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed 
to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse 
partial solutions, where one is expected to form part of the near-optimal solution. The second 
phase determines assignment possibilities for each sub-problem. The third phase solves the 
sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved 
by the introduction of a set of tools: genetic operator switching mechanism via diversity 
thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase 
method is proposed to address the shortcoming that exists in the domain, where an initial 
solution is built only then to be completely dismantled and redesigned in the optimisation 
phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-
problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP).   
 
The experimental studies are conducted using the well known benchmark Salhi and Nagy 
(1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the 
prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective 
method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP. 
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1. INTRODUCTION 

 

The logistics discipline involves managing the flow of products or information through a 

business, from the point of origin to the end customer (Christopher, 2011). The efficient 

execution of this activity ensures that a product or service is delivered in the right place and 

quantity, as well as at the right time, quality and cost (Chopra and Meindl, 2007). The logistics 

activity is of great economic importance because it involves significant amount of human and 

material resources and also because a substantial part of the economy relies on logistics 

services. For instance, it is estimated that within the UK 30% of the working population has an 

occupation that is associated with logistics (Rushton et al., 2010). Due to the capital intensive 

nature of the logistics activity it is widely acknowledged that a scientific approach is required 

for solving logistical problems (Rushton et al., 2010). The transport element represents the 

largest cost within logistics, approximately 40% of the total costs (Rushton et al., 2010). In 

consequence, it is imperative that efficient systems are developed, in order to reduce the cost 

of this element.  

 

Transport is a crucial process that enables supply chain members, with different levels of 

expertise to work together, resulting in the fabrication of a product or service that is fit for 

consumption. The most efficient transportation mode to any final downstream customer is via 

road transportation (European Commission, 2012), (Transport Studies Department, 2010). 

Typically, the commercial road transportation market within the United Kingdom is highly 

competitive (European Commission, 2012), therefore an effective physical distribution system 

is required by the operator to schedule and route vehicles to achieve cost-effectiveness 

(Chopra and Meindl, 2007). The transportation problem commonly requires the minimisation 

of two objectives: the vehicle fleet size (number of operated routes) and the total distance 

travelled, given that these two represent the most important fixed and variable costs, 

respectively, handled by the transportation operator (Golden et al. 2008).  

 

1.1 Description of the problem 

This research is focused on solving the Delivery and Pickup transport problem (DPP), wherein 

delivery and pickup demands may require service on the same route. The problem typically 

entails the delivery of goods from the depot to a set of customers and the subsequent 

collection of goods to be returned to the depot. The DPP is herein formulated as the vehicle 

routing problem with simultaneous delivery and pickup (VRPSDP), which restricts the service 



14 
 

of the delivery and pickup demands at a customer location to a single visit. This formulation is 

advantageous from both the standpoint of the commercial operator and that of the service 

receiver. In this context, the simultaneous service of the two demands leads to a reduction in 

routing distance, which in turn may reduce the number of vehicles operated by the service 

provider. Also, the service recipient benefits from a lower goods handling cost compared to 

the individual delivery of the two demands. 

 

Nowadays, most transportation practitioners provide their customers a choice of time 

intervals for service, at an additional expense. Therefore, it is important for researchers to 

design methods able to handle time constraints, even though this additional dimension 

increases the complexity of the problem. The VRPSDP with time windows (VRPSDPTW) is 

unfortunately outside the scope of this research because a multi-objective problem is studied, 

in order to develop an unexplored area of research. The reader is referred to Wang and Chen 

(2012) and Angelelli and Mansini (2002) for a greater insight into the current state of 

VRPSDPTW domain. 

 

The VRPSDP is a combinatorial optimisation problem with a complexity defined as NP-hard 

(Dethloff, 2001). The application of exact methods to solve the VRPSDP is limited, as the 

number of evaluations required to reach the optimal solution increase exponentially with the 

problem size. In contrast, approximation methods have a greater practical utility in solving 

large NP-hard problems because they improve the trade-off between solution quality and 

computational resource consumption.  

 

1.2 Research Impact 

The initial motivation for conducting research relative to the delivery and pickup problem 

arose whilst the author was undertaking an internship with a multinational parcel service 

operator, which provided small shipment transportation via the road network. The operator 

determined driver assignments based on predesigned territories, which were an 

amalgamation of postcode sectors. Most commonly, a postcode sector defines a unique area 

inside a geographical district. The subsequent routes were sequenced based on milk runs, 

which describes a fixed routing pattern. As observed in that context, a non-holistic approach 

to solving the problem is likely to result in a sub-optimal solution. The desire to find an 

improved routing method has led to this research. 
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The VRPSDP is interesting both at a theoretical and commercial standpoint. The relaxed 

version of the problem, the vehicle routing problem is one of the most important and widely 

studied combinatorial optimisation problems Toth and Vigo (2002). Therefore, the theoretical 

interest in the VRPSDP should be equal or more significant because the formulation has an 

increased complexity, as fluctuating capacities have to be considered at each node. From a 

practical viewpoint, the specific delivery and pickup problem is of great logistical importance. 

For instance, the UK retail sector is experiencing a structural change caused by a significant 

growth in online retailing (Department for Communities and Local Government, 2013), (Royal 

Mail Group Limited, 2013). In 2010, the UK had the highest per capita online spend in Europe 

and internet sales were reported to be worth £23.4 billion (Department for Business 

Innovation & Skills, 2012). The growth in online retailing has caused a significant increase in UK 

parcel volumes (Royal Mail Group Limited, 2013), because more shoppers opt for home 

deliveries and collections. Parcel volumes are forecasted to grow their share of total UK inland 

mail volume up until 2023 (PwC Strategy & Economics, 2013). In consequence, parcel service 

operators are increasing their infrastructure investment to help meet the projected needs of 

the parcel service market (Royal Mail Group Limited, 2013), which has a current market value 

of £6 billion (UK Mail, 2013). The growing parcel volume will increase the demand for bi-

directional transport and thus the need for practical and effective solution methods for the 

VRPSDP.  

 

1.3 Previous research 

The VRPSDP is an important contemporary problem and the research area has grown over the 

past decade. Yet, the VRPSDP domain remains relatively unexplored compared to the vehicle 

routing problem based on a publication count comparison. The majority of solution methods 

that have been proposed are based on metaheuristics because they balance the trade-off 

between solution quality and computational resource consumption better than exact 

techniques. In reference to the volume of publications, evolutionary algorithms have 

contributed the most to this field compared to any other paradigm, as illustrated in Table 3.1 

in Chapter 3. A common optimisation theme runs through most works, which relates to the 

minimisation of the vehicle fleet size as well as the total distance travelled. Another 

noteworthy point relates to the design of the solution methods. A common design procedure 

exists, where an initial complete solution is generated and then later optimised. On the issue 

of time windows, the VRPSDP domain has seen limited research relative to the publication 

count, possibly due to the consequence of increased problem complexity. 
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1.4 Persistent research niches 

The solution methods published in the VRPSDP domain have yet to consider a workload 

balancing objective. This objective has a commercial importance because it is commonly 

embedded in union contracts or company regulations, in terms of minimum and maximum 

working hours Toth and Vigo (2002). This objective is meant to ensure there is workload 

equality among the routes in terms of duration. Therefore, introducing this objective to the 

VRPSDP domain represents a bridge over the gap between theoretical study and practical 

application. 

 

A major shortcoming of the current solution design, found in the VRPSDP literature, is that the 

initial solution may be completely modified in the optimisation phase without safeguarding 

certain potentially valuable building blocks. The underlining conceptual idea is that there is 

likely to be a set of partial route assignments in the search space that are too spatially distant 

from their neighbouring routes to even contemplate their relocation. Presently, no research 

work has attempted to identify such assignments for the VRPSDP and then gone on to solve 

the remaining sub-problem. In consequence, a theoretical study in this area will represent a 

substantial contribution to the domain.  

 

1.5 Research Aims 

This research will address the persistent research niches that exist in the VRPSDP domain. In 

particular, the aims of this research are defined in terms of the following: firstly, to suggest a 

new method design to solve the VRPSDP; secondly, to provide software (SW) support for the 

suggested design, one that is proficient, and finally, conduct a new set of experimental studies 

to evaluate quantitatively the software implementation, which differ than the ones available 

in the literature, i.e., measure analysis and compare parameters that have not been previously 

considered. 

 

The VRPSDP solution method introduced here aims to solve a multi objective optimisation 

problem with the following high level objectives:  

• minimise the operated vehicle fleet size 

• minimise the total routing distance travelled 

• minimise the variation between the maximum and minimum vehicle routing distance 
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1.6 Contributions 

This research introduces two new solution methods: SDPmethod and RouteAlg. The former is 

described as the main contribution to this research, which is used to solve the multi-objective 

VRPSDP. The RouteAlg is introduced to solve the routing problems, defined by the 

SDPmethod, called the travelling salesman problem with simultaneous delivery and pickup 

(TSPSDP).  

 

The novelties of this work are classified in two categories: theoretical and algorithmic. A short 

description is provided for each contribution, along with the main advantages. The reader is 

referred to Chapter 5, where more detailed explanations are provided. 

 

A classification of the proposed theoretical contributions follows here, in terms of design 

(architectural viewpoint), methods (general approaches for solving the problem under 

discussion) and tools (specific algorithm implements): 

1.6.1 Design 

a. A new four component method, RouteAlg, gradually guides the candidate routes to a 

TSPSDP feasible space before investing additional computational effort on 

optimisation. The method applies the following approaches in sequence: Modified 

Nearest Neighbourhood (MNN) algorithm, Reverse procedure, Ejection Reinsertion 

(EjRi) method and the 2-opt/Or-opt method. It is assumed that the RouteAlg will be 

able to determine high quality routes for the TSPSDP because it comprises of a set of 

methods capable of improving search feasibility and optimisation (6.4). 

b. A three phase heuristic, SDPmethod, of a design not previously used in the VRPSDP 

domain, is adopted here. The proposed design will attempt to identify a set of partial 

assignments in the vicinity of the near-optimal solution for the first time in the 

VRPSDP domain and then to focus the computational effort on optimising the 

assignment of requests, which are deemed less intuitive. The first phase aims to 

identify a set of partial assignments that are likely to be in the vicinity of the near 

optimal solution, the second phase determines the assignment possibilities for the 

unassigned elements and the final phase completes the remaining assignment 

problem using a customised genetic algorithm. The integrated evaluation of all three 

phases of the algorithm is performed by measuring the quality of the considered 

objectives and the structural diversity of the final solutions. The rationale resulting in 

the development of the three phase design is as follows. Phase 1 addresses the major 
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shortcoming in the literature relating to the failure to protect potentially valuable 

building blocks in the optimisation stage. Phase 2 is an auxiliary step introduced to 

reduce the remaining assignment challenge to only investigate more promising areas. 

Finally, a genetic algorithm is employed in Phase 3 because it is widely recognised to 

be a powerful approach for solving NP-hard multi objective problems (Deb, 2009). It is 

assumed that the SDPmethod will generate a range of high quality trade-off solutions, 

for the conflicting objectives considered in this work, which the commercial operators 

can select from based on their needs. 

c. The SDPmethod is a multi-objective search heuristic that strives to promote the 

development of routes with a balanced workload. This objective is considered here for 

the first time in the VRPSDP domain. It is an essential consideration for real-life 

routing problems, in order to bridge the gap between theoretical study and 

commercial practice. 

d. A parallel genetic algorithm model is proposed in Phase 3 of the SDPmethod. The 

same genetic algorithm is simply run in parallel to evolve multiple populations of a 

diverse nature, in order to explore a wider search space. 

 

1.6.2 Methods 

a. The herein proposed Modified Nearest Neighbourhood (MNN) algorithm, the first 

component of the RouteAlg, is a modified version of the Nearest Neighbourhood (NN) 

algorithm, which determines a range of solutions for the TSP. The additional diversity 

provided to the search is likely to improve the TSP solution quality, when compared 

with the NN algorithm result. 

b. The third component of the RouteAlg is the proposed Ejection Reinsertion (EjRi) 

method. The method rearranges the nodes on a cycle in order to minimise TSPSDP 

infeasibility, which may still exist after the application of the reverse procedure. This 

method guides the search towards a feasible space. 

c. The final component of the RouteAlg is the newly introduced 2-opt/Or-opt method. It 

represents the first attempt in the VRPSDP domain to apply the 2-opt and Or-opt 

operators in an isolated loop, for the purpose of optimisation. These powerful 

operators explore each other’s neighbourhood, until no further improvement is 

possible. 

d. The introduced Spatial Clustering Method (SCM) in Phase 1 of the SDPmethod is a new 

clustering technique that can determine a wide range of TSPSDP feasible routes, with 
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similar vehicle capacity utilisations. In the case of a non-bulk problem, the vehicle 

utilisation on a route is a good measure of the workload, as it illustrates the number of 

customers on the route. Therefore, this clustering restriction aims to ensure that 

routes have a balanced workload. In addition, the SCM builds clusters using circular 

vicinities in order to encourage compact assignment of requests. This is suggested to 

maximise the density of requests assigned within a given area.   

e. The proposed Modified Greedy Selection Strategy (MGSS) found in Phase 1 of the 

SDPmethod is a new, greedy selection scheme that can be used to determine the 

existence of a set of unique cluster assignments. The advantage of this method is that 

such a set is likely to be found quickly, if one exists. In addition, the greedy nature of 

the method is likely to result in a small total routing distance for the cluster set. 

f. The presented New Modified Greedy Selection Strategy (NEWMGSS) in Phase 1 of the 

SDPmethod is another new, greedy selection scheme, which is used to determine a 

diverse range of cluster sets. The advantage of this method is that it increases the 

robustness of the search, as the sets are spread throughout the search space. 

g. The herein proposed Radial Expansion Method (REM) defines assignment possibilities 

based on spatial proximity, in Phase 2 of the SDPmethod. This targeting is likely to lead 

to a much faster exploitation of a high quality solution space in comparison to 

conventional approaches, Wassan et al. (2008), Dethloff (2001) and Min (1989). 

 

1.6.3 Tools 

a. New genetic operator (GO) switching logic 

A new switching logic between genetic operators is introduced for the genetic 

algorithm implemented in Phase 3 of the SDPmethod. The switching logic is based on 

the population diversity. The purpose of this tool is to explore high quality areas of the 

search space, whilst preventing the search from being trapped indefinitely, in local 

optimum points.  

b. New accuracy analysis tool based on distance measuring operators 

In Phase 3 of the SDPmethod, the average distance between the 1st order Pareto front 

and the origin is calculated in order to monitor the improvement in the accuracy of 

the best current genetic algorithm individuals throughout the search. 
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c. Customised fitness computation formula (Patelli (2011) enhancement) 

Patelli (2011) fitness evaluation has been improved in Phase 3 of the SDPmethod by 

considering the estimated distance between the different Pareto sets during the 

computation. This will increase the accuracy of the fitness computation. 

 

A classification of the proposed algorithmic contribution follows here: 

1.6.4 Algorithmic Contributions 

a. Implementation 

The programming code for the RouteAlg and SDPmethod were written and 

implemented by the author of this research in Matlab. 

b. Adaptive vehicle utilisation setting 

The SCM was implemented in such a way as to maximise the vehicle capacity 

utilisation, therefore reducing the size of the sub-problem. Therefore, less 

computational resource consumption was required at the later stages where the 

remaining assignment problem was deemed more challenging. 

c. Initial population modification 

Certain gene values of the randomly generated initial population individuals are 

modified to ensure that a single segment cluster assignment found by the SDPmethod 

in Phase 2 is reflected in the population. The gene selection strategy will be explained 

later on in 5.7.1. This new software technique is meant to ensure that the spatially 

closest cluster assigns the gene value, thus hopefully reducing the computational time 

required to find an improved solution. 

d. Adaptive switch threshold setting  

The genetic operator switching thresholds defined for the genetic algorithm are 

adaptively configured software wise, over the initial generations. The subsequent 

thresholds are likely to be relevant in terms of a particular dataset, when compared to 

the deterministically determined values. Therefore, in theory the search should 

progress more efficiently. 

e. Crossover restriction 

A software mechanism has been set into place in order to allow the cut point and gene 

level crossover to exchange genetic material in a manner restricted to a sub-

chromosome level. This way, the modifications are in line with the assignment 

possibilities identified in Phase 2. These assignment possibilities ensure that 

unassigned requests are prevented from being assigned to distant clusters.  
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f. Mutation restriction 

In the genetic algorithm, the genes inside a chromosome may have their own unique 

alphabets, which are defined using the outcome of Phase 2. Those genes that share 

the same alphabet define a particular section of the chromosome called a sub-

chromosome. Therefore, this software component has been added to the architecture 

of the suggested algorithm in order to restrict the mutation operation to a legal set of 

alleles. The advantage of this is the same as described previously for the crossover 

restriction. 

g. Fresh genetic material 

The population deficit created by the decimation operator is compensated for via the 

new Snap-shot software operator, Patelli (2011), which inserts randomly selected 

individuals from a previous population. This operator should generate an acceptable 

level of population diversity, whilst minimising the impact on the average population 

fitness. 

h. Adaptive reinsertion  

A new software operator (described in section 5.7.5) is herein introduced for the 

purpose of coupling the individuals’ reinsertion technique with the currently used 

genetic operator. This will help encourage the appropriate level of accuracy or 

diversity required by the search, without resulting in any conflicting operations. 

 

1.7 Outline of the thesis 

In Chapter 2, the notion of combinatorial optimisation problem is explained, along with 

several methods commonly used to tackle this problem. A state of the art of the VRPSDP 

literature is included in Chapter 3. In Chapter 4, a basic insight is provided into the genetic 

algorithm and multi objective evolutionary algorithms, as these are of a key aspect of the 

methodology. Furthermore, the chapter reviews the most prominent multi-objective 

evolutionary algorithm research works, as the paradigm is applied here. Chapter 5 describes 

the methodology adopted in this thesis, in terms of solving the VRPSDP and the TSPSDP. The 

results and discussions follow in Chapter 6, where comparisons are made with the best known 

solutions for Salhi and Nagy (1999) test problems. Finally, in Chapter 7 the conclusion and the 

direction of future work are provided. 
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2. OPTIMISATION 

 

In the context of this research, this chapter introduces the Combinatorial Optimisation (CO) 

problem and then relates it to a multi-objective framework. Following on, the computational 

complexity of a problem is examined. Finally, several methods which are unanimously 

considered to be efficient in exploring the search space of the CO problem (Hosny, 2010) are 

herein described. These methods fall under two main categories: exact and approximation 

procedures.  

 

2.1 The CO problem - preliminaries 

Combinatorial optimisation problems consist of minimising or maximising a function (F), within 

a specific space in the domain (D), as shown in Equation 2.1.  

 

𝐹 ∶ 𝑫𝑚 → 𝑹𝑛          𝐹(𝑥) = 𝑦, 𝑥 ∈ 𝑫𝑚

𝑦 ∈ 𝑹𝑛  

(2.1) 

where, F = Function, D = Domain (input), R = Range (output), and m and n are natural numbers 

that represent the dimension of the domain and the range. 

 

Solving CO problems consists in finding a solution x* in the domain, which will generate the 

optimum y* value in the range. 

 

In the case of multimodal functions [F features Q optima, yi
*, i=1..Q], the CO problem solution 

is a set of K points xi
*, i=1..K, F(xi

*) = yi
*. 

 

Most real-world CO problems entail constraints; therefore constrained optimisation is an 

important field for researchers (Deb, 2009), (Coello Coello et al., 2007). The use of constraints 

limits the domain space to a certain area D1, where feasible solutions can be found. In such a 

case, 𝑥 ∈ 𝑫𝟏 ⊂ 𝑫 represent the candidate solutions from the subset domain D1, namely the 

ones which satisfy the feasibility restrictions. 

 

The majority of real world CO problems involve multiple objectives (Deb, 2009). Multiple 

objective CO (MOO) problems consist of optimising a set of functions: 
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F1(x)...Ff(x), x ∈ Dm 

(2.2) 

where Fi, i=1...f is defined in (2.1). 

 

The multiple functions to be optimised are commonly conflicting (Deb, 2009), therefore a 

single solution that optimises all objectives may not exist, instead a range of trade-off 

solutions are considered, possibly an infinite number (Coello Coello and Lamont, 2004). For 

instance, a solution may be better with respect to a particular objective, however this may 

have come at the detriment of another objective. The majority of real-world MOO problems 

are non-linear in nature (Deb, 2009), therefore the improvement in one objective value may 

reduce another in a nonlinear way.  

 

There are two essential goals for solving a MOO problem: the first is to determine a number of 

solutions close to the global optimal set and the second is to find a diverse spread of solutions 

within the same set (Coello Coello et al., 2007). The former goal is true for all optimisation 

problems, although the principle used to optimise a single objective function in SOO is not 

applicable in a MOO context because more than one objective is of importance. The later goal 

is unique to MOO and is introduced to increase the likelihood of finding an acceptable solution 

for the decision maker. 

 

Just like single objective optimisation, MOO requires the use of a decision variable space and 

an objective space. However, in the case of MOO, the mapping between the two connected 

spaces is likely to be nonlinear, therefore the proximity of a pair of solutions in one space does 

not transpose directly onto the other space (Deb, 2009). In addition, the MOO goal of 

maintaining diversity among the global optimal set may be achieved by promoting diversity in 

either of the spaces. However, the coordination between the two spaces to promote diversity 

is not a trivial task (Deb, 2009). 

 

The MOO problem considers all objectives to be important, therefore the decision maker is 

required to select a solution from a choice of optimal solutions by making compromises. The 

ideal solution should provide acceptable performance across all objectives (Coello Coello and 

Lamont, 2004). The decision maker is likely to utilise additional information about the 

problem, which may not have been modelled in order to select the most suitable solution. 
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This research is focused on solving a multi-objective CO problem called the vehicle routing 

problem with simultaneous delivery and pickup (VRPSDP), as defined in Chapter 3. An 

extension to the previously considered objectives (vehicle fleet size and total routing 

distance), this research work will consider the workload variation objective, in order to induce 

greater equality among routes.   

 

2.2 Computational Complexity 

Two of the recognised complexity classification problem types are: polynomial time (P) 

solvable and non-deterministic polynomial time (NP) solvable. In the former problem, the 

number of instructions to be performed by the deterministic algorithm are O(nk), where nk is 

the number of operations that get executed in the fragment of code. This problem type is 

easily solvable (Morgan, 2008). For the latter problem type, no known deterministic 

polynomial time solution method exists. Instead the algorithm can estimate a solution for the 

decision problem and verify it in polynomial time. To date, this problem type is solvable in 

exponential time (Hochbaum, 1997). 

 

According to (Goldreich, 2010) a problem is classified as NP-hard if it is at least as difficult as 

the hardest problems in NP. NP-complete refers to a subset of problems that are both NP and 

NP-hard. These problems are the most complex problems within the NP domain. To date, an 

efficient algorithm for solving one of these problems is not known, however this does not 

imply that one does not exist (Hochbaum, 1997). The vehicle routing problem (VRP), see 

Chapter 3, a less complex variant of VRPSDP has been proven to be NP- hard (Toth and Vigo, 

2002). Therefore, VRPSDP considered in this research can be classified with the same 

complexity (Dethloff, 2001). 

 

2.3 Solution Approaches  

Much of the growth in operational research literature is attributed to the recognition by 

academics of the need for methods to solve real-world CO problems. Methods capable of 

producing effective solutions are required to reduce the cost of optimisation and/or to 

increase the offered service level, in terms of end-user satisfaction. Gendreau and Potvin 

(2010) states that the advancements in optimisation techniques for the CO problems have 

allowed researchers to address more complex problems in terms of dataset size and search 

space irregularities (discontinuity, nonlinearity, etc). This is justified by three main reasons: the 
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improvement in algorithmic design, the innovation in computer performance and the 

improved communication of ideas. 

 

A CO problem may be solved to optimality using a brute force approach, which investigates all 

possible solutions. This approach is impractical for large NP-hard problems, as the number of 

required evaluations is significantly large. Therefore, other types of approaches are needed, 

which evaluate the solution space economically in order to reach optimality. These 

approaches are categorised as exact and approximation algorithms. 

 

2.3.1 Exact Algorithms 

The optimal solution for a CO problem may be located by an exact method, if one exists. This 

type of approach will reduce the solution space size under investigation, in order to perform 

fewer evaluations (Hosny, 2010). The practicality of exact methods in solving CO problems 

diminishes as the problem size grows, therefore, their real-world application is limited (Najera, 

2010). The following prominent exact solution approaches are discussed in greater detail 

below: Branch and Bound (B&B) and Branch and Cut (B&C) because they have been used to 

solve the herein problem (Subramanian et al. 2011), (Angelelli and Mansini, 2002).  

 

Branch and Bound (B&B)  

The branch and bound algorithm has been widely used to solve the vehicle routing problem 

and many of its variants (Toth and Vigo, 2002). B&B is a tree search technique used to solve 

optimisation problems. This mechanism is used to divide the solution space into sub-problems, 

known as branches. The branching process channels the exploration process towards certain 

areas of the solution space. Ideally, branching should quickly converge to the optimal solution. 

After every branching process, the subsequent solution node is evaluated. However, this 

operation is computationally expensive, therefore, a branching limit is imposed. If the quality 

of the solution encrypted by the currently evaluated node exceeds the upper bound, no 

further branches will be explored from that particular point onwards. This process is referred 

to as pruning. Preferably, pruning should eliminate nodes situated near the tree root, in order 

to save computational resources. B&B continues to branch from un-pruned branches until the 

termination criterion is met. The approach converges within a finite number of iterations. 

However, the duration of these iterations may grow exponentially with the problem size.  
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Branch and Cut (B&C) 

This approach combines the B&B algorithm with the cutting plane technique. The underlying 

principle is based on reducing the search space available for exploration by integrating 

problem specific constraints (cuts) during the bounding stage. The type of cutting planes 

implemented has a bearing on the convergence speed of the algorithm (Subramanian et al., 

2011). 

 

2.3.2 Approximation Algorithms 

The approximation methods aim to generate near-optimal solutions for a NP-hard CO problem 

within reasonable computing time. They are usually deployed whenever exact methods are 

not applicable. The extensive operational research work on approximation methods indicates 

that under certain circumstances researchers are willing to sacrifice solution quality in order to 

generate more timely solutions (Gendreau and Potvin, 2010). Approximation methods are able 

to generate near-optimal solutions for large problems using considerably less computational 

resources. However, many approximation methods employ stochastic procedures that are 

likely to generate different solutions with various properties when rerun, which is contrary to 

the previously mentioned exact counterparts. 

 

The classical approximation methods consist of two sequential phases: solution construction 

and improvement. The construction phase builds an initial solution or a set of solutions for a 

problem, whilst trying to optimise a function. The construction phase aims to generate a 

feasible solution. However, computing a feasible solution to a NP-hard CO problem may be 

computationally expensive. Furthermore, there is no guarantee that the feasible solution is 

close to the optimal one. The improvement phase iteratively improves the initial solution by 

exploring its neighbouring solutions, until a termination criterion is satisfied. Ideally, this 

procedure will terminate once the optimal solution is found. For a comprehensive review on 

the discussed phases, the reader is referred to Braysy and Gendreau (2005a). 

 

The following commonly studied approximation methods are discussed below: Hill Climbing 

(HC), Simulated Annealing (SA), Ant Colony Optimisation (ACO), Tabu Search (TS), Variable 

Neighbourhood Descent (VND) and Evolutionary Algorithms (Gendreau and Potvin, 2010). For 

a comprehensive review of the approximation heuristics, the reader is referred to Gendreau 

and Potvin (2010). Before proceeding to the discussion, some widely used terminology is 

explained. A search defines the action of identifying a feasible solution with respect to the 
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employed objectives in the considered problem. Whereas, a local search describes the process 

of exploring different neighbourhoods of an incumbent solution, in order to find an improved 

solution. Finally, the search space outlines a mathematical representation of the objectives in 

a Cartesian system of coordinates. 

 

Hill Climbing Algorithm (HC) 

This approach is a local search technique that explores the neighbouring search space of the 

incumbent solution and moves to a different one if the objective value is better. The HC 

analogy relates to a hill climb from the base to its peak. In the context of CO problems, the 

base refers to the initial solution and the peak is the best available solution. The principle of 

the climb is to ascend the hill by selecting a neighbouring solution, which is an improvement 

on the incumbent. The search space must be convex (for the comprehensive mathematical 

definition see Deb (2009)) for the ascent to occur. The algorithm terminates once all 

neighbourhood solutions fail to improve the incumbent quality. The resultant peak is likely to 

be a local optimum because HC is a greedy approach making a local optimum selection at each 

stage to replace the incumbent solution. There is no way of determining the distance between 

the local optimum from the global. The primary benefit of HC is its simplicity. However, the 

quality of the solution is dependent upon the initial solution. It is recommended to restart the 

procedure a number of times with a new initial solution, in order to explore various local 

optima, one of which will hopefully represent the global optimum. 

 

Steepest Ascent Hill Climbing (SAHC)  

SAHC is a well known variant of the HC, which explores all neighbours from the incumbent 

solution and selects the one with the greatest improvement. The purpose of this method is to 

advance more quickly up the hill and hopefully to a higher peak, however, this is not 

guaranteed.  

 

Simulated Annealing (SA) 

SA is a local search method that does not get easily trapped in a local optimum as it can accept 

a solution worse than the current one, thus improving the chances of finding the global 

optimum. This approach is derived from the procedure developed in Metropolis et al. (1953) 

and was first used in the context of CO problems by Kirkpatrick et al. (1983). 
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The SA approach is inspired by the physical process of annealing in Metallurgy. This process 

involves the heating of a metal in order to displace atoms from their current structures and 

then controlling the reduction in temperature for the purpose of generating a new crystalline 

structure of high density and with a minimum energy state. 

 

Starting with an initial solution SA, similarly to the Hill Climbing algorithm, the search moves 

towards the neighbouring solution, if the objective values are improved. However, SA also 

considers the neighbouring solution with lower objective values with a probability of 

acceptance PA, which is commonly defined as  

 

PA = 𝑒𝑥𝑝(−∆S/T) 

(2.3). 

 

The PA is affected by the level of deterioration in the solution quality ∆S between the 

incumbent and the new solution, as well as by the current permitted temperature or diversity 

level of the system, T. Initially, T is set to a high value and the resultant PA values are larger, 

therefore encouraging exploratory steps in the search. Incrementally throughout the search, T 

is reduced and the resultant PA is also diminished. Once T is reduced below a certain threshold, 

SA becomes more similar to hill climbing, as the relevance of ∆S gradually diminishes.  

 

The fine-tuning of parameters is critical for the success of SA. These include: a neighbourhood 

function, cost function, temperature reduction rate and the start state. 

 

Ant Colony Optimisation (ACO)  

ACO is an optimisation technique inspired by the way a colony of ants is capable of finding the 

shortest path from their nest to their food sources. The principles of ACO were originally 

proposed by Dorigo et al. (1991) for the travelling salesman problem. In the natural world, 

ants lay down a chemical compound called pheromone as they travel. The resultant trail is 

used as a medium of communication by the ants to guide themselves to their closest food 

source. The intensity of the pheromone diminishes with time as the chemicals gradually 

evaporate, therefore the shorter routes have a more intense pheromone trail compared to 

longer counterparts. Subsequently, a larger volume of ants will travel on the shorter paths and 

gradually over time, all ants are directed onto the shortest path. This path will continue to be 
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used, until the food source is depleted, in which case the shortest alternative food source will 

be used.  

 

The application of pheromone enables ants to adapt to changes in their surroundings. This 

ability has inspired the use of ACO algorithms to solve CO problems. Figure 2.1 defines the 

general outline of the ACO metaheuristic, as illustrated in Gendreau and Potvin (2010). 

 

 

 

 

 

 

 

 

Figure 2.1 Ant colony optimisation outline 

 

‘Initialisation’ requires the setting of parameters, i.e. the rate of pheromone distribution.  

‘ConstructAntSolutions’ a population of homogenous artificial ants build various solutions 

taking into account the pheromone trails and other problem specific heuristic information.  

‘ApplyLocalSearch’ applies a local search technique, which is recommended to improve the 

solution quality, (Gendreau and Potvin, 2010). ‘UpdatePheromones’ revises the pheromone 

trails, in order to guide the search towards greater accuracy or diversity by respectively using 

pheromone deposit and pheromone evaporation procedures. 

 

Tabu Search (TS) 

TS is a memory based local search optimisation technique, originally proposed by Glover 

(1986). It is seen as a natural extension from local search techniques (Gendreau and Potvin, 

2010). The purpose of this approach is to overcome local optima by tracking and guiding the 

search. The algorithm is made up of two complementary components: a local search 

technique and a short-term memory called tabu list. The purpose of local search is to increase 

the level of accuracy in the search; whereas the role of the tabu list is to promote greater 

diversity in the search. 

 

Initialisation  

while (termination condition not met) do  

ConstructAntSolutions 

ApplyLocalSearch 

UpdatePheromones 

end 
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The local search technique enumerates all possible transformations. The neighbouring 

solution that best improves the object function is selected to replace the incumbent solution.  

 

The tabu list is a record of the recent transformations, which are prohibited from exploration 

for a number of iterations; this number is known as tabu tenure. The purpose of tabu list is to 

prevent the search from reversing the recent transformations, which have been applied to 

escape from the local optimum. Therefore, the tabu list aims to prevent revisiting certain 

areas of the search space and encourages exploration of new areas. However, the ability of 

the tabu list to prevent cycling depends on the list size and the way it is updated.  

 

The size of the list can be constant or determined self adaptively. A constant tabu list 

maintains the same number of tabu transformations throughout the search. In order to 

maintain a constant list size, the older transformations have to be ejected to make space for 

newer transformations. A constant list size is commonly adopted because the amount of 

computation resources required for evaluations can be controlled. A tabu list with a self 

adaptive size implies the number of transformation inside the list depend on the status of the 

search. However, this may result in an exponential growth of the list size, which is 

computationally expensive. 

 

A shortcoming of the tabu approach is that it restricts certain transformations which may not 

result in cycling. Furthermore, certain tabu transformations may be required to advance the 

search towards an area, which is more likely to feature high quality solutions. This issue is 

overcome with the use of an aspiration criterion, which overrides the tabu status of a 

transformation. A widely used aspiration criterion permits a tabu transformation if it leads to 

an improvement in the objective value because this solution has obviously not been visited 

before (Gendreau and Potvin, 2010).  

 

For greater control of the search, intensification and diversification mechanisms may be used 

within TS. The intensification mechanism encourages further search in areas where good 

solutions are found. This requires the use of short term memory structures to record the 

components of the elite solutions. In contrast, the diversification mechanism prevents wasting 

computational time on a restrictive portion of the search space by guiding the search towards 

unexplored areas. This requires the use of long term memory structures, which record various 
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elite solutions throughout the search. The subsequent search is prohibited from further 

exploring similar areas. 

 

Variable Neighbourhood Search (VNS) 

Hansen and Mladenovic (1997) introduced VNS to tackle CO problems. The underlying 

principle of the approach is to change the neighbourhood structures of the local search 

technique (Gendreau and Potvin, 2010). The VNS algorithm repeatedly explores a set of 

neighbourhood structures, until a termination criterion is met. Initially, a neighbouring 

solution is randomly generated within a neighbourhood structure in the set. It is important 

that the neighbouring solution is diverse from the current neighbour, whilst maintaining the 

best traits of the current solution in order to generate an improved solution. A local search 

technique is applied to the neighbouring solution to find a local optimum. If an improved 

solution is found, it replaces the incumbent and the search is restarted from the first 

neighbourhood structure. Otherwise, the next neighbourhood structure is explored. 

 

Gendreau and Potvin (2010) defined three key principles which give support to the VNS 

method design. The first relates to the fact that different neighbourhoods have their own local 

optimum. The second implies that a global minimum is also a local minimum relative to a given 

neighbourhood. The third states that it is common for several local/global minima to be 

closely situated in the search space, therefore the current local optimum may provide 

information on the global optimum. 

 

Variable Neighbourhood Decent (VND) 

VND is a variant of VNS. This method, unlike the previously mentioned one, applies the local 

search technique to the best neighbour in a set. The purpose of this approach is to invest the 

available computational resources in exploring the most promising neighbourhood, in an 

attempt to increase the likelihood of finding an improved solution. However, this approach 

does not guarantee the best neighbour will generate an improved lower bound compared with 

others in the set. 

 

Evolutionary Algorithms (EA) 

EAs are optimisation procedures, which mimic natural evolution. The main advantages of EAs 

are that they are capable of generating multiple solutions in a single run. This is a direct 

consequence of the fact that EAs evolve a population of potential solutions rather than one 
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single candidate. In the context of multi objective optimisation, this is a particularly useful 

feature of EAs, as they are capable of generating a set of objective tradeoffs simultaneously. A 

second point of appeal relative to EAs is that they do not employ any mathematical operations 

on the objective function (e.g. such as computing the derivative of the objective function(s) in 

gradient based approaches) that would entail supplementary applicability restrictions. This 

way, EAs may be employed to solve optimisation problems defined over irregular search 

spaces (characterised by nonlinearity, discontinuity, noise and/or multimodality). Thirdly, EAs 

employ stochastic transitions to move from one generation of potential solutions to the next. 

Therefore, the potential of local optima blockage is significantly diminished. The fourth 

advantage of EAs stems from their stochastic nature. It consists in the fact that the number of 

algorithm parameters which need to be configured prior to algorithm development is 

expectedly lower in relation to other alternative optimisation methods (Eiben and Smith, 

2003), (Koza, 1998). In addition, the previous mentioned algorithm parameters may be 

assigned a given value as a result of a trial and error line of experiments. This significantly 

reduces the involvement of the human practitioner in algorithm configuration. In the case of 

evolutionary strategies, to be described shortly, the algorithm related parameters (max 

number of generations, genetic operators, applicability probability, chromosome life span, 

etc.) are encrypted in the actual genetic code. Thus, they are evolved along side the rest of the 

genetic material encrypting information relative to the solution structure. In consequence, the 

human practitioner involvement in algorithm configuration becomes minimal. The fifth aspect 

worthy of mentioning refers to EA versatility, in terms that the algorithm can be accurately 

configured to achieve a desired balance between exploration (discovering new areas of the 

search space) and exploitation (using fit genetic material from previous generation solutions 

and improving it in order to generate potentially better adapted offspring).  

 

It is noteworthy that the stochastic nature of EAs is the cause of several disadvantages. 

Primarily, there is no guarantee that EAs will converge to the optimal solution (Coello Coello et 

al., 2007). However, this issue may be overcome by applying an EA to narrow down the search 

space to the envisaged optima and then employing a deterministic technique to further refine 

the results (Deb, 2009). Furthermore, it is challenging to describe the probabilistic 

mechanisms, at work inside EAs, within a consistent mathematical model. In consequence, no 

complete mathematical description of the phenomena inherent to EA behaviour is currently 

available in the literature. In addition to that, EAs are computationally intensive, meaning that 
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the stochastic transitions they imply, alongside the chromosome evaluation stage, take up 

considerable resources (run time and memory). 

 

The following are the four main EA paradigms: genetic algorithms (GA), genetic programming 

(GP), evolutionary strategies (ES) and cultural algorithms (CA). The primary difference between 

these approaches is the way each sub class encrypts a solution. 

 

The term Genetic Algorithm (GA) was introduced by Holland (1975) and refers to a global 

search heuristic motivated by natural genetics. This approach is a widely selected for solving 

combinatorial optimisation problems in a variety of problem domains (Gendreau and Potvin, 

2010). The fundamental features of a GA include: encoding, evaluation, selection for 

reproduction, reproduction, selection for reinsertion and a termination condition. The GA 

encodes a population of individuals in order to investigate a wide range of points in the search 

space. A potential solution is defined by mapping decision variables inside a linear 

chromosome structure. The populated individuals are evaluated in terms of their objective 

values and selection probabilities for reproduction are accordingly assigned. The genetic 

make-up of individuals selected from the population is altered by genetic operators, in order 

to identify new and expectedly improved solutions. The individuals passed onto the next 

generation are selected by means of a reinsertion mechanism. Finally, the stochastic search 

continues, until a termination condition is satisfied. The GA framework is discussed extensively 

in Chapter 4 because this optimisation approach is grounds for a substantial part of this 

research methodology. 

 

In some cases the encoding of a complex structure (e.g. function approximation) requiring 

adaptation is not best represented as a linear structure, but instead as a hierarchical structure. 

As stated by Koza (1998), Genetic Programming (GP) is able to encode hierarchical 

chromosomes using tree structures and graphs, unlike GA. One of the main advantages of 

hierarchical encoding compared to linear encoding is that unexpected dependencies between 

decision variables can be found easier than in the linear case (Patelli, 2011). For a 

comprehensive outlook on GP, see (Poli et al., 2008). 

 

Evolutionary Strategies (ES) were originally proposed by Rechenberg and Schwefel in the early 

1960s (Eiben and Smith, 2003). This approach encrypts decision variables inside the 

chromosome in a similar fashion to GA, but in addition encodes a set of strategy parameters 
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(chromosome life span, genetic operator, applicability probability, intensity rate, etc.), (Patelli, 

2011), (Eiben and Smith, 2003). In the offspring generation phase, algorithm parameters are 

evolved alongside decision variables, therefore this approach is self adaptive. The main 

advantage of this approach is that the human practitioner involvement in algorithmic 

configuration becomes minimal. 

 

Reynolds and Sverdlik (1994) first introduced Cultural Algorithms (CA) based on the concept 

that individuals could evolve and adapt much faster to changes in their environment, by 

integrating a cultural element into the evolutionary process. This approach consists of three 

essential components: population space, belief space and communication channel (Reynolds 

and Sverdlik, 1994). The population space contains the current discrete values of the 

employed objective functions. The belief space comprises of a set of individuals defining the 

likely vicinity of the optimal solution. This information is used in the current generation to 

direct the search in the desired direction by disregarding individuals situated in sub-optimal 

areas of the search space (Patelli, 2011). Finally, the communication channel allows 

information to be exchanged between the belief and the population spaces. 

 

This chapter has introduced the combinatorial optimisation (CO) problem and existing 

approaches. The multi-objective CO problem of interest to this thesis is the vehicle routing 

problem with simultaneous delivery and pickup (VRPSDP), which is known to be NP-hard 

(Dethloff, 2001). Several well-known exact and approximation methods used to solve CO 

problems have been discussed. The approximation methods are found to be favoured over 

exact methods as they provide an improved trade-off between solution quality and 

computational effort. In particular, evolution algorithms (EAs) are considered to be a superior 

approximation method for multi objective optimisation, over other methods for a number of 

reasons. Primarily, EAs generate multiple solutions in a single run, which is advantageous for 

solving a multi-objective problem. The initial starting point of an optimisation method has a 

significant impact on the ability of the search to converge to the optimal solution (Deb, 2009), 

(Coello Coello et al., 2007). Since EAs simultaneously evolve a population of solutions they 

have a better likelihood of convergence to the optimal search space area and a lower risk of 

local optimum blockage compared to previously discussed approximation approaches, which 

explore a single point in the search space at each step (Goldberg, 1989). However, an 

argument could be made to run the point to point combinatorial optimisation algorithms in 

parallel, although this is not an efficient approach because the complete benefit of parallel 



35 
 

computing cannot be realised (Deb, 2009). For instance, the parallel searches are run in 

isolation to one another and no communication channel exists to exploit the incumbent 

information. This is contrary to EAs where solutions are combined and evaluated against one 

another for the purpose of search progression. In particular, the sexual reproduction phase is 

unique to EAs and is suggested to provide a potentially aggressive source of search space 

exploration (De Jong, 2006), which is not foreseeable with the other discussed approaches. On 

another important aspect is that the EA paradigm is better mapped for achieving the MOO 

goal of determining the global optimal set than the point to point CO methods because it 

generates multiple potential solutions simultaneously in a single run. The aforementioned 

points demonstrate why the EA paradigm is increasingly being applied to real world multi 

objective optimisation problems (Deb, 2009). 

 

The EA paradigm selected for a specific problem is dependent upon the encoding type 

required. The EA of importance to this research is the genetic algorithm (GA) because it 

effectively encodes the problem considered here. A detailed background on GA is provided in 

Chapter 4. 

 

A hybrid intelligent algorithm is not considered in this research because a standalone EA is 

capable of addressing the specific problem requirements and thereby effectively programming 

the search. A hybrid intelligent algorithm consists of two or more algorithms that work 

collectively to solve a particular problem. This type of symbiosis one method designed to 

compensate for the setbacks of the others. For example, Crispim and Brandao (2005) 

introduced a variable neighbourhood descent algorithm to address the lack of neighbourhood 

exploration by the tabu search algorithm. However, EAs are very adaptable because via simple 

configuration and tuning, the desirable level of accuracy and diversity can be introduced into 

the search. This way the additional computational complexity entailed by hybridising the EA 

with another method can be avoided. 
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3. THE DELIVERY AND PICKUP PROBLEM 

 

This chapter begins by introducing the reader to the most commonly studied transportation 

problems, which relate to the service of a single demand type (delivery or pickup). This 

background information will help define the problem of interest, which relates to a Delivery 

and Pickup Problem (DPP) formulated as the Vehicle Routing Problem with Simultaneous 

Delivery and Pickup (VRPSDP). The primary purpose of this chapter is to provide a state of the 

art of the VRPSDP literature. 

 

This chapter has the following outline. Section 3.1 defines the simplest routing problem known 

as the Travelling Salesman Problem (TSP). Section 3.2 introduces the Vehicle Routing Problem 

with some of the most well known variants. The Delivery and Pickup Problem (DPP) is 

discussed in Section 3.3, where a comprehensive state of the art is provided for the VRPSDP 

literature. The chapter is concluded with Table 3.1, which summarises the literature. 

 

3.1 Travelling Salesman Problem (TSP) 

The travelling salesman problem (TSP) is the simplest type of node routing problem (Gokce, 

2004) and was defined by the Irish mathematician W.R. Hamilton in the 1800s. The TSP is 

defined as finding the minimum cost (distance) Hamilton cycle for a set of nodes (cities). A 

Hamilton cycle describes a closed path that visits every node in a set, exactly once. This 

problem is proven to be NP-hard by Karp (1972). Figure 3.1a illustrates the TSP and Figure 3.1b 

defines a potential solution for the problem.  

 

 

 

 

 

 

 

 

    Figure 3.1a        Figure 3.1b 

 

Figure 3.1a is a complete graph, where the circles are vertices/nodes and the lines represent 

edges/arcs. Figure 3.1b defines the least cost Hamilton cycle for the TSP. 
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The TSP can be described based on its symmetry. Hence, there are symmetric (STSP) and 

asymmetric (ATSP) TSPs. The symmetric problem type assumes that the cost of traversing the 

edge is the same in both directions. The asymmetric problem type is modelled on a digraph, as 

the cost of traversing the edge is different in each direction.  

 

There is an electronic library of broad test problems dedicated to the TSP, known as the 

TSPLIB, which was founded by Reinelt (1991). This standardisation has assisted the 

advancement of finding effective solution methods for the TSP, (Morgan, 2008). The reader is 

referred to Applegate et al. (2006) and Gutin and Punnen (2004) for detailed information on 

TSP and its variants like MAX TSP and TSP with multiple visits (TSPM). 

 

3.2 Vehicle Routing Problem (VRP) 

The vehicle routing problem (VRP) is a combination of the bin packing problem (BPP) and the 

TSP (Tasan and Gen, 2012). The BPP consists of scheduling items to the minimum number of 

bins in a set, without exceeding the bin capacity (Toth and Vigo, 2002). The VRP is defined as 

finding a set of Hamilton cycles that minimise the cost of transportation. These cycles form 

individual driver routes and must originate from and terminate at a depot. Furthermore, the 

cycles must fulfil a set of demand requests, whilst abiding by certain operational constraints 

Toth and Vigo (2002).  

 

In order to solve the VRP, decisions on the assignment and routing aspects of the problem are 

required (Alonso et al., 2008), which in turn affect the cost of transport: the number of 

vehicles operated and the total distance travelled. This decision process is complex, thus 

making VRP one of the most studied CO problems (Golden et al., 2008). A rich body of 

literature exists for various VRP variants, which is motivated by both its practical relevance and 

considerable difficulty (Toth and Vigo, 2002). It has been established in the literature that the 

basic VRP is a NP-hard problem (Golden et al., 2008), (Toth and Vigo, 2002). 

 

Figure 3.2 depicts a solution for a VRP problem, where three vehicles service 10 customers 

from the depot. 
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Figure 3.2 VRP Solution 

 

3.2.1 Capacitated Vehicle Routing Problem (CVRP) 

The VRP is commonly formulated with respect to vehicle capacity constraints and is therefore 

generally known as the capacitated vehicle routing problem (CVRP). The CVRP is the simplest 

and most studied VRP problem, (Toth and Vigo, 2002), since it was introduced by Dantzig and 

Ramser (1959). It is represented as the following graph theoretical problem. A complete graph 

G = (V, A) comprises of a set of vertices V = {0, 1, ..., n} connected by a set of edges A. The 

vertex 0 denotes the depot and the vertices j = 1, ..., n correspond to the customers. Each 

customer is associated with a non-negative demand dj, which is to be supplied from the depot. 

A non-negative routing cost cij is associated with every arc (i, j) ∈ A, which respectively 

connects vertex i to vertex j. Depending on the problem type the cost matrix is either: 

symmetric, cij = cji or asymmetric, cij ≠ cji. A symmetric cost matrix based on Euclidean distances 

ensures that the direct distance between two vertices i and j is either equal to or shorter than 

an indirect path, such that cik + ckj ≥ cij for all i, j, k ∈ V. This is referred to as triangle inequality 

and in several practical instances it is not convenient to deviate from such a path, (Toth and 

Vigo, 2002). A set of homogeneous vehicles K = 1, ..., k are stationed at the depot with a 

capacity of Q, such that dj ≤ Q. 

 

The CVRP involves finding a set of k Hamilton cycles for delivery vehicles of fixed capacities, 

which operate from a central distribution centre, to supply a set of customers with 

deterministic locations and demands for a certain commodity, such that: 

 

Depot 

Customers 

Routes 
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i. all Hamilton cycles originate and terminate at vertex 0, 

ii. every vertex j ∈ V \ {0} is visited by exactly one Hamilton cycle, 

iii. the sum of the vertex demands dj on any Hamilton cycle cannot exceed the 

capacity Q of the vehicle. 

 

There are normally two objectives associated with the VRP and its variants, which are required 

to be minimised: 

- operated vehicle fleet size, 

- total distance travelled. 

 

3.2.2 Vehicle Routing Problem with Time Windows (VRPTW) 

The vehicle routing problem with time windows (VRPTW) is derived from the inclusion of time 

window constraints in the CVRP. This is a well studied problem (Hosny, 2010), because most 

real world transport problems imply time window constraints, for example, supermarket 

delivery within a given time slot. In this problem, a prearranged service time window interval 

is associated with every request. Therefore, the service of a request is only permitted within 

the time interval. The driver may arrive at the customer premise before the beginning of the 

time interval, however, must wait until the start of the interval before the service can 

commence. If the driver arrives after the end of the interval, this results in the violation of 

operational constraints therefore, causing solution infeasibility. Furthermore, the depot vertex 

has a time window interval, where every vehicle must leave after a certain time and return 

before a certain time. The objectives of the VRPTW are the same as for CVRP.  

 

VRPTW is modelled as an asymmetric problem (Toth and Vigo, 2002) because the reverse of 

the route may lead to infeasibility due to the time window constraints being violated. An 

outline of the exact approaches for the VRPTW can be found in Cordeau et al. (2001) and a 

two part survey on the heuristic approaches can be found in Braysy and Gendreau (2005a,b). 

 

3.3 Delivery and Pickup Problem (DPP) 

The delivery and pickup problem (DPP) is an extension of the CVRP, where the pickup 

demands share the same route as delivery demands, or vice versa. This problem is 

commercially motivated by the efficiencies, which can be realised from servicing delivery and 

pickup demands on the same route. The theoretical point of interest is derived from the fact 

that bi-directional transportation is the most challenging task inside a closed loop supply chain 
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(Wang and Chen, 2012). The DPP may be formulated in different ways: vehicle routing 

problem with backhauls (VRPB), vehicle routing problem with mixed backhauls (VRPMB) and 

vehicle routing problem with simultaneous delivery and pickup (VRPSDP). The aforementioned 

formulations are a special case of CVRP, when either the delivery or pickup demands equal 

zero, therefore any DPP formulation is considered NP-hard. A detailed survey on the DPP can 

be found in Berbeglia et al. (2007).  

 

The vehicle routing problem with backhauls (VRPB) was first addressed by Deif and Bodin 

(1984). This formulation provides a servicing restriction that prioritises the service of delivery 

requests before the fulfilment of pickup requests. This restriction reduces the complexity of 

the DPP. In the past, this was a practical formulation because vehicles only provided rear door 

access to the storage area, which made pickups prior to the service of deliveries extremely 

difficult (Toth and Vigo, 2002). Another reason for the adoption of this formulation is that in 

certain situations, delivery requests have a higher priority compared to pickup requests (Toth 

and Vigo, 2002). For instance, an engineering firm may require the delivery of a product for 

repair before a collection can be arranged for the restored product.  

 

The reader is referred to the following studies relating to VRPB for further information: Liu and 

Chung (2009), Parragh et al. (2008), Brandao (2006), Ropke and Pisinger (2006), Toth and Vigo 

(1997), Halse (1992) and Goetschalckx and Jacobs-Blecha (1989). 

 

The introduction of vehicles with access through a slide panel has reduced the complexity of 

organising onboard loads, which has led to the formulation of the vehicle routing problem 

with mixed backhauls (VRPMB). Therefore, VRPMB does not consider the restriction in VRPB 

that prohibits the service of deliveries prior to pickups. This greater flexibility in terms of 

sequencing enables improved solutions to be found, in terms of transportation cost. However, 

this formulation has increased complexity to the VRPB as the vehicle load is not monotonically 

increasing or decreasing along the route. Therefore, maintaining vehicle capacity feasibility 

becomes an issue. 

 

The reader is referred to the following studies for further information on the VRPMB domain: 

Parragh et al. (2008), Crispim and Brandao (2005), Sural and Bookbinder (2003) and Dethloff 

(2002). 
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The vehicle routing problem with simultaneous delivery and pickup (VRPSDP) is an extension 

of the VRPMB, which requires the delivery and pickup demand at a customer location to be 

serviced in a single visit. This is in contrast to the VRPB and VRPMB, which insist on an 

independent visit for the delivery and pickup service. In consequence, the complexity of this 

formulation is greater than VRPMB because fluctuating capacities have to be considered at 

each node. However, the VRPSDP formulation generates greater benefits than the previously 

mentioned formulations. In relation to the service operator, a reduction in the cost of the 

operation may be achieved, in terms of either a smaller vehicle fleet size being operated 

and/or a reduction in the total distance travelled. In addition, operational capacity is likely to 

be increased, therefore, more requests can be included into the routes. In terms of the 

environment, less CO2 is being emitted per unit of economic output. For the service recipient, 

fewer resources need to be allocated when in receipt of the service, therefore reducing their 

handling effort. 

 

There are many commercial applications for the VRPSDP (Zachariadis et al., 2009), which 

would benefit from an efficient solution procedure. These include: parcel service industry plan 

routes for vehicles that deliver and collect parcels, soft drink distribution of drinks and 

collection of empty bottles and the laundry service for restaurants and hotels.  

 

Subramanian et al. (2010b) have defined the VRPSDP problem as follows: 

 

The VRPSDP problem was first introduced in 1989, yet, it received limited attention in the 

1990s (Subramanian et al., 2010a). However, in the recent decade the problem has seen much 

attention (Wang and Chen, 2012), as the importance of reverse logistics is being 
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acknowledged. The solution approaches can be broadly classified as exact and approximation 

methods. The literature is dominated by approximation approaches, (Subramanian et al., 

2010a), which better manage the tradeoffs between solution quality and computational 

resource consumption, when compared to exact methods. The early algorithms for the 

VRPSDP are based on the simple construction and improvement heuristics; whereas the 

present approaches can be described as metaheuristics (Parragh et al., 2008). The latter type 

refers to solution methods that combine local improvement procedures with strategies to 

escape from the local optimum. The remaining part of this chapter is dedicated to provide a 

state of the art for the research work on solving VRPSDP, summarised in Table 3.1.  

 

3.3.1 Exact Methods 

 

Branch and Price 

Angelelli and Mansini (2002) proposed the first exact method for the vehicle routing problem 

with simultaneous delivery and pickup among time windows (VRPSDPTW). A branch and price 

algorithm based on the set covering formulation was developed. The set covering formulation 

is used for the master problem because it is numerically more stable than linear programming 

relaxation. The authors tested different branching and pricing strategies for their 

effectiveness.  

 

From a critical point of view, the approach is only able to solve to optimality instances 

comprising of up to 20 customers, (Subramanian et al., 2010b). In addition, Angelelli and 

Mansini (2002) choose not to modify previously published VRPSDP test problems like Salhi and 

Nagy (1999) and Dethloff (2001) in order to consider VRPSDPTW, therefore causing 

fragmentation in the field. 

 

Dell’Amico et al. (2006) also applied a branch and price algorithm to solve the VRPSDP 

problem. The authors tested two different strategies to solve the pricing subproblem: exact 

dynamic programming and state space relaxation. The branch and price algorithm based on 

state space relaxation proved to be more competitive because it consumed substantially less 

computational time than the exact dynamic programming approach. Furthermore, the same 

approach solved the majority of test problems to optimality. 
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From a critical stand point, a tabu search algorithm was used in the initialisation stage, 

therefore the quality of the resultant solution will have a bearing on the performance of the 

branch and bound algorithm. Another aspect of importance relates to the size of the test 

problems used for evaluation. The authors believe their approach is viable for small to 

medium size instances. However, the size of their largest test problem (40 customers) is 

smaller than the smallest considered in Salhi and Nagy (1999) benchmark instances. 

Furthermore, a large number of vehicles are operated to service a relatively small number of 

requests, therefore the routes operated are small in terms of customers, which results in a 

simpler routing problem. This is in contrast to Salhi and Nagy (1999) test problems, where the 

number of requests on the route is larger, thus making them more difficult. 

 

Branch and Cut 

Subramanian et al. (2010b) proposed an undirected and directed two commodity flow 

formulation for the VRPSDP. These approaches were developed to provide stronger 

inequalities by tightening the bounds of the flow variables. These formulations were tested for 

their superiority using a branch and cut algorithm. On average, the undirected two commodity 

flow formulation better performed in terms of solution quality for all test problem sets. 

 

It may be noteworthy that the approach is very computationally expensive when compared 

with other publicised heuristic approaches. A contributing factor to the slow speed is the use 

of auxiliary flows like additional variables and constraints in the formulation to control vehicle 

capacity (Subramanian et al., 2011). 

 

Subramanian et al. (2011) introduce a branch and cut algorithm to solve the VRPSDP. Unlike 

Dell’Amico et al. (2006) and Subramanian et al. (2010b), which used auxiliary flows to maintain 

vehicle capacity feasibility along the route, the authors considered vehicle capacity constraints 

in the middle of the route in a relaxed manner inside the branch and cut algorithm. This 

approach is introduced to reduce the computational resource consumption. 

 

From a critical view point, the authors publish their lower bound solutions, but not their upper 

bound ones. Therefore, it is difficult to evaluate the performance of their method with respect 

to producing consistent quality solutions. On an alternative issue, the number of vehicles 

operated for Salhi and Nagy (1999) test problems: CMT3Y, CMT4Y and CMT5Y are higher than 
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what is physically required to service the demand. Therefore, a discrepancy in the way the test 

problem is generated by the authors might exist. 

 

3.3.2 Heuristics 

 

Cluster-first and route-second approach 

Min (1989) first introduced the VRPSDP concept to handle the real world problem involving 

the collection and distribution of books between 22 local libraries and a central library using 

two vehicles. A cluster first and route second approach was adopted. The first phase 

constructed a capacity feasible cluster for each route and the second phase solved the 

respective routing problem using a branch and bound algorithm. Route capacity feasibility was 

obtained by iteratively solving the routing problem with the use of arc penalties, which 

penalised unacceptable delivery/pickup sequences. 

 

The approach was evaluated using actual routes, which were determined manually by the 

driver. The proposed method substantially improved the solution quality of the actual routes. 

This improvement was suggested to be a consequence of the cluster technique, which aimed 

to minimise the overlapping of routes.  

 

Analysing the contribution of the paper, one might assume that the use of penalties is a good 

technique to enable alternative routes to be found. However, it may be said that the routing 

method applied a large amount of effort in obtaining route capacity feasibility and little effort 

in optimising the routes. From a different stand point, a clustering phase that initially ensures 

capacity feasibility is important because otherwise, computational resource may be wasted in 

trying to obtain feasibility, when it is not possible. Another aspect of importance is that the 

presented results were limited and a small problem is solved using only two vehicles. 

 

Dethloff (2001) highlighted the importance of VRPSDP to reverse logistics. The author 

introduced a “cluster first and route second” algorithm. The clustering phase incrementally 

inserts requests into a growing route, until no further insertions are feasible. This process is 

repeated with an additional route and so forth, until all requests have been assigned. The 

aforementioned method is repeated with each request serving as an initial seed and the 

solution with the lowest total route time is selected as the final solution.  
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The solution quality of the algorithm depends primarily on the insertion method. The 

proposed insertion method is an extension of the cheapest insertion method, which considers 

several metrics: travel distance (TD), residual capacities (RC) and residual surcharges (RS). The 

RC and RS were considered in order to prevent greedy insertions based only on TD. RC 

considered the additional amount which could be delivered or picked up following the 

insertion of a customer, therefore the effect of the insertion on the vehicle capacity is 

considered at each stage. RS introduced a penalty for the late insertion of a distant customer, 

to circumvent against unfavourable travel distances, which may have otherwise been 

prevented. 

 

Dethloff (2001) was the first to propose a mathematical model for the VRPSDP, which has 

subsequently enabled other authors to develop several solutions to the problem. In addition, 

the concept of RC and RS seems to be an important contribution because future consequences 

of the current insertion decisions are taken into account, which is experimentally proven to 

yield better results. On a different issue of importance, by running the method separately for 

all nodes, a number of solutions can be found, however this may be computationally 

expensive if a large number of nodes exists. With respect to the computational results, the 

number of vehicles operated exceeds the required size for Salhi and Nagy (1999) datasets: 

CMT2X, CMT2Y, CMT5X and CMT5Y. In addition, the results indicate that the algorithm is not 

effective in solving instances with a route length constraint. 

 

Montane and Galvao (2002) proposed eight heuristic procedures for the VRPSDP, which all 

cluster first and route second. These heuristics differed in terms of the clustering approach, 

initial routing procedure and the TSPSDP heuristic used. The clusters were constructed using 

either a tour partitioning heuristic or the sweep algorithm. The initial route was constructed 

using either the 2-optimal or 3-optimal procedure. The TSPSDP problem was solved using one 

of the four TSPSDP heuristics introduced in their work. 

 

From a critical point of view, relative to workload balancing, the sweep algorithm implies that 

the last route to be designed is likely to have less vehicle capacity utilisation then the rest of 

the fleet. On a different issue of importance, there is no information available in the paper 

with respect to the independent evaluation of the four TSPSDP heuristics and the selection of 

the best one to be combined with the assignment procedures. From a different stand point, 
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there is no information available relating to the performance of the proposed heuristics on 

benchmark test problems.  

 

3.3.3 Metaheuristics 

 

Tabu Search 

Montane and Galvao (2006) proposed a tabu search algorithm to solve the VRPSDP. A new 

neighbourhood was generated using inter-route operators. The resultant neighbourhood was 

iteratively searched by an intra-route operator 2-opt, until no further route improvement was 

possible. 

 

Related to the aspect that every neighbourhood was completely searched and the most 

feasible neighbourhood move was selected for further improvement using the 2-opt operator. 

From a critical point of view, the advantage of this strategy is that computational resources 

are being targeted towards the most promising areas. However, there is a possibility that the 

less feasible neighbourhoods could have generated an even better solution, if the 2-opt 

operator had been applied to them. However, this approach would most likely require more 

computational resource consumption. On a different issue of importance, a tour partitioning 

method was proposed to construct the initial solution, and was repeated at different starting 

nodes with the aim of improving the solution quality. The paper has not described the method 

used for selecting the different starting nodes or the number of times a new starting node is 

selected, therefore the contribution provided in terms of the tour partitioning method cannot 

be quantified. 

 

Wassan et al. (2008) introduced a Reactive Tabu Search (RTS-VRPSDP) algorithm. The 

algorithm differed from similar approaches because the tabu list size was dynamically 

determined, where the size was dependent on the number of solution repetitions. The paper 

argued that a dynamic list better guided the search compared to a fixed list size. 

 

The initial solution was constructed using a modified version of the sweep algorithm 

introduced by Gillet and Miller (1974). The construction approach prevented the requests 

immediately surrounding the depot from the sweep process, which were individually serviced 

on their own route. This modification provided greater flexibility in the optimisation phase, 

which was anticipated to generate improved solutions. The forward and backward sweep was 
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performed on each node and the best solution was selected for improvement using local 

search operators. In particular, the reverse operator had no bearing on the solution quality, 

but was used to reduce the maximum capacity on the route, therefore creating additional 

slack for further insertions.  

 

Analysing the contribution of the paper one might assume that the exclusion of requests 

closest to the depot is a sensible approach because this provides greater assignment 

possibilities, since all drivers will depart and converge at the depot. The percentage of 

requests excluded from the sweep process was experimentally determined. However, Wassan 

et al. (2008) failed to provide details on how this parameter affected the search. On a different 

issue of importance, the sweep process is performed from each node, therefore this approach 

provides a range of solutions to possibly optimise. 

 

It is noteworthy that the reverse operator may reduce the maximum node capacity on the 

route, however, it may not reduce the capacity at the point where the insertion is needed. 

Furthermore, additional sections of the route may become greater constrained, therefore 

increasing the difficultly of insertion. On a different issue of importance, the approach used by 

Wassan et al. (2008) to derive Salhi and Nagy (1999) CMT1Y dataset might vary from other 

authors because their best known solution is lower than the optimum (Subramanian et al., 

2010a). 

 

Ant Colony Optimisation 

Gokce (2004) proposed an ant colony system based algorithm to solve the VRPSDP problem. 

The author chose to update the candidate list during the search in order to make better 

routing decisions, which would lead to shorter route distances. The visibility function, apart 

from considering the travel distance between two customers, also took into account the 

distance from the depot and the associated time window of the next customer to be visited. 

These characteristics led to the construction of better quality routes. Subsequently, a 2-opt 

procedure was applied to the best routes in order to increase accuracy in the search. 

 

The initial routes were constructed in a sequential manner, in order to ensure vehicle capacity 

feasibility. However, it is noteworthy that this approach does not guarantee the smallest 

vehicle fleet size will be operated. In addition, the application of the 2-opt procedure on the 

best routes does not guarantee a more substantial increase in search accuracy. It is plausible 
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that lesser routes combined with the 2-opt procedure may lead to more improved routes. On 

a different issue of importance, the consideration of the customer time window in the visibility 

function is an important contribution, as it emphasises on the service fulfilment conditions 

during the search. However, the weighting of the characteristic should not be too dominant, 

for the fear that it will prohibit a lower cost solution from being found. 

 

Gajpal and Abad (2009) introduced an Ant Colony System (ACS) algorithm. The nearest 

neighbour algorithm was used to determine the initial solution, which initialised the trail 

intensities. The ACS generated ant solutions that were improved using two inter-route 

operators and an intra-route operator. The trail intensities of the ants were updated based on 

their current solution quality, therefore providing extra weight to the best solution. This 

increased the accuracy in the search.  

 

The amount of computational resource consumed was affected by the number of ants used. 

The one used by Gajpal and Abad (2009) was twice the number of vehicles operated. 

However, from a critical prospective, the author had not shown any experimental justification 

for the decision. On a different standpoint, the manner trail intensities were updated was at a 

loss to diversity, which may result in the search being trapped at the local optimum. In 

addition, Gajpal and Abad (2009) did not mention the number of vehicles in their best 

solutions (Subramanian et al., 2011), therefore a direct comparison between their algorithm 

and previously published methods is not possible. 

 

Catay (2010) proposed an Ant Colony Optimisation (ACO) algorithm. This algorithm introduced 

a new savings based visibility function and a rank-based pheromone update procedure, which 

were considered during the selection of the next point in the search space to be visited by the 

ant. The purpose of the saving-based visibility function was to service neighbouring nodes 

before proceeding to another area of the search space, therefore the search space can be 

explored more efficiently because the previously explored space is not revisited. In relation to 

the rank-based pheromone update procedure, the level of pheromone deposited depends on 

the rank of the solution, with higher order solutions depositing greater pheromone on solution 

components. The solutions with the greatest rank were the best in the current generation. 

This pheromone depositing approach encouraged the exploration of the search space areas 

hosting the best known solutions. 
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The initial routes were constructed using the nearest neighbourhood method. From a critical 

point of view, this method could ensure route capacity feasibility, but at the cost of having no 

control over the vehicle fleet size. If a vehicle fleet size cap is enforced, then feasibility is not 

guaranteed. On a different issue of importance, the pheromone deposit approach was elitist, 

as it encouraged a shift of the search process towards the areas of the previously defined good 

solutions. Another advantage of the technique is that it learns from previous generations. 

However, it is important that a strong diversity mechanism is available to prevent the search 

being trapped in the local optimum. 

 

Particle Swarm Optimisation 

Ai and Kachitvichyanukul (2009) presented a Particle Swarm Optimisation (PSO) algorithm. The 

routes were constructed from seed locations using a cheap insertion heuristic and optimised 

after each insertion with 2-opt procedure. The approach considered the spatial proximity of 

requests to the seeds during the route construction phase because a minimisation of the total 

routing distance was believed to be a consequence.  

 

Considering the paper in a general context, it might be concluded that clustering requests 

based on the spatial proximity to a set of seeds is a logical concept and is believed to have 

contributed to the performance of the approach. However, for this method to be applicable, 

there should be no breaks in the network. In addition, the right spatial spread of the seeds is 

required, otherwise poor route assignments will be generated. From a different stand point, Ai 

and Kachitvichyanukul (2009) stated that the PSO algorithm is scalable because computational 

efficiency is maintained. However, the authors have not evaluated the performance of the 

algorithm when scaled using the benchmark test problems of Montane and Galvao (2006), 

which consider up to 400 customers. 

 

Kanthavel et al. (2012) introduced a nested Particle Swarm Optimisation (NPSO) algorithm, 

which consisted of two phases: the first clustered assignments using the sweep algorithm and 

the second attempted to find the least cost routes for the assignments. 

 

From a critical point of view, a consequence of the sweep algorithm is that the last route will 

contain fewer assignments because the previous clusters have maximised their own 

assignments. In circumstances where workload balancing is an issue, such an approach may 

prove to be sub-optimal. Furthermore, if the search space is large, this will result in elongated 
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routes, which are operationally not desirable because customers are likely to be located too 

far apart. On a different issue of importance, Kanthavel et al. (2012) has made no reference to 

the operated fleet size for any of the test problems studied, therefore a direct comparison 

cannot be made with previously published computational results. In addition, the average 

solution quality over the 5 runs, an indicator of the efficiency of the approach, is not provided 

in the article.  

 

Simulated Annealing 

Attempting to solve the transportation problem for blood banks, Ganesh and Narendran 

(2008) introduced a route construction and improvement approach called TASTE to solve the 

single vehicle VRPSDP problem. The initial route was constructed to ensure that a set of 

negative net load nodes were serviced before a set of positive net load nodes. This route 

sequencing approach increased the likelihood that a capacity feasible route would be 

determined, because the fulfilment of deliveries took precedent over pickups. An enhanced 

simulated annealing (SA) algorithm (ESA) was proposed to improve the initial solution. The ESA 

determined a unique cooling schedule (T) for each route depending upon the solution quality 

compared to its counterparts. Therefore, the better routes were assigned a higher value of T, 

thus having a greater probability of being selected. 

 

It is notable that the node sequencing restriction in the first phase may prevent the 

construction of a least cost route from being determined. Another aspect of importance 

relates to the fact that ESA is an elitist approach, which increases the probability of local 

optima blockage. 

 

Evolutionary Algorithms 

Vural (2003) proposed a Dual GA to solve the VRPSDP. The initial population was constructed 

using the random keys method, which encoded a solution with random numbers. This 

encoding method provided a greater level of diversity, which improved the robustness of the 

algorithm. The author applied an intra-route procedure called Or-opt in order to reduce the 

routing distance, which increased the level of accuracy in the search. An adaptive mutation 

operator was proposed, which increased the probability of mutation with every generation an 

improved solution was not found. 
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From a critical perspective, an argument can be made that the Or-opt procedure is not 

required because the crossover operator tends to improve accuracy anyway. A possible reason 

for the use of this method is that the crossover operator is followed by the mutation operator, 

which diminishes the accuracy in the search. In addition, the fitness function is based on the 

total route distance travelled by a set of vehicles and the number of vehicles operated is not 

considered. In consequence, the selection process may favour chromosomes with a larger 

vehicle fleet size than necessary. Moreover, Vural (2003) omitted the computational times of 

the Dual GA for Dethloff (2001) test problems, therefore the efficiency of the algorithm cannot 

be analysed. However, the author has mentioned that the algorithm is not computationally 

competitive with other heuristic methods. 

 

Vural (2007) proposed a GA approach that consisted of three phases: construction, genetic 

operators and route improvement. The author used integer encoding to reduce the effort 

required in generating meaningful phenotypes from binary representation.  

 

A multi start greedy randomised adaptive search procedure (GRASP) heuristic was used to 

construct the initial population. This method built routes in a sequential manner in order to 

form a solution. A sequential version of GRASP heuristic was used instead of a parallel version 

for two reasons: in order to minimise the vehicle fleet size and to prevent the need to reduce 

the vehicle fleet size due to excessive vehicle capacity slack.  

 

A relaxed version of GRASP heuristic was used to introduce new individuals into the 

population, if there was no improvement in solution quality after a number of generations. 

This heuristic added diversity to the search in order to prevent it from being trapped at the 

local optimum. The number of new individuals inserted into the population was limited to a 

quarter of the population. This limit ensured that the population maintained dominated by 

high quality genetic material. 

 

The new chromosomes were added into the population after a number of generations no 

improvement to the phenotype had been recorded for. From a critical point of view, the 

concept of adding new individuals to the population in order to increase diversity is potentially 

beneficial as long as new individuals are introduced into the population only once diversity 

falls below an acceptable level. On a related subject, replacing up to half of the population 

with new individuals, would not amount to a significant effect, if the elite individuals remain in 
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the population to dominate the selection reproduction and reinsertion stages of the 

algorithm. Therefore, a better method might be to replace the entire population. 

Furthermore, the relaxed GRASP may not provide diverse enough individuals into the 

population. In addition, an alternative to the author’s approach, the Relaxed GRASP may be 

based on population genotype (representation of a chromosome in the decision variable 

space) diversity instead of phenotype (representation of a chromosome in the objective space) 

diversity, with potentially promising results. 

 

The sequential GRASP does not seem to guarantee that the size of the vehicle fleet will be 

minimum. The inherent advantage of this is that the algorithm would decide the appropriate 

number of vehicles. It may also be noteworthy that the author’s parameter tuning approach 

may have benefited from employing an adaptive technique. 

 

Erbao and Mingyong (2010) proposed a differential evolution algorithm (DE) to solve the 

VRPSDP with time windows. This approach was implemented because it demonstrated 

previous success in solving combinatorial optimisation problems. The algorithm combined 

arithmetic operators with those operators used to evolve the search. The DE in comparison to 

other EAs is known to be relatively greedy and less stochastic (Erbao and Mingyong, 2010). 

Therefore, a self adaptive crossover probability threshold was adopted to ensure sufficient 

diversity in the search. The probability threshold varied with the number of generations. The 

selection process guaranteed the survival of the fittest individuals, therefore ensured a level of 

accuracy in the search, as the offspring only replaced their parents in the population, if the 

fitness values were improved. 

 

Analysing the contribution of the paper one might assume that the randomly generated initial 

population manages, in most likelihood, to cover the search space uniformly. In addition, the 

same can be said about a constant population size, which is used through the generations in 

order to ensure consistent computational resource consumption. Contrastingly, applying the 

crossover and mutation operator in the same generation has a destructive effect on the 

accuracy of the search and may lead to slow convergence. In addition, the crossover 

probability threshold was set to a low value in the early stages of the evolution to promote 

diversity in the search. At a later evolutionary stage, the probability threshold was increased to 

promote accuracy in the search. However, the approach used to set the threshold is not 

efficient because crossover should be extensively applied early on in the evolution, as the 
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initial population is randomly generated and sufficient diversity already exists. Once diversity 

begins to fall, the probability threshold should be lowered to allow for an increase in diversity 

to escape local optimum (Eiben and Smith, 2003). It may also be noteworthy that Erbao and 

Mingyong (2010) used relatively small size test problems to evaluate DE. 

 

Tasan and Gen (2012) introduced a GA to solve the VRPSDP problem. Permutation encoding 

was used to represent a solution, which directly defined a set of routes with their sequence of 

service. This representation helped to construct a vehicle capacity feasible solution. The 

population was randomly generated in order to uniformly cover the search space, therefore 

increasing the probability of finding the most fruitful area for exploration. A penalty cost was 

added to the fitness value in proportion to the number of unfeasible routes encoded inside 

the chromosome. Therefore, the adoption of a penalty encouraged the search towards 

feasible areas of the search space. The GA parameters: population size and number of 

generations are determined using a pilot test problem. This reduced the bias involved in 

deterministic GA parameter setting. 

 

The selection pressure favoured higher quality solutions, therefore, from a critical standpoint, 

the best known areas of the search are going to be explored extensively, resulting in the quick 

convergence to the local optimum. However, from an alternative viewpoint, the level of 

diversity in the search is likely to rapidly depreciate. Therefore, the application of a mutation 

operator with a rate of 0.03 might have a negligible effect on the search, in terms of escaping 

local optima. A possible justification for not applying a larger mutation rate is that it may 

decrease the search accuracy, as the crossover and mutation operators are applied in 

sequence.  

 

Analysing the contribution of the paper one might assume that the method used to assign 

penalties to guide the search towards feasibility is logical, as each route is considered in the 

decision. However, the GA may be restricted from finding improved solutions, if the total 

distance travelled is made to be a redundant objective. From a different standpoint, a single 

dataset size of 34 customers is considered for GA parameters setting. However, this 

configuration might not have been the optimum for the other dataset sizes. 

 

Tasan and Gen (2012) did not evaluate their GA using benchmarked test problems. It was 

noted that the largest evaluated instance contained 5 fewer nodes than the smallest 50 node 
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test problem provided by Salhi and Nagy (1999). On a related subject, the experimental results 

of Tasan and Gen (2012) reinforced the general view that GA is an efficient method for solving 

VRPSDP instances with a small number of nodes. Unfortunately, the approach does not 

explore larger size instances. It may also be noteworthy that no mention is made of the vehicle 

fleet size in the experimental results. 

 

Wang and Chen (2012) employed a co-evolution GA to solve the VRPSDP with time windows. 

The co-evolution GA simultaneously evolved two populations: 1 and 2, where the role of each 

respectively was to encourage diversity and accuracy in the search. The fittest individuals in 

Population 1 were mated with individuals in Population 2 in order to help the search progress 

towards a new space populated by potentially fitter solutions. A co-evolution GA was used to 

overcome the shortcomings of the traditional GA, where the search either converged quickly 

to a poor solution or excessive computational resource was consumed in order to find an 

acceptable solution. 

 

The authors used a heuristic technique called Random Seeds Cheapest Insertion Method 

(RSCIM) to derive an initial population for both populations, which consisted of high quality 

individuals and those of diverse structures. Wang and Chen (2012) implemented a GA to guide 

the initial population to an improved space. The RSCIM introduced diversity by randomly 

selecting seeds to initialise the construction of routes. The requests were selected to be 

inserted into a route in a random order. The insertion took place in the location where the 

maximum saving was achieved. The purpose of this technique was to reduce the time taken to 

reach a reasonable local optimum and to encourage the search towards the global optimum.  

 

From a critical perspective, correctly tuned genetic operators can generate the required 

amounts of search diversity using a single population. Adopting a separate second population 

would increase computational cost and still not be as effective as evolving sub-populations, as 

the latter are allowed to communicate, thus increasing selection pressure and encouraging the 

production of fitter individuals. From a related standpoint, there is no real reason for selecting 

individuals with the greatest fitness from Population 1 for mating, as fitter individuals do not 

guarantee greater diversity in Population 2. 

 

The introduction of the RSCIM heuristic outlines the importance of accuracy and diversity in 

the initial population in the context of an effective solution space search. However, it may be 
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argued that diversity should be the only consideration when constructing the initial 

population, in order to cover the search space uniformly. From a different standpoint, RSCIM 

heuristic must build an initial population with optimal solution properties in order to reach the 

global optimum, otherwise, the search will converge at the local optimum. Furthermore, it 

may be argued that the time taken to construct the initial population using RSCIM heuristic 

may be better spent in the evolutionary process. 

 

From a critical point of view, the application of an accuracy inducing crossover operator 

followed by the eleven mutation inducing operators inside Population 2 is likely to diminish 

the accuracy generated. Furthermore, the application of eleven mutation operators is highly 

probable to cancel one another’s effects. In addition, in the presence of eleven diversity 

promoting operators, the question arises whether Population 1 adds any benefit. 

 

Wang and Chen (2012) evaluated their algorithm with respect to the vehicle fleet size and 

total travel distance results. However, it is noteworthy to mention that the fitness function 

only considered the latter, therefore selection does not imply both objectives, which may 

hinder the performance of the evolution. Equally important, the efficiency of the co-evolution 

GA remains unverified because the authors have provided limited information on how the 

basic GA is configured. 

 

Zhang et al. (2012) proposed an evolutionary algorithm called scatter search (SS) because it is 

claimed to be efficient in exploring a wider search space. The solution space is explored by 

evolving a set of elite and diverse solutions using unifying principles, while making minimum 

use of randomisation. The network was modelled using stochastic travel times to better reflect 

real life transportation problems. Zhang et al. (2012) modified Clarke and Wright (1964) saving 

function to better construct an initial solution. Their approach influenced the insertion 

decision with respect to the vehicle load utilisation levels. The approach encouraged the 

insertion of net delivery demand requests earlier in the route and net pickup demand requests 

towards the end of the route. The initial solution generated by the modified saving procedure 

was altered using a neighbourhood operator to generate a set of solutions to form the initial 

population. The purpose of this approach was to have a diverse set of solutions, with a similar 

structure to the initial solution. 
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Generally, the modelling of stochastic travel times narrowed the gap between theoretical 

study and commercial relevance. This is an important contribution because all previous 

VRPSDP research work only considered deterministic travel times. Although, modelling their 

approach with deterministic travel times might have allowed Zhang et al. (2012) to perform a 

computational result comparison with other approaches. Moreover, the modified saving 

function is a greedy approach, which may restrict the construction of an improved solution. 

The procedure does encourage the construction of capacity feasible solutions making the 

approach a valuable contribution to the literature. 

   

From a critical point of view, the initial population is unlikely to comprise of a diverse set of 

solutions because the individuals were variations of a single solution generated using the 

modified saving procedure. Therefore, it is improbable that the initial population will cover the 

search space uniformly. In addition, the SS algorithm randomly paired solutions for mating 

from a set of solutions that were either of high quality with respect to the objectives or of a 

diverse structure. On the contrary, a random pairing of solutions is unlikely to guide the search 

towards a zone characterised by greater accuracy or diversity. 

 

With respect to the GA adopted for comparison purposes it may be concluded that the 

application of crossover followed potentially by mutation, may have affected the accuracy 

increasing effects of the former. Although, the probability that the mutation operator was 

applied was 0.1. The level of diversity introduced by the operator when applied was randomly 

determined. In addition, a limit was placed on the number of GA generations, potentially 

causing the evolution to converge prematurely. 

 

The SS algorithm parameters were set based on the computational performance using a 

particular test problem type. Analysing the contribution of the paper one might assume that 

the concept of adaptive parameter setting is logical. In addition, the GA parameter were 

deterministically set, which puts the GA at a natural disadvantage against the SS algorithm 

during the comparison stage. It is also noteworthy that the computational time is related to 

the running time of the algorithm and not to the time taken to find the best solution, 

therefore, it is not conclusive that the SS algorithm is more scalable than GA. Another reason 

to support this is that the evaluated test problem sizes are limited in their range. On a 

different issue of importance, the authors simulated the same test problem 10 times in order 



57 
 

to measure the performance of the SS algorithm. This is important in order to determine the 

computational efficiency of the algorithm. 

 

Hybrid 

Crispim and Brandao (2005) proposed a hybrid algorithm comprising of two metaheuristics: 

tabu search (TS) and variable neighbourhood descent (VND) to solve the VRPSDP. The hybrid 

was suggested to offer greater levels of diversity than either of the standalone metaheuristics 

because the TS prohibited recently applied local search moves through the use of a tabu list 

and the VND changed the neighbourhood structure.  

 

A modified VND was used to explore a new neighbourhood structure after a certain number of 

iterations without a solution improvement. This was in contrast to the original VND introduced 

by Hansen and Mladenovic (1997), which changed the neighbourhood structure once no 

further improvement was possible. The modified VND was adopted in order to reduce 

computational resource consumption. On a different issue of importance, a single tabu list is 

used for all neighbourhoods to avoid additional computational resource expense for updating 

multiple tabu lists and to prevent recent search moves from recurring. 

 

Analysing the contribution of the paper, the increase in computational efficiency provided by 

the modified VND is an important contribution, even at the expense of some loss of accuracy 

in the search. The issue is to maintain a reasonable level of neighbourhood exploration, 

therefore determining the right number of iterations before changing the neighbourhood 

structure is important. This increases the complexity of the method, which is further extended 

when an adaptive iteration number is sought.  

 

The hybrid algorithm is applied to an initial solution constructed using the principles of the 

sweep algorithm. However, if the number of routes exceeds the minimum number of vehicles 

required to service the region based on capacity requirements, a bin-packing problem is 

solved with a tabu search algorithm with the aim of finding a set of minimum routes. 

Therefore, the application of the sweep heuristic does not guarantee an initial solution with 

the minimum vehicle fleet size. The Crispim and Brandao (2005) requirement, that the initial 

solution operates the smallest vehicle fleet size, is important because computational resources 

may be wasted in optimising a poor initial solution with many more vehicles than actually 

required.   
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Crispim and Brandao (2005) did not compare their computational results with Dethloff (2001). 

However, the hybrid algorithm managed to generate improved solutions for Salhi and Nagy 

(1999) test problems, except for CMT12Y. From a different stand point, Crispim and Brandao 

(2005) calculate the minimum vehicle fleet size based on capacity requirements:  

 

max �
Total demand of delivery customers

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
,
Total demand of pickup customers

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 � 

(3.1). 

 

Yet, the authors have operated one more vehicle than is capacity feasibly required for test 

problems CMT3Y, CMT4Y and CMT5Y. 

 

Zachariadis et al. (2009) combined two well-known metaheuristics: Tabu search and Guided 

location search (GLS) to solve the VRPSDP. The latter was used to guide Tabu search to a more 

diversified search, therefore preventing the search from being trapped in a local optima. The 

key to GLS success related to its ability in identifying features of a low quality solution causing 

local optimality and then quantifying appropriate penalties to prevent this from occurring. The 

hybrid was applied to an initial solution constructed using the heuristic by Paessens (1988). 

The approach built routes in a sequential manner based on cost savings. The hybrid was 

compared with several benchmark instances reported in the literature. It was proved that the 

approach was capable of generating high quality solutions and in some cases, yielded 

improved results than previously reported, with respect to the vehicle fleet size and total 

routing distance objectives. 

 

Zachariadis et al. (2009) introduced a hybrid approach in order to combine the merits of two 

metaheuristics so as to efficiently search the solution space where a single metaheuristic is 

deemed to be restrictive. However, this belief is not strongly reflected in the body of 

literature, as the majority of research work is based on a single solution method. On a 

different issue of importance, the hybrid was applied to an initial solution that had been 

constructed using a heuristic technique. This solution will have a bearing on the ability of the 

hybrid approach to converge towards the optimal solution. It is unknown whether the initial 

solution will share traits with the optimal solution, therefore its relevance to the proposed 

approach is not quantifiable. 
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Subramanian et al. (2010a) proposed a parallel heuristic operating over multiple processors to 

solve the VRPSDP. The parallel nature enabled large size instances to be solved. The approach 

consists of an iterative local search (ILS) framework with an integrated variable neighbourhood 

descent procedure that used a random neighbourhood ordering (RVND). The accuracy in the 

search increased using this greedy approach, which at every stage attempted to improve the 

solution, using inter and intra route improvement techniques. A diversity mechanism was 

employed in order to circumvent against being trapped at the local optimum, which allowed a 

set of permutations without any solution improvement. 

 

Diversity is introduced into the search by randomly selecting one of three available 

mechanisms. From a critical point of view, the selection is not explicitly related to the current 

state of the search, in terms that, should diversity be insufficient at some point, an 

appropriate diversity mechanism is not guaranteed to be selected.  

 

The authors have applied 6 inter-route operators to generate a newly improved solution, 

followed by 4 intra-route operators to improve recently modified routes. However, the benefit 

of the combination of operators has not been demonstrated. Therefore, it is possible that 

similar outcomes may have been achieved by using fewer operators. Furthermore, these 

operators are exhaustively applied therefore are computationally resource expensive. 

 

The computational results illustrate that the solution approach is very competitive compared 

to other previously published methods in terms of the test cases evaluated. A contributing 

factor may be that the main parameters were experimentally determined. However, with 

respect to Salhi and Nagy (1999) test problems: CMT3Y, CMT4Y and CMT5Y, one more vehicle 

is operated then what is physically required. 

 

Further Heuristic Algorithms 

Nagy (1996) proposed an integrated heuristic (IH) and three modified versions to solve the 

single and multi depot VRPSDP problem. The IH applied inter and intra route operators to the 

initial solution in different combinations in order to produce an optimised solution. The first IH 

variant, PEN, constructed the initial solution using penalties to encourage the development of 

a strong capacity feasible solution. Therefore, a greater amount of computational resources 

maybe used for optimisation. The second IH variant, ALT, allows for a certain level of solution 

infeasibility into the search in order to explore new areas of the search space. The level of 
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infeasibility is set by a parameter. This method introduced a certain level of diversity to the 

search in order to better explore the search space. The third IH variant, SO, is similar to ALT, 

with the exception that the level of infeasibility is allowed to oscillates according to a 

schedule. This ensured that after a number of accuracy inducing steps, a number of diversity 

inducing steps are applied, therefore the search space can be thoroughly explored. 

 

It is noteworthy that ALT and SO heuristics have attempted to introduce diversity into the 

search in order to explore the search space. However, the issue with the ALT heuristic is that 

the parameter is not guaranteed to provide the required levels of diversity when required. The 

SO heuristic does not relate diversity to the need of the search, instead diversity is 

automatically applied after a number of generations, which may affect search accuracy and 

prevent a good solution from being located. 

 

The initial solution was required to be weak capacity feasibility. This did not have to be the 

case as inter route operators could have been applied at a later stage to gain weak capacity 

feasibility. However, this approach is deemed sensible, as it ensures that a strong capacity 

feasible solution can be determined using intra route operators, except in circumstances 

where route length restriction are present. This approach is likely to reduce the computational 

time required to find an appropriate solution. In contrast, the initial solution was not required 

to be strong capacity feasible because it was thought this may lead to poor solution quality, 

which may not be improvable by inter and intra route operators. However, this should not be 

the case as the same operators are applied to strong capacity feasible solution at a later stage 

for solution improvement. 

 

Nagy (1996) introduced two local search techniques for the VRPSDP called NECK and UNNECK. 

The former routine aimed to reduce the net vehicle load throughout the route in order to 

service customer close to the depot with either large delivery or pickup demands. NECK 

separated the service of the delivery and pickup demand into two entities, which were 

serviced independently. Later stages of the search UNNECK were used to recombine the two 

separated entities. However, this is not guaranteed to occur, therefore these routines should 

not be applied to VRPSDP, as the simultaneous service constraint may not be satisfied. 

Another routine of interest is the 2-opt operator, this was iteratively applied to the route 

segment, which minimised the vehicle net load to the lowest level. However, this greedy 

approach does not guarantee strong capacity feasibility. 
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Chen and Wu (2006) introduced a two phase method to solve the VRPSDP. The first phase 

constructs routes in a sequential manner using an insertion-based algorithm called PROC_INS 

and the latter phase improves the initial solution using a hybrid heuristic titled HeuSDP. The 

PROC_INS insertion criterion managed the vehicle capacities at the nodes, therefore a greater 

number of requests could be inserted into the route. This was possible because the route 

position of a request with a large net delivery demand will be serviced at the start of the route 

and the request with a large net pickup demand will be serviced towards the end of the route. 

The HeuSDP consists of local search techniques; tabu list and record-to-record travel (RRT). 

Firstly, inter and intra local search techniques were used to search for an improved solution. A 

tabu list was employed to prevent the local search techniques from recycling visited paths 

unless such moves results in a better neighbourhood solution. Finally, the Record-to-record 

travel (RRT) was a scheme similar to Simulated Annealing (SA) where a neighbouring solution 

was accepted if it is not worse than the best-known solution plus a gradual lowered deviation.  

 

The PROC_INS insertion criterion represents an important contribution in terms of effectively 

managing the vehicle capacity along the cycle. However, the heuristic sequentially builds 

routes by maximising their vehicle utilisation, which may had resulted in the final route having 

less workload than the others, therefore resulting in an inequitable workload. In addition, the 

PROC_INS inserts requests in a greedy manner, therefore this may not be the best sequence of 

insertion. Another aspect of importance relates to the results based comparisons. The authors 

found very improved results against Salhi and Nagy (1999), therefore illustrating the 

effectiveness of their approach. However, the authors did not compare their results against 

Dethloff (2001) and if they had their improvements in solution quality would have been less 

significant. 

 

Bianchessi and Righini (2007) presented and compared the computational output of 

construction, local search and tabu search based algorithms for the VRPSDP. The proposed 

construction method was based on a modified version of the tour partitioning algorithm, 

which ensured capacity feasibility of the sub-routes. This algorithm was compared to a tour 

partitioning method without the proposed amendment. The comparison indicated that the 

modified tour partitioning algorithm exploited the capacity of the vehicles more efficiently 

than the method that did not. Bianchessi and Righini (2007) compared several neighbourhood 

structures for exploration by local search algorithms. The variable neighbourhood structure 
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was found to be the most efficient because results similar to the best obtained were found, 

with significantly less computational resource consumption. This observation was reinforced 

by the results obtained by exploring these several neighbourhoods with the tabu search 

algorithm. In summary, the local search algorithm with a variable neighbourhood was arguably 

substantially more computationally efficient compared with the tabu search algorithm, but 

with slightly poorer solution qualities. 

 

The modified tour partitioning algorithm removes and then reinserts all capacity unfeasible 

requests. However from a critical perspective, the sequence of reinsertion may not be optimal, 

which in turn may lead to a higher solution cost. Another aspect of importance relates to the 

pitfall of using a variable neighbourhood structure because the first best neighbourhood is 

selected at each local search step to replace the incumbent, which may result in a sub-optimal 

selection. However, this approach does effectively balance the needs of exploitation and 

computational time. From a different standpoint, Bianchessi and Righini (2007) implement a 

dynamical tabu list size in order to guide the search between accuracy and diversity focused 

search. As opposed to having a deterministic list size, this concept does not reflect the state of 

the search. 

 

Jun and Kim (2012) proposed a three stage heuristic approach to solve VRPSDP, which 

consisted of a: route construction procedure, route improvement procedure and diversity 

inducing procedure. The latter two were iteratively applied in order to guide the search to an 

improved space. The initial routes were constructed using a modified version of Gillett and 

Miller (1974) classical sweep algorithm, which initialised a cluster using polar angles and the 

subsequent requests were inserted relative to their distance. This modification overcame the 

issue with the incumbent method, which resulted in elongated cone shaped routes, which 

were undesirable from a practical viewpoint. The initial solution was then modified using inter 

and intra local search mechanisms, in the search for an improved solution, until a stopping 

criterion was met. Thereafter, a diversity inducing mechanism was introduced to prevent the 

search from becoming stuck in the vicinity of the local optimum. This was achieved by ejecting 

requests and then reinserting them into existing or new routes.  

 

The modification to the sweep algorithm was an important contribution by the authors, which 

built more practical solutions because clusters could be built above one another. This is in 

contrast to other research works: Kanthavel et al. (2012), Wassan et al. (2008) and Montane 
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and Galvao (2002) that has not considered this practical importance. Despite the improvement 

to the sweep algorithm, a fundamental flaw still persists with the method, which relates to the 

equitable vehicle utilisation between routes, since, the last route to be constructed was likely 

to be utilised less compared with the previously clustered vehicles. On a different issue of 

importance, the level of diversity introduced by the method is randomly determined and has 

no bearing to the state of the evolution. A consequence of the approach is that sufficient 

levels of diversity required to progress the search may not be induced during the appropriate 

times during the search. 

 

The main contributions from each research work is summarised below in Table 3.1. It is 

evident that the literature has predominately focused on approximation methods to solve the 

VRPSDP. To date, only a limited number of papers are known to have used exact methods to 

solve this problem, as they are computational resource expensive. Over the past decade, a 

greater proportion of the research works have focused on metaheuristics, which evolutionary 

algorithms are the biggest contributors. It is noteworthy that a prominent solution method 

design exists in the literature, where an initial complete solution is constructed and then later 

optimised. A consistent shortcoming of this approach is that high quality initial solution traits 

are not protected from dismantlement in the optimisation phase. Goldberg (1989) introduced 

the building block (BB) hypothesis, which suggests that the recombination of high quality 

solution traits will effectively guide the search towards the optimal solution. The failure of the 

current methods to protect certain traits may decelerate the progress of the search towards 

the higher quality areas, therefore the methods in the domain are likely to be computationally 

expensive. Moreover, an often considered objective for the vehicle routing problem is the 

workload variation objective Toth and Vigo (2002), which aims to minimise the maximum 

variation between route distances. However, no research work has addressed this important 

objective in the VRPSDP domain. The shortcomings provided here in relation to the studied 

problem are addressed by a new three phase approach, SDPmethod, which is validated in 

Chapter 6 by comparing its results against the best known solutions in the domain. 
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Table 3.1 main contributions from the VRPSDP domain 

Method Type Method Contributions Publication 
Exact 

Branch and Price 

   •         1st exact method for VRPSDP/TW 
Angelelli and Mansini (2002) 

     •         Set covering formulation 
     •         Exact dynamic programming 

Dell’Amico et al. (2006) 
     •         State space relaxation 

  
Branch and Cut 

   •         Undirected & directed two commodity flow formulation Subramanian et al. (2010b) 

     •         Relaxed vehicle capacity constraints Subramanian et al (2011) 
Heuristic 

Cluster-first and route-second 

   •         Introduced VRPSDP concept Min (1989) 
     •         Reverse logistics 

Dethloff (2001) 
     •         Residual capacities & Residual surcharges 

     •         8 heuristic procedures Montane and Galvao (2002) 

  
Tabu Search 

   •         8 heuristics procedures for the initial solution Montane and Galvao (2006) 

     •         Dynamic tabu list size Wassan et al. (2008) 
  

Ant Colony Optimisation 
   •         Savings based visibility function 

Catay (2010) 
     •         Rank-based pheromone update procedure 
  

Ant Colony System 
   •         Candidate list 

Gokce (2004) 
     •         Visibility function 

     •         Inter & intra route operators applied to ant solutions Gajpal and Abad (2009) 

  
Particle Swarm Optimisation 

   •         Cluster-first & route-second Kanthavel et al. (2012) 

     •         Spatial proximity from seeds Ai and Kachitvichyanukul (2009) 

  Simulated Annealing    •         Unique cooling schedule (T) Ganesh and Narendran (2008) 
  

Differential Evolution Algorithm 
   •         Arithmetic operators 

Erbao and Mingyong (2010) 
     •         Self adaptive crossover probability threshold 
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Method Type Method Contributions Publication 
  

Genetic Algorithm 

   •         Random keys method 
Vural (2003) 

     •         Adaptive mutation probability threshold 
     •         Integer encoding 

Vural (2007) 
     •         GRASP heuristic 

     •         Permutation encoding Tasan and Gen (2012) 
  

Co-evolution Genetic Algorithm 
   •         Evolves two populations 

Wang and Chen (2012a) 
     •         Random Seeds Cheapest Insertion Method 

  Scatter Search    •         Stochastic travel times Zhang et al. (2012) 
  

Hybrid 

   •         Tabu Search & Variable Neighbourhood Descent 
Crispim and Brandao (2005) 

     •         Greater diversity 
     •         Tabu Search & Guided Location Search 

Zachariadis et al. (2009) 
     •         Greater diversity 
     •         Iterative Local Search & Variable Neighbourhood Descent 

Subramanian et al. (2010a) 
     •         Parallel heuristic 

  

Further Heuristic Algorithms 

   •         Methods for the single & multi depot VRPSDP Nagy (1996) 

     •         Neighbourhood selection based on a deviation level Chen and Wu (2006) 
     •         Construction, local search & tabu search methods Bianchessi and Righini (2007) 
     •         Modified sweep algorithm Jun and Kim (2012) 

 

Further Heuristic Algorithms - an approach that cannot be classified into a single type. 
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Table 3.2 summaries the test problem types used in the aforementioned twenty-eight VRPSDP 

research works. Overall, Salhi and Nagy (1999) test problems were the most often 

implemented in the domain, as 54% (15) research works choose to adopt them. A contributing 

factor to their popularity may be derived from them being the earliest significant size test 

problems in the domain, mounting to 200 nodes. The next most commonly applied problems 

were by Dethloff (2001), as 46% (13) of papers considered their datasets containing up to 50 

customers. One of the reasons why Salhi and Nagy (1999) test problems were more frequently 

applied than Dethloff (2001) was that their smallest test problem was the same size of the 

largest in Dethloff (2001). It is also noteworthy to mention that a substantial proportion of 

research papers designed their own test problems, 39% (11), which has caused fragmentation 

in the field with respect to evaluating different solution approaches. Also, Montane and 

Galvao (2006) introduced the largest size test problems with up to 400 customers. However, 

the adoption of these test problems has been limited to 14% (4) of the research works 

reviewed here. The low adoption rate can be contributed to the simplified nature of the 

routing problem, caused by the limited vehicle capacity availability in relation to the demand 

associated with each customer. In addition, Min (1989) was the only research work to use a 

real world dataset. Moreover, Ai and Kachitvichyanukul (2009) was the only research work 

that used Dell’Amico et al. (2006) test problems. In this particular instance Ai and 

Kachitvichyanukul (2009) wanted to compare the performance of their approach against an 

exact method introduced by Dell’Amico et al. (2006). After reviewing the test problems types 

in the literature, the SDPmethod will be applied to Salhi and Nagy (1999) benchmark 

instances, as they have been widely studied in the domain. This will improve the rigor of the 

experimental evaluation in chapter 6 because a greater number of experiential results are 

available for comparison.  

 

  



67 
 

Table 3.2 summarises the test problem types adopted in the literature 

Paper 
Test problem 

Actual Create Min 
(1989) 

Salhi and 
Nagy (1999) 

Dethloff 
(2001) 

Dell'Amico 
et al. (2006) 

Montane and 
Galvao (2006) 

Kanthavel et al. (2012)       X       

Jun and Kim (2012)       X       

Tasan and Gen (2012)   X           

Wang and Chen (2012)   X           

Zhang et al. (2012)         X     

Subramanian et al. (2011)       X X   X 

Catay (2010)     X X X     

Erbao and Mingyong (2010)   X           

Subramanian et al. (2010a)       X X   X 

Subramanian et al. (2010b)       X X   X 

Ai and Kachitvichyanukul (2009)       X X X   

Gajpal and Abad (2009)     X X X     

Zachariadis et al. (2009)       X X   X 

Ganesh and Narendran (2008)   X           

Wassan et al. (2008)       X       

Bianchessi and Righini (2007)         X     

Vural (2007)       X X     

Chen and Wu (2006)   X   X       

Dell’Amico et al. (2006)   X           

Montane and Galvao (2006)    X    X X    
Crispim and Brandao (2005)       X       

Gokce (2004)     X   X     

Vural (2003)     X   X     

Angelelli and Mansini (2002)   X           

Montane and Galvao (2002)   X           

Dethloff (2001)   X X X       

Nagy (1996)   X           

Min (1989) X             

Total 1 11 5 15 13 1 4 

 

Actual - used a real data set; Create - converted their own VRPSDP dataset, either by randomly generating their 

own or converting non VRPSDP datasets; remaining columns - used data sets proposed in specified papers. Self 

referencing is not included. 
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4. GENETIC ALGORITHM 

 

This chapter provides a detailed description of genetic algorithm design because the method 

strongly contributes to the proposed methodology. The most prominent multi objective 

evolutionary algorithms research works are also reviewed, in order to establish the 

advancements that have been made in the field because a multi objective optimisation 

problem is considered here.  

 

The term Genetic Algorithm (GA) was first introduced by Holland (1975) and refers to a global 

search heuristic used to solve hard combinatorial optimisation problems. The approach is 

derived from biology analogy and it relates to natural genetics: the purpose of selective 

breeding of plants and animals is to produce offspring with desirable characteristics 

(phenotype), which are defined at a genetic level (genotype), (Golden et al., 2008). Similarly, a 

genetic algorithm encodes the genotype of each parent inside a chromosome. The 

chromosomes with a high probability of generating offspring with an improved phenotype are 

selected as parents to mate. The recombination process uses genetic operators to generate 

offspring. The purpose of these operators is to encourage search accuracy and diversity, which 

facilitates the process of finding the optimal solution. The following outlines the basic steps of 

a Genetic Algorithm, which are described in greater detail later on. 

 

GA Steps: 

1. Initialisation consists in constructing a population of potential solutions 

(chromosomes), which map potential solutions for a particular problem. 

2. Evaluation determines the quality of an individual based on their objective values. 

Some approaches Tansen and Gen (2012) and Vural (2003) consider the objective 

values met by an individual to be the fitness of that certain individual. Others Deb 

(2009), Coello and Coello et al. (2007) apply additional processing (scaling, 

normalisation) to objective values in order to obtain fitness values. This research 

employs the second variant. 

3. Selection for Reproduction selects chromosomes as parents for mating. 

4. Genetic Operators generate offspring by modifying the genetic makeup of their 

parents. 

5. Selection for Reinsertion individuals are selected for the population in the next 

generation. 
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6. Termination Criterion is a stopping condition and steps 2-5 are repeated until this 

criterion is met. 

 

4.1 Encoding 

A chromosome stores decision variables, which encode a potential solution. The encryption of 

a chromosome is problem specific and a standardised approach does not exist. Furthermore, a 

particular problem may allow for multiple encryptions and the type chosen will influence the 

choice of genetic operators (Patelli, 2011), (Deb, 2009). Therefore, the most appropriate 

encryption type should be selected, so compatible genetic operators can be defined to explore 

the search space efficiently (Patelli, 2011). The following are the main encoding methods 

available: Binary string, Real number string and Permutation string. 

 

4.1.1 Binary Encoding 

The chromosome consists of a set of so-called genes represented in binary form [ 0 1 ]. Binary 

encoding can be used in all problems, but it is not very effective all the time (De Jong, 2006). 

The 0-1 Knapsack problem is an example where binary encoding is effective. The 0-1 Knapsack 

problem involves the optimisation of a function subject to a constraint and is formally defined 

as,  

 

    maximise � 𝑝𝑗𝑥𝑗

𝑛

𝑗=1
 

    subject to � 𝑤𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝑐 

    𝑥𝑗 ∈ ≥ {0, 1},      𝑗 = 1, … , 𝑛.     (4.1) 

 

An example of a 0-1 Knapsack problem is where a retailer needs to maximise the value pj of 

items xj inside a customer’s basket, whilst abiding to the weight limit c. Figure 4.1 illustrates 

the binary encoding of a 0-1 Knapsack problem, where a binary code represents whether an 

item is in the basket and a chromosome encodes a solution. In the assumed encoding the 

value of 1 defines the item is in the basket, whereas the value of 0 refers to the opposite case. 
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Item Value (£) Weight (kg) 
1 3.5 3 
2 6.6 3 
3 8.2 6 

Basket weight constraint = 10kg 

 

 Item 1 Item 2 Item 3    Basket Value = £14.8 
Chromosome 0 1 1    Weight = 9kg 

 

Figure 4.1 Binary encoding 

 

4.1.2 Real Number Encoding 

Instead of binary values, the chromosome consists of real number gene values, an encoding 

example is shown in Figure 4.2. It is widely accepted that real number encoding is a better 

approach than binary encoding for function optimisation problems because the topological 

configuration of the genotype and phenotype space are equal for real number encoding, 

therefore it is easier to utilise previously proven genetic operators for the search (Gen and 

Cheng, 2000). 

 

 Gene 1 Gene 2 Gene 3 Gene 4 
Chromosome 0.1356 0.4341 0.1608 0.5667 

 

Figure 4.2 Real number encoding 

 

4.1.3 Permutation Encoding 

The chromosome is made up of integers, which encode a sequence for an ordering problem 

like the Travelling Salesman Problem (TSP). This type of encoding places a restriction on the 

genetic operators to ensure a set of gene values are always present inside the chromosome. 

Figure 4.3 illustrates the permutation encoding for a TSP, as each gene value symbolises a city 

to be visited and the chromosome corresponds to a Hamilton cycle without the source/end 

node. 

 

 Gene 1 Gene 2 Gene 3 Gene 4 
Chromosome 1 7 3 5 

  

Figure 4.3 Permutation encoding 
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A GA population consists of a set of chromosomes that populate the search space under 

investigation. The population size is an important consideration because a trade-off exists 

between the degree of parallel search required and the amount of computation run time 

available. The former depends on the size of the search space. The search space dimensions 

increase with the number of objectives in the Multiple Objective Optimisation (MOO) 

problem, which the population size should reflect by being larger in order to encourage the 

generation of high quality solutions (De Jong, 2006). However, a larger population requires 

greater computational effort at the expense of more run time, which may not be available for 

real time problems. In addition, in the earlier stages of the evolution more computational 

effort is wasted on improving chromosomes with poor phenotypes. Therefore, from a 

computational efficiency standpoint it is advisable to minimise the population size. However, 

from a biological perspective, a small population with insufficient genetic diversity is unlikely 

to produce quality offspring as the individuals therein present the risk of sharing the same 

genetic defect (Ashlock, 2006). Therefore, in the context of GA, a small population is likely to 

be trapped in a given area of the search space (e.g. a local optimum).  

 

There are two approaches that can be used to generate the initial population: random and 

solution based. The former approach generates the initial population randomly based on a 

probability distribution. The uniform distribution of chromosomes throughout the search 

space, as shown in Figure 4.4 is required when the genotype encoding the optimum 

phenotype is unknown. The random generation of individuals is more likely to provide a 

uniform coverage of the search space, if the considered population size is sufficiently large. 

Furthermore, the individuals of the randomly generated population may not be feasible, 

therefore obtaining feasibility may consume extensive computational resources. Alternatively, 

the latter approach constructs an initial population of feasible solutions in the vicinity of a 

known solution of acceptable quality with a heuristic technique. This may enable GA to find an 

improved solution in shorter computational time. However, the heuristic may not be capable 

of generating a feasible population with diverse genotypes, in which case GA may prematurely 

converge. Furthermore, the extra computation required to generate a feasible population 

could instead be used to exploit and explore the random population, which is constructed in 

negligible time.  
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Figure 4.4 Uniform distribution of chromosomes in a two-dimensional search space 

 

4.2 Linear Evaluation 

The reproductive potential assessment of individuals inside a population is performed in 

relation to their fitness. Hartl and Clark (1989) as mentioned in Fogel (2006) provide a 

biological notion of fitness, as the probability that an individual will survive and reproduce in a 

specific environment. In the context of evolutionary algorithms employing roulette selection 

techniques, the fitness values are regarded as selection probabilities that sum up to one 

(Patelli, 2011). These values are utilised when selecting individuals for reproduction and 

reinsertion. To encourage continuous improvement through the evolutionary process, the 

fitness value relates to the objective value(s). The fitness function determines how well an 

individual satisfies the objective(s) and assigns a value to it (Coello Coello et al., 2007). 

Therefore, this performance information can be used to effectively explore the current search 

space (Koza, 1998). Where a minimisation problem is considered the fitness value is an inverse 

of the objective value(s). An individual with a higher fitness than its counterparts will have a 

greater probability of selection for reproduction or reinsertion compared to the others (Coello 

Coello et al., 2007). Hence, fitness of an individual is not measured in direct isolation, but in 

relation to the entire population.  

 

In a Single Objective Optimisation (SOO) problem, the fitness computation stage is straight 

forward as only one objective value is involved. One of the approaches to solving Multi 

Objective Optimisation (MOO) problem is to compute a single fitness value, which illustrates 

all objectives. In mathematics the problem is known as transitioning from a multi dimension 

Objective 2 

Objective 1 
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(hyper) space to a single dimension space. One approach is to convert the MOO problem into 

a SOO problem via aggregation. However, this requires information on the weightings of the 

objectives, which may not be known. If the weightings are known the following well-known 

techniques can compute the fitness values: Raw Fitness Assignment, Adjusted Fitness, 

Proportional Fitness and Ranking Fitness (Patelli, 2011). 

 

As classified in Patelli (2011), in the absence of weighting information for MOO problems 

fitness values can be determined using either Pareto or non-Pareto approaches. The former 

approaches compare individuals in terms of dominance. Dominance is used to determine 

fitness values for individuals. An individual is considered non-dominated compared with 

another, if at least one objective value is better and none are worse (Deb, 2009). In Figure 

4.5a, individual A dominates B, therefore is fitter because all objective values are lower (a 

minimisation problem involving two objectives is assumed). At the same time, Figure 4.5b 

illustrates non-dominance relationship, as neither individual A nor B dominates the other 

because neither is better than the other over both objectives. 

 

 

 

 

 

 

 

 

 

 

        Figure 4.5a Dominance relationship       Figure 4.5b Non-dominance relationship 

 

4.2.1 Pareto Approaches 

The concept of dominance is used in most MOO problems methods, (Deb, 2009) because it 

provides intuitive numerical support for fitness computation. A MOO problem with conflicting 

objectives has a set of solutions with differing objective values that can be considered optimal, 

(Deb, 2009). The non-dominated solutions in the entire search space are referred to as Global 

Pareto Optimal/Pareto Optimal (Deb, 2009), (Goldberg, 1989), see Figure 4.6 which illustrates 

the Pareto optimal front as ‘1st PF’. Deb (2009) defined the MOO problem as having two aims: 

Individual A 
dominates B 

Objective 2 

A 

B A 

B 

Objective 2 

Objective 1 Objective 1 

Neither individual 
dominates  
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to find a set of solutions closest to the Pareto optimal front and to find as many diverse 

solutions as possible within that particular set in terms of the considered objective values. A 

Pareto front is a curve that graphically best fits the Pareto set.  

 

When computing fitness values for a population of solutions, it is useful to rank individuals in 

terms of dominance. Pareto methods can be used to divide individuals in several sets, which 

are referred to as n-order Pareto fronts, where n is an integer n ∈ [1, n]. The level of individual 

fitness on a given Pareto front decreases with the order because their objective values are 

further away from the optimal ones. The individual(s) inside a Pareto set do not dominate one 

another, therefore are in a non-dominance relationship. However, the individuals dominate 

the ones in higher order Pareto sets. Therefore, apart from the 1st-order Pareto set, all other 

sets are dominated by at least one individual in a lower order set. Figure 4.6 illustrates 3 

Pareto sets with their corresponding Pareto fronts for a minimisation problem. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Pareto fronts 

 

Deb (2009) described and investigated the average complexity of methods to find a non-

dominated set. The Continuously Update procedure is faster than the Naive and Slow 

procedure because it has halve the number of computations. Naive and Slow procedure 

compares the dominance for every individual against the population. The Continuously Update 

procedure is similar to the aforementioned method, but instead only compares the individuals 

in the population with non-dominated individuals. 

 

1st PF 

2nd PF 

3rd PF 

Objective 2 

Objective 1 
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Once the Pareto sets have been determined the following published methods can compute 

individual fitness values in relation to their order. 

 

As stated in De Jong (2006), Goldberg (1989) introduced a dominance ranking approach that 

ordered a population of individuals based on the number of individuals they each dominate. 

However, a shortcoming of the approach is the fitness value of the same individual may be 

highly different in the next generation, as fitness is determined in relation to other individuals. 

 

Deb (2001) introduced a fitness sharing formula to assign fitness values to individuals on nth 

order Pareto fronts (4.2). The formula ensures fitness values reflect the relationship between 

different ordered Pareto fronts and prohibits an individual in the nth order Pareto set from 

having a higher fitness than any individual in the nth-1 order. In addition, the formula 

encourages the search towards weakly explored areas by assigning higher fitness values to 

isolated individuals on the fronts compared to those in a density populated areas. The 

diversity promoting aspect of the formula is based on Goldberg’s (1989) fitness sharing 

concept, which is a widely used approach to increase diversity in MOO (Coello Coello et al., 

2007). The sharing concept supports the construction of a distributed spread of nondominated 

individuals by encouraging the selection of solutions located in less crowded regions of the 

search space. This is achieved through penalising individuals situated in densely populated 

neighbourhoods by sharing their fitness values between neighbours. In contrast, isolated 

individuals retain their fitness values thereby their selection is encouraged and convergence to 

a single point in the search space is prevented.  

 

𝐹𝑖𝑡(𝑐) =
𝐹𝑅

∑�1−𝑑(𝑐,𝑧)
𝜎 �

𝑧∈𝑃𝐹𝑖
𝑑(𝑐,𝑧)≤𝜎                      

 

(4.2) 

 

In (4.2), every Pareto front (PFi), where ith marks the order, has a unique reference fitness 

value (FR) that defines the maximum fitness value of an individual on the front. FR is the 

minimum fitness value of an individual in PFi-1. However, in the case of the PF1, FR equals one. 

The Euclidean distance (d) is measured between the chromosome (c) and every individual 

inside the cluster (z). The cluster defines a neighbourhood of individuals on PFi grouped within 

a radius denoted as σ. 
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A pitfall of Deb’s (2001) method is that he employs a fixed user defined σ, which may not 

adequately reflect the actual search space coverage, resulting in the assignment of poor 

fitness values. To overcome this shortcoming, Patelli (2011) introduced dynamic computation 

of σ for each front, which calculates the average distance between individuals. Equation 4.3 is 

used to calculate σ, which Patelli (2011) has shown the modification to be fruitful. 

 

𝜎𝑖 =
∑ 𝑑(𝑐, 𝑧)𝑐,𝑧∈𝑃𝐹𝑖

𝑁
 

(4.3) 

where N defines the number of individuals in z. 

 

However, both Deb (2001) and Patelli (2011) fail to actually reflect the fitness relationship 

between different ordered Pareto fronts because the geometric distance is not considered. 

The problem arises in how FR is determined for the next Pareto Front. Currently, FR is set as the 

lowest fitness value of an individual in PFi-1. Imagine a situation where two Pareto fronts are 

closely positioned in the search space, therefore the objective values between the individuals 

in the Pareto fronts are only slightly dissimilar. However, the chromosomes in the 2nd order 

Pareto front will inheritably have a much lower fitness than their neighbouring Pareto front 

individuals. Therefore, the author of this work recommends the use of a coefficient, which 

more accurately reflects the distance between the Pareto fronts, so the fitness levels are more 

differentiated. 

 

4.2.2 Non Pareto Approaches 

Poli et al. (2008) introduces a dynamic fitness function in the context of MOO problems, which 

is not dominance related. This approach requires the multiple objectives to be ranked in 

accordance of importance to the search. Initially, the population is evolved based on the 

fitness function defined in terms of the most important objective, until all chromosomes 

occupy a satisfactory space. The fitness function is then redefined to also consider the second 

most important objective and the population is again allowed to evolve. This process is 

continued until the population in situated in the required area of the objective space. This 

approach is computationally expensive because the population is constantly shifted (Patelli, 

2011). In addition, the method is applicable only when the relative importance of the 

considered objectives is available beforehand.  
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Coello Coello et al. (2007) introduce the Insular Model to solve a MOO problem. The 

population is divided into subsets and each constitutes an island. Individuals belonging to the 

same island are evaluated relative to only one of the considered objectives. Individuals in 

different islands are encouraged to mate, therefore promoting offspring adapted with respect 

to multiple objectives. Figure 4.7 illustrates the insular model with two objectives and two 

islands, where each island evaluates and optimises a different considered objective. 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.7 Insular model 

 

4.3 Selection for Reproduction 

This section solely relates to the selection of individuals for reproduction and does not discuss 

selection for the next generation, which is discussed shortly in the reinsertion section. The role 

of selection is to select individuals from the current population for the reproductive pool that 

are likely to generate well adapted offspring. To encourage the search towards the optimal 

region of the search space, selection should employ fitness values assigned to the individuals 

(Gendreau and Potvin, 2010). The adopted selection strategy is important as it influences the 

degree of accuracy and diversity in the evolution. The selection of individuals for reproduction 

can be configured deterministically or stochastically (De Jong, 2006). The former type does not 

base selection on probability, unlike the latter. A deterministic approach may restrict the 

number of times an individual is eligible to reproduce in a generation, whereas, the stochastic 

approach does not and individuals are randomly selected based on their fitness values.  

 

A stochastic approach assigns an individual with a fixed probability for selection and parents 

are chosen randomly using a fitness-proportional probability distribution (De Jong, 2006). 

F1 = 1 / (O1) 

F2 = 1 / (O2) 

Objective 2 

Objective 1 



78 
 

Therefore, individuals with a greater fitness are assigned a greater probability mass to 

encourage accuracy in the search (De Jong, 2006). In addition, stochastic approaches provide 

diversity in the search, therefore increasing the robustness of the algorithm by reducing the 

probability of being trapped in a sub-optimal area of the search space (De Jong, 2006). The 

proportional roulette wheel selection, rank-based roulette wheel selection, tournament 

selection and uniform selection are the main stochastic selection approaches available. The 

fundamental difference between these strategies is the manner in which selection 

probabilities are distributed. 

 

4.3.1 Proportional Roulette Wheel Selection  

Individuals are randomly selected for reproduction with a probability directly proportional to 

their fitness. The fitness of each individual represents a proportion of the roulette wheel, and 

the circumference equals the sum of all fitness values. After spinning the roulette wheel, the 

individual associated to the segment of disk that the pointer indicates is selected for 

reproduction. This approach encourages fitter individuals to participate in reproduction, 

therefore performing in the spirit of the survival of the fittest principle. At the same time, the 

roulette wheel preserves diversity by providing every individual with an opportunity for 

selection. The shortcomings of the roulette wheel selection are as follows. Selection based on 

relative fitness does not ensure convergence to the global optimum (Fogel, 2006), (Rudolph, 

1994). The fitter individuals may dominate the reproductive pool thus preventing the 

reproduction of other individuals, resulting in a loss of genetic diversity in the offspring. 

Furthermore, in case the individuals in a population share a similar level of fitness, it may be 

difficult to explore new areas of the search space. Moreover, to use this selection approach on 

minimisation problems the fitness function for minimisation must be converted to a 

maximisation function. For example, the fittest individual for the TSP has the lowest route 

length. To overcome the latter problem the following rank based approach is introduced. 

 

4.3.2 Rank-based Roulette Wheel Selection 

A ranking based selection approach is considered simpler and more efficient than the roulette 

wheel approach (Gendreau and Potvin, 2010). The individuals in a population are ranked in 

accordance to their fitness values. The roulette wheel disk portioning mechanism is similar to 

the previous case, with the difference that in the case of a ranking approach, the distance 

between two consecutive individuals is not reflected by their fitness values. Instead, the 

portion of disk awarded to individuals is in relation to their rank, with higher ranked 
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individuals being assigned greater disk space, as illustrated in Figure 4.8. Therefore, the 

selection is not dominated by a few individuals and diversity is maintained in the population. 

However, the selection method is likely to result in slow convergence compared to the fitness 

proportional roulette wheel approach because less disk space may be awarded to elite 

individuals and thus their ability to influence the search is diminished. The approach focuses 

on accuracy in the early stages of the evolution as the population contains a wide range of 

fitness values.    

 

 

 

 

 

 

 

 

 

Figure 4.8 Four individuals represented on a rank-based roulette wheel 

   

4.3.3 Tournament Selection 

The most common selection approach for the genetic algorithm is the Tournament Selection, 

due to its efficiency and simple implementation (Goldberg and Deb, 1991). A number of 

individuals are randomly selected from a population to compete in a tournament and the 

quantity selected is referred to as the tournament size. The individual with the greatest fitness 

is selected to become a parent. A large tournament size results in dominant individuals taking 

over the population leading to diversity loss. As a consequence, the selection process becomes 

increasingly greedy and leads to a decline in genetic diversity in the population with time. To 

overcome this shortcoming the tournament size is commonly set at two (Razali and Geraghty, 

2011). 

 

4.3.4 Uniform Selection 

The approach randomly selects individuals to become parents without considering their 

fitness values. Every individual has a uniform probability for selection. The approach is 

diversity friendly and does nothing to encourage accuracy in the search. 
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4.3.5 Select All Selection 

Unlike the previous methods, this approach is deterministic. In a “select all” approach fitness is 

not a consideration as the entire population is copied to the reproductive pool. This is the 

most diversity prone strategy, as all individuals will generate offspring. The strategy is 

applicable, if the area of the search space with the optimal solution is known, then diversity 

will assist the exploration of the space. However, when the location is unknown, this strategy 

is unlikely to lead to a convergence towards the optimal search space. In addition, the 

computational time may be wasted because parents with poor fitness are considered for 

reproduction.  

 

4.3.6 Elitist Selection  

The elitist selection concept encourages the reproduction of the so-called elite individuals by 

always selecting individuals with the greatest fitness. The benefit of such an approach is that it 

accelerates the search process, therefore reducing the time necessary for the algorithm to 

produce a satisfactory solution (Patelli, 2011), (Koza, 1998). However, the excessive selection 

of elite individuals will reduce the level of genetic diversity in the population increasing the 

chance of local optima blockage. The elitist concept is applicable to both deterministic and 

stochastic approaches. 

 

4.4 Genetic Operators 

Genetic operators are applied to individuals in the reproductive pool with the aim of 

generating new offspring of a better fitness in relation to their parents. Reproductive variation 

is the primary source of exploration (De Jong, 2006). The most commonly applied operators 

are: crossover and mutation, which complement one another and neither is considered more 

useful than the other (De Jong, 2006). Other operators are encapsulation, decimation and 

expiry. Encapsulation like crossover is accuracy focused and decimation like mutation is 

diversity focused. In contrast, the expiry operator promotes accuracy and diversity in the 

search. The following describes the aforementioned operators in relation to the reproduction 

process in further detail. 

 

4.4.1 Crossover 

Crossover refers to the exchange of genetic material between two parents in the reproductive 

pool to generate new offspring of improved fitness from their creators. A common approach is 

to pair parents to mate in order of insertion into the reproductive pool. The type of crossover 
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procedure adopted affects the level of accuracy and diversity in the search. The role of the 

crossover in the early stages of the evolution is to promote accuracy by exploiting current 

individuals in the population. However, as the diversity of the genotypes in the population 

diminishes, the mating of very similar parents will generate offspring with very similar 

genotypes to their creators, resulting in increased chances of a local optima blockage. In such 

a situation, the role of crossover is to promote greater diversity in the population. 

 

There are two types of crossover extremes: null crossover and gene level crossover. Null 

crossover does not alter the genetic material of the parents, so the resultant offspring are 

identical copies of their creators. Therefore, no progress is made in terms of exploration. Gene 

level crossover produces offspring with the greatest level of diversity compared to their 

parents because each two genes occupying similar positions on their parents structure are 

swapped. The gene level crossover approach, also known as uniform crossover leads to 

excessive diversity; consequently the accuracy is unlikely to improve through the generations 

(Gendreau and Potvin, 2010). The gene level crossover procedure involves the assignment of 

probability values on all genes in the parent set. A crossover threshold probability controls the 

intensity of the operator, and those genes within the threshold are selected for crossover. This 

type of crossover is computationally expensive (Ashlock, 2006), because the number of 

exchanges between the parents are likely to be large. Figure 4.9 illustrates gene level 

crossover. 

 

 

 

 

 

 

Figure 4.9 Gene level crossover, where crossover threshold equals 0.7 

 

Unlike the aforementioned crossover procedures, n cut point crossover increases accuracy 

through the generations. The level of diversity provided by this crossover procedure increases 

with the number of n cut points. However, the level of accuracy diminishes once the number 

of cut points become too large because the valuable Building Blocks (BBs) are not maintained. 

The n cut point crossover selects n index points in each parent. The cut points in each parent 

are labelled in sequential order from one end of the parent to the other. The crossover will 
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occur on the same index, exchanging the latter part of each parent. The Figure 4.10 illustrates 

the single and two cut point crossover. 

 

Single cut point crossover 

 

 

 

 

 

 

Two cut point crossover 

 

 

 

 

 

 

Figure 4.10 Single and two cut point crossover 

 

The cut point selected for crossover can either be homologous or non-homologous. The 

former selects cut points with the same indices in parents. The resultant offspring will be of 

equal size to their parents. The crossover of genetic material between identical parents using 

homologous cut point will lead to zero diversity in the offspring from their parents. 

Consequently, the crossover operator is rendered useless because the genotype is not of new 

search space. This issue should be considered when pairing parents in the reproductive pool. 

The latter approach refers to the selection of different cut points indices of the parents. 

Subsequently, the issue of bloat arises in GA and GP where the size of an offspring increases 

from their parents, without an improvement in fitness (Langdon and Poli, 1998).  

 

Crossover operators with a single or multi cut points are widely adopted (Patelli, 2011), 

(Spears, 1995). In contrast, Fogel (2006) experimental work for solving the travelling salesman 

problem showed that the uniform crossover on average outperformed the two point 

crossover, which in turn surpassed the single point crossover. The uniform crossover can 

advance the search, unlike the cut point crossover, hence its better performance. However, 
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the rate of increase in the fitness is greater for both cut point crossovers, when compared with 

the uniform crossover. In addition, the uniform crossover only surpasses the cut point 

crossovers once diversity has fallen in the population.  

 

4.4.2 Mutation 

Mutation is an operator which alters one parent only, in terms that it replaces a gene value 

with another from the available alleles. Alleles are defined as a set of legal values that can be 

assigned to a gene. The role of mutation is to preserve diversity in the population, (Deb, 2009). 

It does so, by gradually introducing new genes into the population (Fogel, 2006), (Ashlock, 

2006). A successful mutation assigns gene values that are useful to the evolution. The level of 

mutation can have a positive or negative effect on the evolution (Deb, 2009). The introduction 

of mutation can prevent the search from being trapped in a particular space and can guide it 

to new areas. In contrast, high levels of mutation have a destructive effect on the accuracy of 

the search because in each generation offspring are too diverse from their parents, therefore 

search spaces are not effectively explored.  

 

Apart from the number of genes selected to be mutated, the manner of modification has a 

bearing on the level of diversity (De Jong, 2006). The gene level mutation procedure provides 

the greatest level of diversity and is comparable to the gene level crossover procedure (Patelli, 

2011). A gene value is only mutated if the random probability assigned exceeds the mutation 

probability threshold, which controls the level of mutation in the search. To prevent 

unacceptable accuracy loss, the mutation rate is usually set low (Deb, 2009). Figure 4.11 

illustrates the gene level mutation procedure. 

 

 

 

Figure 4.11 Gene level mutation, where mutation threshold equals 0.1 

 

At any instance in the evolution the mutation operator can replace a gene value with another 

from the set of alleles. Therefore, mutation can reintroduce into the population gene values 

that were discarded during the evolution. Whereas, gene level crossover is limited to gene 

values inside the current population. Hence, the reason why mutation is required even in the 

presence of the diversity promoting gene level crossover. However, the ability of the mutation 

operator to diversify a population that has converged through crossover is deemed slow 

1   0.5 1   0.8 1   0.6 1   0.1 1   0.7 Parent 1 1 1 1 0 1 
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because of the low mutation rate (Fogel, 2006). Therefore, mutation by itself is not sufficient 

to maintain population diversity (Deb, 2009) and subsequently the promotion of diversity 

through crossover is important. 

 

4.4.3 Encapsulation  

Koza (1998) the encapsulation operation protects the genetic material inside Building Blocks 

(BBs) from being modified by genetic operators. These blocks have a good influence on the 

overall fitness of the host individual. However, the main challenge relative to encapsulation is 

identifying the well adapted BBs and estimating their quality in terms of the amount of 

positive influence they have on the fitness of the host individuals. This may be done by means 

of various heuristics (Patelli, 2011), however this is outside the scope of this work. The 

operator is accuracy focused. Like mutation, the operator is asexual. 

 

4.4.4 Decimation 

The decimation operation probabilistically deletes individuals in the offspring pool based on 

their fitness (Koza, 1998) and maintains a proportion of the population for the next 

generation. New individuals have to be constructed for the next generation to compensate for 

the population deficit caused by decimation. The purpose of the decimation operation is to 

reintroduce diversity back into the population on a scale unprecedented to that of crossover 

(Koza, 1998). The operator is extremely diversity friendly and is only appropriate where the 

current population has a very large percentage of individuals of poor fitness or the genotype 

diversity has fallen to an unacceptable level. The operator is applied to prevent the 

persistence of the aforementioned situations in the evolution, which wastes valuable 

computational time.  

 

4.4.5 Expiry Date 

Expiry Date operator protects certain individuals in the reproductive pool from being deleted 

for x generations. The operator promotes both accuracy and diversity. Accuracy is maintained 

in the population because fit parents are not replaced for x generations. However, genetic 

operators are applied to the parents with an expiry date, although their offspring cannot 

replace them. Diversity is maintained in the population by deleting individuals with an expiry 

date after a number of generations. The expiry date can relate to a fixed number of 

generations or to the objective value. In the latter case, after a number of generations without 

improvement in the fitness value the individual is deleted from the population. 



85 
 

4.5 Selection for Reinsertion 

This section deals with the selection of individuals for the following generation and has no 

bearing on the selection of individuals for reproduction, discussed previously. The reinsertion 

method impacts the level of accuracy and diversity in the search. The reinsertion of champion 

individuals into the population will improve the accuracy of the search, at the risk of 

premature convergence. In contrast, the reinsertion of individuals without relation to fitness 

values provides excessive diversity and provides no promotion in terms of accuracy. 

 

De Jong (2006) classified two models for reinsertion: non-overlapping and overlapping. The 

former approach restricts the survival of individuals to one generation because only the 

offspring are eligible for reinsertion. The pitfall of such a model is that offspring with 

diminished fitness relative to their parents are guaranteed to survive in spite of the incurred 

loss in overall population fitness. Therefore, the model does not allow the encouragement of 

accuracy in the search. In contrast, the latter approach provides a much stronger selection 

pressure because individuals can be reinserted from the current population as well as from the 

offspring pool.  

 

The following describes some of the reinsertion methods discussed in Asklock (2006). The 

Random Replacement procedure randomly selects a parent to be replaced irrespective of the 

fitness. The Proportional Roulette Wheel Replacement is identical to proportional roulette 

wheel selection discussed in selection for reproduction, but with one difference.  Individuals 

are selected to be replaced with a probability inversely proportional to their fitness. The Rank-

based Roulette Wheel Replacement is identical to the rank-based roulette wheel selection 

discussed in selection for reproduction, but rank individuals in the opposite order. The 

Absolute Fitness Replacement procedure replaces the least fit individuals in the population 

with the offspring, therefore the approach is considered accuracy friendly. Local Elite 

Replacement the fitness of the two parents and two offsprings are compared and the two 

fittest individuals replace the parents in the current population. This approach encourages 

accuracy. Random Elite Replacement, each offspring is compared against a randomly selected 

individual in the population and only replaces it, if at least as good. There is a possibility that 

the disregarded offspring are better quality than some of the individuals in the population, 

therefore this approach does not encourage accuracy in the search. 
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4.6 Termination Criterion 

In principle the GA is a stochastic approach which could run forever (Gendreau and Potvin, 

2010), therefore a stopping criterion is required. Koza (1998) as stated in Patelli (2011) 

referred to three termination situations: generational, evaluation based and exceptional. The 

generational situation is the most popular and entails algorithm termination after a given 

number of iterations (Koza, 1998). Another termination condition not mentioned by Koza 

(1998), but closely related to the generational situation is “clock wise”, where the evolution 

terminates once the maximum computational time limit has expired. Ideally, GA should 

terminate once the solution is found, however there is no way to guarantee that the global 

solution will be reached (De Jong, 2006). Therefore, the evaluation criterion should enforce 

the evolution to terminate once a solution minimises the objectives to an acceptable extent. 

The exception condition stops the evolution when a certain situation occurs in the search, 

such as diversity loss. The evolution should terminate once diversity falls below a certain level 

and genetic operators are incapable of reintroducing diversity (Patelli, 2011), (Gendreau and 

Potvin, 2010). Diversity may relate to the phenotype or genotype. The individuals in the 

current population may have similar fitness values, yet that does not necessarily imply a 

diversity loss at genotype level. Therefore, to avoid premature termination, convergence 

should relate to the level of genotype diversity in the population (De Jong, 2006). Hence, that 

is the reason why genotype diversity criterion for termination is more commonly employed 

than the phenotype (Gendreau and Potvin, 2010). 

 

4.7 Multi-objective evolutionary algorithms 

This section reviews the most prominent multi-objective evolutionary algorithms (MOEAs) 

research works, as the paradigm is applied here. Non-elitist and elitist multi objective 

optimisation (MOO) approaches are discussed. A non-elitist approach cannot guarantee the 

survival of the best individual into the next generation, irrespective of the high selection 

pressure that may exist. Therefore, there is a risk that the next population is situated in an 

inferior area of the objective space than the previous one (Patelli, 2011). However, these 

approaches are adopted to promote greater search diversity, which is known to prevent 

premature convergence to local optima. In contrast, an elitist approach ensures the 

preservation of the best individual for the next generation, therefore always improving the 

population fitness level. The primary principle governing this approach is that the use of 

elitists will improve the probability of global optimum convergence (Deb, 2009). The reader is 



87 
 

referred to Coello Coello et al. (2007) and Deb (2009) for an extensive review of the subject 

area.  

 

4.7.1 Non Elitist MOO Evolutionary Approaches 

One of the early attempts to use GAs for solving MOO problems is the Vector Evaluated 

Genetic Algorithm (VEGA) by Schaffer (1984). The algorithm considers one sub-population for 

each of the considered objectives, thus promoting the survival of specialised individuals (i.e., 

highly efficient at optimising a given objective function). The working principle of VEGA is that 

by allowing the best individuals from all sub-populations to exchange genetic material, the 

resulting offspring would represent feasible trade-offs with respect to the entire set of 

objectives. 

 

The main challenge of VEGA is that it fosters two opposing phenomena: the mating of 

champions from different sub-populations encourages the creation of individuals with an 

acceptable performance across all objective functions; whereas the speciation process in each 

sub-population develops offspring with a significant bias towards one particular objective 

(Deb, 2009). Since the two phases are run sequentially during the algorithm, the diversity of 

the first order Pareto front is diminished over generations and ultimately causes the algorithm 

to converge towards a near optimal region of the search space (usually with respect to a 

subset of objective functions). 

 

The first GA to adopt a rank based fitness assignment method to solve a MOO problem was 

Fonseca and Fleming’s (1993) multi-objective genetic algorithm (MOGA). The principle of the 

algorithm was to increase the level of search accuracy, by awarding a greater selection 

pressure to individuals with more dominance. In addition, a niching operator was adopted to 

redirect the selection pressure towards individuals located in less populated areas of the first 

order Pareto front, which should allow for the construction of a diverse nondominated front. 

 

From a critical viewpoint, the main shortcoming of the niching operator is that the user must 

define the niching parameter 𝜎share, and when incorrectly set, this may cause the algorithm to 

run inefficiently (Van Veldhuizen and Lamont, 2000). Another issue of concern relates to the 

potential for slow algorithm convergence to the Pareto optimal set, caused by a reduction in 

selection pressure. This situation may occur through fitness sharing, where an individual on a 

lower order Pareto front may have their fitness value diluted because of a high niche count. 
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Therefore, an individual on a higher order Pareto front may have a greater selection pressure 

than one on a lower order front Deb (2009). 

 

Srinivas and Deb (1994) proposed the Nondominated Sorting Genetic Algorithm (NSGA) to 

address the selection bias in VEGA caused by speciation. To address this issue the 

nondominating ranking procedure in Goldberg (1989) and a fitness sharing mechanism were 

implemented in the fitness computation stage. The fitness sharing mechanism reduced the 

selection pressure of individuals located in densely populated areas on the 1st order Pareto 

front, thereby encouraging the selection towards less crowded areas. Srinivas and Deb’s 

(1994) experimental studies compared the NSGA to VEGA, and both approaches demonstrated 

the ability to converge to the Pareto optimal set. However, NSGA demonstrated the ability to 

maintain a steady distribution over the 1st order Pareto front to the end of the simulation, 

which was not replicated by VEGA.  

 

From a critical point of view, the nondominating ranking procedure used to determine 

dominance is computationally expensive (Coello Coello et al., 2007). In addition, the NSGA 

performance is sensitive to the user defined preset niching parameter 𝜎share, which may not be 

very effective for the entire search. 

 

The first MOGA to employ a tournament selection method based on Pareto dominance was 

Niched Pareto Genetic Algorithm (NPGA) in Horn et al. (1994). The tournament selection 

method randomly selected two individuals from the current population to compete based on 

their dominance relationship. A nondominated individual would win the tournament to 

encourage convergence to the Pareto optimal set. In the case of a nondominated relationship 

with respect to each other, the individual located in the least dense region of the partially 

filled next generation population was selected as the winner, in order to achieve the objective 

of finding a diverse spread of nondominated solutions (Deb, 2009). 

 

From a critical viewpoint, the NPGA does not perform fitness computation, unlike some 

MOGAs. Therefore, this method saves on the computational resources required for this 

additional step. In addition, the complexity of the NPGA is not linearly dependent on the 

number of objective functions under evaluation. Thus, the algorithm is likely to be 

computationally efficient for solving problems with a large number of objectives (Deb, 2009). 

In contrast, a shortcoming of the approach is that two parameters require defining: 𝜎share and 
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tdom. The former parameter is used to calculate the nich count required for fitness sharing and 

the second relates to the subset population size. The accurate setting 𝜎share parameter is more 

important in NPGA than NSGA, as each individual situated within that distance will provide an 

equal contribution to the nich count. Whereas, in the latter method the contribution made by 

each individual is relative to their position from the seed (Deb, 2009). In addition, Horn et al. 

(1994) provided no guidelines to define tdom. However, their experimental study suggested the 

size of the subset population to be approximately 10% of the current population. The setting 

of tdom is important because it is used to control the selection pressure and influence the 

convergence speed of the algorithm. Their experimental results demonstrated tdom sensitivity 

on the performance of NPGA. It was realised that a too small tdom would create a noisy Pareto 

front with a risk of slow convergence. In contrast, if tdom was set too large the computational 

complexity of the algorithm would increase and there would be a risk of premature 

convergence. 

 

4.7.2 Elitist MOO Evolutionary Approaches 

Deb et al. (2002) proposed the Nondominated Sorting Genetic Algorithm II (NSGA-II) to 

address the shortcomings that existed with Srinivas and Deb’s (1994) NSGA: high 

computational complexity of the nondominated sorting algorithm; non-elitist approach and 

the need for a preset 𝜎share parameter for fitness sharing. Deb et al. (2002) overcame the first 

issue by introducing a new nondominating sorting algorithm with a lower computational 

complexity, although the storage requirements for this method were higher. To address the 

second issue, a crowded tournament selection procedure was applied to guarantee elitist 

survival. However, where individuals shared the same Pareto front, the solution located in a 

less crowded region would survive to promote greater solution diversity. To address the third 

issue a crowded-comparison procedure was proposed to compute neighbourhood solution 

density, without the need for the user defined 𝜎share parameter. This procedure proved to be 

more computationally efficient. 

 

Deb et al. (2002) experimentally validated NSGA-II’s superiority over Knowles and Corne’s 

(1999) Pareto Achieved Evolutionary Strategy (PAES) and Zitzler’s (1999) Strength Pareto 

Evolutionary Algorithm (SPEA), by showing the algorithm’s convergence to a diverse Pareto 

optimal front. In addition, NSGA-II was simulated on a constrained MOO problem and 

compared against the Ray-Tai Seow algorithm. Again, NSGA-II had a better convergence to the 

Pareto optimal set and an improved distributed spread along the 1st order Pareto front. 
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NSGA-II was proposed to address the shortcomings with NSGA; however in the study no 

experiments were conducted to compare both methods with respect to convergence to a 

diverse Pareto optimal front, therefore NSGA-II’s superiority cannot be verified. In addition, 

Deb et al. (2002) arbitrarily set NSGA-II parameters, which may have an adverse effect on the 

algorithm performance. Instead an improved approach would have been to experimentally 

tune parameters to the test problem. Moreover, NSGA-II repeated refinement of the 

population over the generations to ensure diversity on the 1st order Pareto front was 

computational resource intensive (Deb, 2009). Furthermore, the refinement process may 

cause solutions in a region desired by the decision maker to be deleted. However, this process 

is important to maximise the probability of finding a solution required by the decision maker, 

considering that their requirements may not be known prior to the experimental study. 

 

Knowles and Corne (2000) proposed the Pareto Achieved Evolutionary Strategy (PAES). Their 

main contribution was a selection for reinsertion method that evaluated the dominance 

relationship between a parent and their offspring. The nondominated individual was selected 

for reinsertion. In contrast, a nondominance relationship gave rise to a set of possible 

outcomes, which were assessed using an external population of nondominated individuals, 

similar to the one used in Horn et al. (1994). In the event an offspring shares the same 

dominance relationship with the individuals in the external population, the selection decision 

is made with respect to maximising diversity in the search space. A crowding procedure 

superimposed a grid over the objective space containing the nondominated solutions and the 

parent or offspring located in the least dense cell was selected for reinsertion. 

 

The external population plays a positive role in finding a diverse nondominated set. On a 

different issue of importance, the crowding procedure used a standard grid cell size, which 

contributed to the uniform spread of nondominated individuals. However, the cell depth must 

be defined by the user and this may lead to an inefficient setting. For instance, population 

diversity may not be maintained with a large cell depth and it may prove computationally 

expensive to evaluate a greater number of smaller cells. In addition, the cell density may not 

provide an accurate representation of the search space coverage, as the individuals could be 

located anywhere within the cell. Instead, the average distance between the individuals in a 

cell is a more accurate diversity measurement (Maceachren, 1985). Moreover, an increase in 

the number of objective functions evaluated would increase the number of grid cells 
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exponentially, therefore increasing the difficulty of generating a diverse spread of 

nondominated solutions. 

 

Zitzler and Thiele (1999) introduced the Strength Pareto Evolutionary Algorithm (SPEA). The 

method applied a fitness assignment procedure similar to the one introduced by Fonseca and 

Fleming (1993), where an external population of nondominated individuals was used to 

compute fitness values (Deb, 2009). The fitness assignment procedure assigned a strength 

value to each external population member relative to the number of individuals it dominated 

in the current population. The fitness value of a current population member was then 

calculated by adding the strength value of each nondominated individual in the external 

population that dominated it (Deb, 2009), (Coello Coello et al., 2007). Thereafter, a 

tournament selection procedure was applied to the combined current and external 

population. A clustering algorithm was used to update the external population with a fix 

number of diverse nondominated solutions. The clustering algorithm iteratively grouped 

neighbouring individuals until the number of sets amounted to the population size. Then a 

single individual with the minimum average distance among others was selected to form the 

diverse nondominated set (Deb, 2009). 

 

From a critical point of view, the fitness assignment phase is likely to be computationally 

resource expensive compared to MOEAs with a single population. However, the SPEA 

clustering algorithm is parameter-less and is considered to be more robust than NSGA, which 

requires the tuning of the niching parameter 𝜎share. Another aspect of importance relates to 

the impact the external population size has on the selection process. For instance, a large 

population size will consume greater computational resources because of the increase in the 

number of evaluations required (Van Veldhuizen and Lamont, 2000). In contrast, a smaller 

population will make it difficult to achieve a diverse spread of nondominated solutions. On a 

different issue of importance, the individuals on the same nondominated set were not 

assigned a uniform fitness value, but instead their values were relative to the number of 

individuals they each dominate. Therefore, a bias exists that favours certain individuals on the 

1st order Pareto front more than others. However, in the absence of objective weighting 

information such a bias is unjustified. Also, the tournament selection procedure is likely to 

select the nondominated individuals from the external population rather than those 

individuals in the current population. This may help achieve greater convergence to the Pareto 
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optimal region, however does little to promote the construction of a diverse nondominated 

set.   

 

Van Veldhuizen (1999) proposed the Multiobjective Messy GA (MOMGA). The goal was to 

investigate the link between building blocks and MOEA search. The method consisted of a 

primordinal and juxtapositional phase. The primordinal phase identified and maintained 

important building blocks for the search. For instance, an initial population was constructed 

containing all building block combinations of a specified size. Thereafter, a set of template 

chromosomes were used to evaluate the building blocks and to ensure the survival of blocks 

that optimise each objective function. The juxtapositional phase recombined those building 

blocks to generate optimal solutions using the cut and splice genetic operator. The populated 

solutions were compared to one another using the Horn et al. (1994) tournament selection 

procedure, where a fitness sharing scheme was applied. 

 

From a critical point of view the algorithm is computationally resource expensive in the early 

generations because the primordinal phase requires the evaluation of a large population, 

where every possible building block is represented. Instead, a more computationally efficient 

approach would have been to realise a diverse set of building blocks for the initial population. 

Using a different template for each objective function prevents a bias in the search towards 

any one particular region, as would have been the case with a single template. Moreover, an 

external population archives the nondominated individuals found in the search. This 

population is important to prevent the stochastic nature of the algorithm from eliminating 

elite solutions. 

 

Osyczka and Kundu (1995) proposed a distance based Pareto genetic algorithm (DPGA), which 

computed fitness values for nondominated individuals relative to their distance from an 

external population of elites. The fitness value of an individual was the sum of the spatially 

closest elite fitness and the minimum Euclidean distance between the pair. Therefore, the 

method assigned a large fitness value to a distant nondominated individual from the external 

population of elites, which was critical to achieving a diverse Pareto optimal set. For instance, 

a distant nondominated solution that dominates any external population elite must be located 

closer to the Pareto optimum set. Furthermore, a distance nondominated solution in the same 

dominance relationship with the external population would support the generation of a 

diverse Pareto optimal set. 
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From a critical standpoint, the benefit of storing an unlimited number of nondominated 

solutions inside an external population was to provide a decision maker with a wider choice. 

However, this choice is likely to increase the algorithmic complexity, especially as the archive 

is utilised in the fitness computational stage. In recognition of this issue, Zitzler and Thiele 

(1999) restricted the external population size. Osyczka and Kundu (1995) did not employ a 

fitness sharing method and therefore the shortcomings of using a niching operator were not 

experienced as with many other MOEAs. However, the fitness assignment method suffered 

from a major weakness, as the elite fitness was sensitive to the order of insertion into the 

external population. Therefore, it was possible for an elite residing in a densely populated area 

to have a higher fitness than one located in a less crowded area, as shown in Figure 4.12. As a 

result, the method may not generate a diverse set of nondominated solutions. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Elite individual E1 has a lower fitness than E2 and E3 

 

Table 4.1 summarise the contributions of the MOEA research works reviewed above. 
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Table 4.1 MOEA research works review 
Method 

Type Method Advantage(s) Disadvantage(s) Publication 

Elitist 

Nondominated Sorting 
Genetic Algorithm II (NSGA-II) 

Most prominent MOGA Algorithm convergence property loss, as the nondominated 
set exceeds the population size 

Deb et al. (2002) No niching operator required Cycle between converging towards the Pareto optimal set and 
finding a distributed set 

Theoretical proven to lead to the Pareto optimal set   

Pareto Achieved Evolutionary 
Strategy (PAES) 

Grid based crowding procedure capable of finding an 
evenly distributed Pareto optimal set 

Algorithm complexity increases with the objective dimension 
size Knowles and Corne 

(2000) 
  Preset cell depth parameter 

Strength Pareto Evolutionary 
Algorithm (SPEA) 

Clustering method does not require parameter setting Bias towards certain nondominated individuals 
Zitzler and Thiele (1999) 

Exhibits a convergence proof to the Pareto optimal set Clustering algorithm computational complexity is greater than 
the crowding strategy of NSGA-II 

Multiobjective Messy GA 
(MOMGA) 

Construction and maintenance of high quality building 
blocks 

Algorithm is computationally expensive at the early 
generations of the search Van Veldhuizen (1999) 

  Preset σshare parameter 

Distance based Pareto 
genetic algorithm (DPGA) 

Single fitness metric used to achieve the MOO goals Algorithm computational complexity increases with 
generations, as elite archive size is not restricted Osyczka and Kundu 

(1995) 
  Fitness assignment method is sensitive to the order of 

insertion inside the elite archive 

Non 
Elitist 

Niched Pareto Genetic 
Algorithm (NPGA) 

Algorithmic complexity not overly dependent on the 
number of objective functions 

Method performance is more sensitive to σshare parameter 
than NSGA Horn et al. (1994) 

No fitness computation performed   

Nondominated Sorting 
Genetic Algorithm (NSGA) 

Pareto optimal set convergence, as fitness is based on 
the non-dominated sets 

Nondominated sorting algorithm has a high computational 
complexity 

Srinivas and Deb (1994)   Preset σshare parameter 

  Method performance is sensitive to σshare parameter 
Multi objective Genetic 

Algorithm (MOGA) Simple fitness assignment scheme High selection pressure potential for upper order Pareto set 
individuals 

Fonseca and Fleming 
(1993) 

Vector Evaluated Genetic 
Algorithm (VEGA) 

Easy to implement Bias towards champion solution of each objective 
Schaffer (1984) 

Find solution near to the individual best of each objective MOO goal for diversity is not met 
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This chapter provides critical insight into the structure and practical use of the most significant 

EAs documented in the literature, with special focus on MOEAs. EAs represent powerful 

computational tools for solving computational challenging optimisation problems. Moreover, 

EAs exhibit a significant potential with respect to solving a wide range of practical problems, 

given their inherent extensibility. Specifically, the generic EA framework is easily adjustable to 

fit the requirements of various implementation scenarios, by seamlessly integrating additional 

tools and custom algorithms (Coello Coello et al., 2007). A framework for such extensions is 

proposed in the following chapter. 
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5. METHOD 

 

The methodology chapter is divided into two parts: the first introduces the routing heuristic, 

RouteAlg, for the travelling salesman problem with simultaneous delivery and pickup (TSPSDP) 

and the second presents the main contribution of this research, SDPmethod, to solve the 

multi-objective vehicle routing problem with simultaneous delivery and pickup (VRPSDP). 

 

 

PART 1 - RouteAlg 

 

A routing algorithm called RouteAlg is herein proposed to solve the Travelling Salesman 

Problem with Simultaneous Delivery and Pickup (TSPSDP). This algorithm is of a new design 

and comprises of four heuristics: Modified Nearest Neighbourhood (MNN) algorithm (Section 

5.1), Reverse procedure (Section 5.2), Ejection/Reinsertion (EjRi) method (Section 5.3) and 2-

opt/Or-opt method (Section 5.4) respectively, in order to determine a high quality solution for 

the NP-hard problem, as defined in Chapter 3. The Modified Nearest Neighbourhood (MNN) 

algorithm generates a reasonably good solution to the relaxed version of the TSPSDP, known 

as the Travelling Salesman Problem (TSP). The Reverse procedure reverses the orientation of 

the TSP route, in order to induce TSPSDP feasibility. The Ejection/Reinsertion (EjRi) method 

also guides an infeasible solution towards a TSPSDP feasible space. Finally, the 2-opt/Or-opt 

method uses intra-route operators in order to find an optimised solution. A heuristic based 

solution procedure is deliberately chosen to better manage the tradeoffs between accuracy 

and computational resource consumption. 

 

5.1 Modified Nearest Neighbourhood (MNN) algorithm 

The MNN algorithm is a routing method used to solve the Travelling Salesman Problem (TSP), 

which is a relaxed version of the TSPSDP problem. A simplified version of the problem is solved 

given that the two problems are identical in the absence of vehicle capacity violations, 

therefore it may be hypothesised that a high quality solution for the TSP will share traits with a 

similar quality TSPSDP solution. This claim is supported by the experimental results in Chapter 

6, where the solutions are thoroughly evaluated.  

 

The MNN algorithm is an adaptation of the Nearest Neighbourhood (NN) algorithm because it 

is known to produce a reasonably good Hamilton cycle for the Euclidean TSP at a low 
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computational cost (Gutin et al., 2001). However, the NN algorithm has a greedy nature, 

therefore, the MNN algorithm is used in this work in order to hedge against the greedy nature 

of NN algorithm, whilst not hindering the aforementioned advantages. MNN algorithm will 

generate a set of diverse routes. Figure 5.1 outlines the pseudo code for MNN algorithm. 

 

1 MNN() returns G  
2 Depot → 0  
3 Initialise G: [0, 1, 2, 3, ..., N, 0]  
4 Total Length TL(G) = ∞  
5 for i=1:N  
6  Initialise G’: [0, i]  
7  Initialise unvisited_list: [1, 2, 3, ..., N] \ [i]  
8  while (unvisited_list is not empty)  
9   find j from unvisited_list, where aij is min  

10   add j → G’  
11   unvisited_list = [j≠i]  
12   current node i=j  
13  end  
14  add 0 → G’  
15  if TL(G’)<TL(G)  
16   G=G’  
17  end  
18 end  

 

Figure 5.1 MNN algorithm pseudo code. Notations: G - graph; G’ - new graph; TL - total length; 

i,j - number of nodes; aij - edge between nodes i and j; unvisited_list – list of unvisited nodes. 

 

The graph (G) defines a Hamilton cycle, which starts at the depot (0) and connects a set of 

nodes (i=1, N) before terminating at 0. The initial G is arbitrarily constructed to include all 

nodes with a total length (TL) preset to infinity (∞). For each node i, the creation of a graph 

(G’) of a shorter length than the recorded best solution G is attempted (lines 4 to 17). The list 

of unvisited nodes unvisited_list is initialised to contain all nodes except i. At each step, node j 

from unvisited_list with the shortest distance aij is found and added to G’, until all nodes from 

unvisited_list have been added (lines 7 to 9). If G’ is shorter than the best so far G, it is 

updated to G’ (lines 14 to 15).  

 

A simple extension to the NN algorithm is to select a different starting node every time the 

problem is rerun, in order to generate a number of solutions, where the best known is 

selected. However, this approach is not applicable here because the TSPSDP formulation 

defines the depot as the source node for the Hamilton cycle. To overcome this issue, the MNN 

algorithm selects a different first node to be serviced after the depot in every run, in order to 
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generate a range of cycles. The proceeding node insertion strategy of the MNN algorithm is 

identical to the NN algorithm, where a greedy selection is made at every stage. The Hamilton 

cycle with the minimum weight is selected as the initial solution, since a well constructed 

initial route will normally generate a good final solution (Jun and Kim, 2012). 

 

The level of diversity introduced by the MNN algorithm is limited as additional computational 

resource consumption at this stage of RouteAlg is not recommendable because the resultant 

solution would not be built in accordance to TSPSDP feasibility. 

 

5.2 Reverse procedure 

The second component of the RouteAlg is the Reverse procedure, which is used to guide the 

MNN algorithm solution towards a TSPSDP feasible space. In the case that a violation is 

encountered, the cycle is reversed in an attempt to reduce vehicle capacity infeasibility, as in 

Wassan et al. (2008), Nagy (1996). However, the Reverse procedure does not guarantee a 

reduction in the level of TSPSDP infeasibility and in certain instances may have an adverse 

effect. In this work, the reverse route will replace the incumbent, if TSPSDP feasibility is 

improved. The subsequent weight of the cycle remains unchanged because the same edges 

are presented, as shown in Figure 5.2(a,b).  

 

 

 

 

 

 

Figure 5.2a        Figure 5.2b 

 

Wassan et al. (2008) experientially tested their method inclusive and exclusive of the Reverse 

procedure. The results indicated that the former scenario led the search towards a higher 

quality area of the solution space. In addition, the procedure had an insignificant 

computational cost O(N), where N is the number of nodes, which further justified its 

implementation. The aforementioned reasons underpin the implementation of the Reverse 

procedure inside the RouteAlg. 
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5.3 Ejection/Reinsertion (EjRi) Method  

The third component of the RouteAlg is the EjRi method, which also modifies an infeasible 

TSPSDP Hamilton cycle in order to guide the search towards a feasible space. The proposed 

method is designed to induce time window feasibility at the nodes for the TSPSDPTW. It is 

important to mention here that the consideration of time windows is outside the scope of this 

research. In spite of this, the EjRi method will be discussed here inclusive of time windows to 

demonstrate its setup to a wider audience. The requests that have infringed the capacity and 

time window constraints are removed from the route. Although, the route feasibility is not 

recalculated each time a request is ejected because the optimal sequence of ejection is 

unknown. A consequence of the employed ejection method is that a greater number of 

requests may be removed from the cycle than is actually necessary. The ejected requests are 

then reinserted inside the cycle using Equation 5.1, which defines a unique position for 

reinsertion, in order to increase the likelihood of TSPSDP feasibility. 

 

Tour=[Depot, Ejected Time Window, Cycle excluding Ejection, Ejected Pickup, Depot] 

(5.1) 

 

The ‘Ejected Time Window’ nodes are added between the depot and the first node of the 

‘Cycle’, in ascending order of their time window restriction, with the tightest time window 

nodes being serviced first. This ordering is typical for routing problems with time windows 

(Potvin and Rousseau, 1995) because the probability that the nodes are serviced within their 

respective time windows is increased. In contrast, the ejected pickup nodes are added 

between the last node of the ‘Cycle’ and the depot, in ascending order of net load increase on 

the vehicle capacity. The ordering of net pickup nodes was suggested by Chen and Wu (2006). 

These nodes are reinserted after the ‘cycle’ because the vehicle capacity slack is greatest at 

this point. In the situation, where multiple nodes share the same time window or net load 

capacity, the order of reinsertion is random. Figure 5.3(a,b) illustrates a solution generated to 

a problem using the EjRi method.  
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           Figure 5.3a                       Figure 5.3b   

 

Figure 5.3a illustrates a route with unfeasible nodes: vehicle capacity infeasible ‘C’ and time 

window infeasible ‘E’. These nodes are ejected and reinserted into the route using the above 

approach, as shown in Figure 5.3b. 

 

EjRi method is inspired by the approach adopted in Bianchessi and Righini (2007), where the 

nodes that violated the capacity feasibility constraints were ejected from the cycle and were 

reinserted in reverse order of ejection. Unfortunately, their sequence of reinsertion does not 

guarantee capacity feasibility along the route. In addition, their approach did not consider 

time window constraints, which are considered by EjRi method. 

 

A limitation of the EjRi method is that it does not guarantee a TSDSDP feasible solution and 

may in certain circumstances lead to further infeasibility. In addition, the reinsertion of nodes 

inside the cycle in order to gain a feasible solution may deteriorate the solution quality of the 

cycle. Another consequence relates to the fact that the EjRi method does not eject nodes that 

violate the maximum route capacity constraint, because Formula 5.1 does not consider such a 

restriction.  

 

5.4 2-opt/Or-opt method 

A 2-opt/Or-opt method is a local optimisation technique. In the context of this research, 2-

opt/Or-opt method is applied to the Hamilton cycle determined by the EjRi method, in order 

to overcome the limitations of the method and to further minimise the weight of the cycle. 

There are many different ways to modify a cycle in order to find an improved solution. In the 

context of this research, two intra-route operators are applied: 2-opt and Or-opt. An intra 

route operator rearranges a proportion of the cycle in order to define a neighbouring solution 

to the incumbent. The 2-opt/Or-opt method applies the 2-opt and Or-opt operators in a loop, 

which have also been used in combination in the following VRPSDP literature: Jun and Kim 
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(2012), Subramanian et al. (2010a) and Chen and Wu (2006). The loop will terminate when an 

improved neighbourhood solution can be found by an operator. In addition, the operators will 

only replace the incumbent cycle with a feasible TSPSDP solution. The 2-opt and Or-opt 

operators are described in greater detail below. 

 

5.4.1 2-opt operator 

The 2-opt operator was introduced by Lin (1965) and it has been used extensively to improve 

vehicle routing solutions (Taillard et al., 1997), as it quickly converges to the local optimum 

(Potvin and Rousseau, 1995). The 2-opt operator removes two non-adjacent edges and 

sequentially inserts two new edges in order to identify a different Hamilton cycle. The 2-opt 

searches the neighbourhood of the current solution, where there are O(Nk) possibilities of 

selecting two links to be replaced in order to construct a new cycle, where k is the number of 

edges being replaced and N is the number of edges in the cycle (Potvin and Rousseau, 1995). 

The cycle with the greatest improvement replaces the incumbent. This procedure is repeated, 

until an improved cycle can no longer be found, in which case a 2-optimal is said to be found. 

The 2-opt operator is applied in the identical manner in this research. Figures 5.4(a,b) illustrate 

the application of 2-opt operator and Figure 5.5 describes the pseudo code for the operator. 

 

 

            

 

 

 

                                Figure 5.4a                                      Figure 5.4b 

 

Figure 5.4a illustrates the current cycle, where the edges (i, i+1) and (j, j+1) were deleted and 

the edges (i, j) and (i+1, j+1) were inserted in order to construct the neighbouring solution in 

Figure 5.4b. 
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1 2-opt(G=[e1, ..., eN-1]) returns G 
2 Gcurrent, G’ 
3   
4 do 
5  Total Length (TL) = Length (G) 
6  Gcurrent=G 
7  for i=1:N-1  
8   G’ = G  
9   G’ = G’ \ { (i, i+1), (j, j+1) }, where j≠i+1  

10   G’ = G’ ∪ { (i, j), (i+1, j+1) }  
11   if TL(G’)<TL(Gcurrent)  
12    Gcurrent=G’  
13   end  
14  end  
15   
16  if TL(Gcurrent)<TL(G)  
17   G=Gcurrent  
18  else  
19   break  
20  end  
21 end  

 

Figure 5.5 Pseudo Code for 2-opt operator. Notations: G - graph, Gcurrent - incumbent graph; G’ - 

new graph; TL - total length. 

 

The graph (G) comprises of edges e1, ..., eN-1, which define a Hamilton cycle of a total length 

TL(G). The 2-opt operator searches the neighbourhood of the G by removing edges (i, i+1) and 

(j, j+1) and replacing them with edges (i, j) and (i+1, j+1) (lines 9 and 10). The new graph G’ will 

replace the best graph found so far (Gcurrent), if TL(G’) is lower than TL(Gcurrent) (lines 11 and 12). 

Once the neighbourhoods of G have been explored, Gcurrent will replace G, if TL(Gcurrent) is lower 

than TL(G) (lines 16 and 17). The aforementioned process is repeated with the new graph G, 

until no further improvement can be made. 

 

The 2-opt operator is not well adapted to problems with time windows because the 

orientation of the route cannot be preserved. However, the reversal of a proportion of the 

cycle may be advantageous in introducing route capacity feasibility, as shown in Figure 

5.4(a,b), where the cycle orientation between i+1 and j was reversed. Therefore, it is useful for 

TSPSDP problems, and may be beneficial to TSPSDPTW problems with limited number of time 

window restrictions.  
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5.4.2 Or-opt operator 

The Or-opt operator was proposed by Or (1976), which has proven to produce high quality 

solutions (Potvin and Rousseau, 1995), whilst being computational resource efficient (Toth and 

Vigo, 2002). This operator removes a maximum of three adjacent nodes from the cycle and 

reinserts them in the same sequence between two adjacent nodes in the cycle. This operator 

explores the removal of all three, two and one adjacent nodes and their insertion in all 

possible points in the cycle. The cycle with the greatest improvement replaces the incumbent 

and the procedure is repeated, until no further improvement is possible. The Or-opt operator 

maintains the orientation of the relocated nodes and the cycle, therefore it is a powerful 

approach for a problem containing time windows (Potvin et al., 1996). The Figures 5.6(a,b) 

illustrates the application of Or-opt operator and Figure 5.7 describes the respective Pseudo 

code. 

 

 

 

 

 

 

  Figure 5.6a                       Figure 5.6b 

 

Figure 5.6a the adjacent clients i and i+1 were re-inserted in another position in Figure 5.6b. 
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1     Or-opt(G=[e1, ..., eN-1]) returns GFinal 
2 G1, G2, G3, GFinal, GCurrent, G’ 
3   
4 GFinal=G 
5 TL(GFinal)=∞ 
6   
7 for k=1:∞ 
8  opt 1 
9  G3=G 

10  for i=1:N-5 
11   for j=i+3:N-2 
12    G’=G 
13    G’ = G’ \ { (i-1, i), (i+2, i+3), (j, j+1) } 
14    G’ = G’ ∪ { (i+2, j), (i, j+1), (i-1, i+3) } 
15    if TL(G’)<TL(G3) 
16     G3=G’ 
17    end 
18   end 
19  end  
20  opt 2 
21  G2=G 
22  for i=1:N-4 
23   for j=i+1:N-2 
24    G’=G 
25    G’ = G’ \ { (i-1, i), (i+1, i+2), (j, j+1) } 
26    G’ = G’ ∪ { (i+1, j), (i, j+1), (i-1, i+2) } 
27    if TL(G’)<TL(G2) 
28     G2=G’                                                          
29    end 
30   end 
31  end 
32  opt 3 
33  G1=G 
34  for i=1:N-3 
35   for j=i+1:N-2 
36    G’=G 
37    G’ = G’ \ { (i-1, i), (i, i+1), (j, j+1) } 
38    G’ = G’ ∪ { (i, j), (i, j+1), (i-1, i+1) } 
39    if TL(G’)<TL(G1) 
40     G1=G’ 
41    end 
42   end 
43  end 
44  
45  Gcurrent=min(TL(G1), TL(G2), TL(G3)) 
46  
47  if TL(Gcurrent) < TL(GFinal) 
48   GFinal=Gcurrent 
49   G=Gcurrent 
50  else 
51   break 
52  end 
53  
54 end 

 

Figure 5.7 Or-opt pseudo code. Notations: G - graph including edges e1, ..., eN-1; GFinal - best 

stored graph in simulation; GCurrent - best graph determined in generation; G’ - new graph; G1 - 
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best graph with one node sequence, G2 - best graph with two consecutive node sequence, G3 - 

best graph with three consecutive node sequence; TL - total length. 

 

The initial graph (G) consists of a set of edges e1, ..., eN-1, which arbitrarily connect N nodes. In 

Opt 1, three consecutive nodes are relocated to a new position in G, thus creating a new graph 

G’ (lines 13 and 14). The G’ with the lowest total length (TL) is saved as the best known 

solution G3 (lines 15 and 16). All insertion positions are explored for a set of consecutive 

nodes (line 11) and the process is repeated for all consecutive combinations (line 10). An 

identical process follows for Opt 2 and Opt 3, with the exception that two and one consecutive 

nodes are respectively considered for relocation to a new position in G (lines 25 and 26), (lines 

37 and 38). The minimum length graph G3, G2 or G1 will replace the smallest length graph 

found so far GFinal, if it has been minimised (lines 47 and 48). The aforementioned process will 

continue until no further improvement is possible. 
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PART 2 - SDPmethod 

 

In this section a three phase procedure called SDPmethod is introduced to solve the VRPSDP. 

Phase 1 determines a diverse range of partial solutions, which are hypothesised to build near 

optimal complete solutions. Phase 2 defines the assignment possibilities of the remaining 

unassigned requests to the established routes based on spatial proximity. Finally, Phase 3 

attempts to find the near-optimal solutions by exploring the assignment possibilities defined in 

Phase 2 using a Parallel GA Model. Figure 5.8 illustrates the components of the SDPmethod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Components of the SDPmethod 

 

PHASE 1 - constructs a population of diverse partial solutions 

I. Spatial Cluster Method - Determine clusters 

II. Modified Greedy Selection Strategy - Determine a cluster set 

III. Randomness Inducing Operator - Determine a wider range of cluster sets 

IV. New Modified Greedy Selection Strategy - Select cluster sets for a population 

PHASE 2 - define assignment possibilities of non-clustered requests 

I. Radial Expansion Method - Determine assignment possibilities for non-clustered 

requests based on their spatial proximity to a set of clusters 

II. Defining Segments Method - Defines a set of non-clustered requests with an 

identical assignment possibility 

III. Single Request Adjustment Method - Relaxes the assignment constraints for 

isolated non-clustered requests 

PHASE 3 - parallel GA model is used to solve the remaining assignment problem 

I. Initial and Genetic Information Processing - Defines: chromosome construction, 

population generation and a modification procedure for the population 

II. Linear Evaluation - Defines: objective functions, Pareto sets and fitness 

computation 

III. Selection for Reproduction - Proportional Roulette Wheel Selection 

IV. Genetic Operators - Includes: 2-cut point crossover, gene level crossover, 

mutation, decimation and injection via snapshot 

V. Selection for Reinsertion - Adaptive procedure based on the needs of the search 

VI. Termination Criterion - Generational stopping criterion 
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5.5 Phase 1 (Partial solution construction) 

The purpose of Phase 1 is to construct a population of diverse partial solutions for the VRPSDP. 

It is hypothesised that the partial solutions will cover areas of the search space likely to 

generate near-optimal solutions. This phase consists of a family of procedures: Spatial 

Clustering Method (SCM), Modified Greedy Selection Strategy (MGSS), Random Inducing 

Operator (RIO) and New Modified Greedy Selection Strategy (NEWMGSS), which are 

sequentially applied. The role of SCM is to define various feasible vehicle capacity and route 

time assignments, termed clusters. MGSS is employed to determine a potential combination 

of clusters for the VRPSDP. Following the success of the aforementioned method, further set 

combinations are explored using RIO. Finally, NEWMGSS selects a range of diverse cluster sets 

for exploration. The aforementioned are now discussed in greater detail. 

 

5.5.1 Spatial Clustering Method (SCM) 

SCM is a clustering method that can be applied over any data set in order to group certain 

data samples together, provided that they share given common features. The reader is 

referred to Xu and Wunsch (2009) for extensive information on clustering techniques. The 

purpose of SCM is to define a set of clusters, where each one represents a feasible route 

assignment in terms of VRPSDP problem context. The method consists of two sequential steps:  

determine capacity and then route time feasible clusters. The former step maximises the 

capacity utilisation of each cluster, whereas, the latter step aims to determine the minimum 

route service time of each cluster assignment.  

 

The SCM clusters requests based on the spatial proximity to a reference point, termed seed. A 

seed refers to the geographical location of a request represented as a set of latitude and 

longitude coordinates. Every request is represented as a point in a 2-dimensional coordinate 

space. A circular vicinity of a given radius is considered for each seed, thus forming a set of 

clusters. The purpose of the procedure is to maximise the requests situated inside each 

cluster, whilst complying with a set of uniform volume and weight constraints. These 

constraints equate to the capacity defined in terms of volume and weight of a given vehicle 

from a homogenous fleet used to service the region. This way all clusters are guaranteed to 

represent a feasible vehicle load. However, the capacity constraints may be reduced at later 

stages of the SDPmethod, as explained in MGSS section. Figure 5.9 illustrates the cluster 

approach adopted in pseudo code. 
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1 SCM(P=[p1, ..., pN], V=[v1, ..., vN], W=[w1, ..., wN], Volmax, Wgtmax, R) returns pi_FeasibleList 
2 Vol=0, Wgt=0 
3 pi_list=[] 
4   
5 for i=1,N  
6  r=R, Vol=0, Wgt=0  
7   pi_list=[] 
8   for j=1,N 
9   if dist(pj,pi)≤r 

10    Vol = Vol + vj   
11    Wgt = Wgt + wj 
12    pi_list = [pi_list, pj] 
13    if Vol > Volmax OR Wgt > Wgtmax 
14     break    
15    else    
16     r= r + R     
17     pi_FeasibleList = pi_list 
18    end 
19   end 
20  end 
21 end 

 

Figure 5.9 SCM pseudo code. Notations: P - set of nodes; V - node volume vector; W - node 

weight vector; Volmax - Maximum volume of cluster; Wgtmax - Maximum weight of cluster; 

pi_FeasibleList - feasible node list within certain distance of pi; R - preset distance; pi_list – 

node list within certain distance of pi. 

 

The vector (P) defines a set of nodes situated on a plane, where vectors (V) and (W) 

respectively state their volume and weight. A cluster (pi_List) is initialised by node pi and 

nodes nj are included in the cluster in increasing order of distance to pi (lines 9 to 12). The 

expansion of the cluster is controlled by radius (r), which is iteratively increased by a preset 

distance (R). The R parameter value has been selected after a series of trial and error 

experiments. R is set to 5% of the distance between two of the furthest nodes in the plane, 

which provides a convenient tradeoff between exploration and computational resource 

efficiency. The cluster expansion phase will cease once no further insertions are possible 

without either violating the cluster total volume (Voli) or total weight (Wgti) (lines 13 to 14), 

thus forming a capacity feasible cluster (pi_FeasibleList). The aforementioned process is 

repeated to construct a capacity feasible cluster for every node pi. 

 

A circular vicinity is used to cluster in order to encourage compact assignments. The most 

recognised measure of compactness for a shape is the ‘perimeter to area ratio’ (Maceachren, 

1985), and is based on the compactness of the outer boundary. A circular geographical 
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coverage has the shortest perimeter for a given area (Angel, 2010). It is hypothesised that 

clustering based on a circular vicinity will maximise the density of requests assigned in a given 

area. Although, clustering requests based on spatial distances from the seed does not 

guarantee the requests are closely clustered. The measure of compactness based on 

dispersion of elements within an area considers the unit as a whole and therefore provides the 

most accurate measure of compactness (Maceachren, 1985). For example, Figures 5.10(a,b) 

illustrate two circular areas with an identical perimeter to area ratio, but the dispersion of 

elements between the three nodes in Figure 5.10b is lower than that of Figure 5.10a.  

 

 

 

 

 

 

 

 

 

                                       Figure 5.10a                             Figure 5.10b  

 

Since, the dispersion of elements within a given area is a more precise measure of 

compactness the route distance for each capacity feasible cluster is calculated using the 

RouteAlg. This measurement determines the distance taken by a driver to service all the 

requests inside a cluster, including deadheading to and from the depot, as illustrated in Figure 

5.11 for a four node problem. In the presence of a route distance constraint, the cluster 

assignments with routing distances within the constraint bounds are deemed service feasible. 

The capacity and route distance feasible clusters are referred to as clusters and are used to 

construct cluster sets in MGSS. 
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Figure 5.11 

 

5.5.2 Modified Greedy Selection Strategy (MGSS)   

MGSS is a selection mechanism, which is applied after the termination of SCM. MGSS makes 

an order dependant choice at each step with the purpose of discovering the global optimum. 

The purpose of MGSS is to combine a set of clusters, which respectively define a minimum 

number of routes required to service the demand. A greedy method is used to generate at 

least one cluster set, even if it is sub-optimal. 

 

The MGSS aims to maximise a compactness function in Equation 5.2 and therefore selects 

clusters to form part of the set in descending order of compactness. The compactness metric 

is defined as the average routing distance between requests inside a cluster, including 

deadheading. The cluster with the highest compactness measure on average has the smallest 

distance between servicing requests compared to all other routes. The maximisation of 

compactness allows for an increase in the level of slack available for non-cluster requests 

assignment. However, this does not guarantee a feasible or high quality final solution, 

although, it does increase the probability of finding such a solution.  

 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟) =
𝐷𝑐

𝑁𝑐
 

(5.2) 

where, Dc defines the minimum routing distance for the cluster nodes and Nc is the total 

number of cluster nodes. 

 

The consideration of deadheading during compactness computation may distort the 

compactness level of the cluster. Those clusters spatially closest to the depot will inherently 

have a greater compactness than those situated further away. However, the exclusion of 
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Depot 

3.5 

2 2 

2 2 
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deadheading may result in route unfeasibility at a later stage. Furthermore, the sequence of 

service for a cluster may change as deadheading is considered, therefore the compactness 

measurement may no longer hold true. 

 

Initially, a random cluster is selected to form part of the set. The remaining clusters are 

sequentially selected in descending order of their level of compactness. The duplicate 

assignment of requests between clusters is not permitted because a request is only assignable 

to a single route to meet the requirements of the VRPSDP. Therefore, the clusters that share 

any part of their assignment with the set are prohibited from the selection process. Where 

two or more clusters share the same level of compactness, a cluster is randomly selected into 

the set. The sequential selection process terminates once the number of clusters becomes 

equal to the number of drivers required to service the demand. To increase the robustness of 

the greedy approach, the above procedure is repeated until every cluster has been selected as 

the first in the set. This is likely to increase the probability of finding feasible cluster set(s). 

Figure 5.12 outlines the MGSS pseudo code.  

 

1 MGSS(C=[c1, ..., cN]) returns Gi 
2 

 3 for i=1:N 
4  Gi=[ci] 
5  D=[c1, ..., cN] \ [ci] 
6  arrange D in descending order so CL1 ≤ CL2 ≤, ..., CLN 
7  count=1 
8 

 9  for j=1:M 
10   if (dj∩Gi)=Ø 
11    add cluster Gi=[Gi∪dj] 
12    count=count+1 
13   end 
14  
15   if count=countMax, where countMax 
16    break 
17   end 
18  end 
19  
20 end 

 

Figure 5.12 MGSS pseudo code. Notations: C - vector containing all possible cluster 

assignments; G - cluster set; D - vector contains all possible cluster assignments, excluding the 

first cluster already assigned to the set; CL - cluster total compactness measure; countMAX - 

maximum size of the cluster set. 

 



112 
 

The vector (C) defines a set of vehicle load capacity feasible clusters, where cluster ci is used to 

initialise a cluster set (Gi) (line 4). A cluster dj from vector (D) is considered for assignment to Gi 

in descending order of the compactness measure, where D is a copy of C excluding ci. 

However, the assignment will only take place if the nodes defining dj have not previously been 

assigned to another cluster in Gi (lines 10 and 11). The assignment of clusters from D to Gi will 

continue until the maximum cluster set size (countMAX) is reached (lines 15 and 16). The above 

process is repeated N times by initialising a cluster set with a different cluster in C. 

 

It is highly probable that a cluster set is unlikely to be determined using MGSS, if the clusters 

capacity constraints are set too high in SCM. This issue can be overcome by reducing the 

uniform cluster capacity constraints and restarting from SCM. This allows for the construction 

of smaller cluster assignments, therefore reducing the probability of assignment duplication 

between clusters. An inverse relationship exists between the cluster capacity constraints and 

the number of cluster sets that can be determined using MGSS. The incremental reduction of 

cluster capacity in SCM will increase the number of possible unique sets, therefore improving 

the probability of MGSS in determining feasible cluster set(s). However, a major consequence 

of reducing the cluster capacity is it results in a greater number of non-cluster requests, those 

that that have not been allocated to any cluster, which will need to be assigned in the genetic 

algorithm. This would be contrary to the purpose of SCM, which aims to maximise assignment 

to the clusters, therefore greater effort can be employed on assigning the remaining requests. 

Therefore, to avoid repeated unfeasibility, the starting cluster capacity constraint can be set 

lower than the actual vehicle capacity. To ensure the progress towards a cluster set in MGSS, 

the cluster capacity constraints are incrementally reduced by 5%, until a set is defined. The 5% 

reduction ratio is a pre-set algorithm parameter, which has been determined via a trial and 

error line of experiments.   

 

5.5.3 Randomness Inducing Operator (RIO)  

RIO is identical to the gene level mutation operator used by evolutionary algorithms for search 

space exploration. The term RIO is used instead to avoid confusion with the mutation 

operator, which is implemented in Phase 3. The purpose of this operator is to discover 

addition cluster sets, to those found by MGSS. The adoption of RIO is necessary because unlike 

MGSS, it is capable of exploring a wider range cluster set combinations.  
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The RIO is applied to a population of cluster sets, where each set defines a number of driver 

routes required to form a solution. The size of the population is equivalent to the number of 

populations in the Parallel GA model. The population comprises of a number of randomly 

selected cluster sets found in MGSS. In case of a population deficit caused by an insufficient 

number of cluster sets in MGSS, the remaining cluster sets are randomly generated, which will 

contribute to greater diversity in the population and will assist with the exploration.  

 

RIO is asexual and is applied to every cluster set inside the population. The intensity of this 

operator is controlled using a probability threshold Pt, which is set to 50% to provide a degree 

of random search. A random probability is assigned to every cluster and those that fall under 

the Pt threshold are replaced by a randomly selected cluster. The newly formed sets are 

evaluated in terms of uniqueness and are stored. The population is added to a tabu list 

comprising of previously determined populations, therefore avoiding the repeated evaluation 

of sets. This procedure is reiterated for 10000 generations. Figure 5.13 illustrates the pseudo 

code. 

 

1 RIO(CS=[csi,j], where i=1, ..., N, j=1, ..., M, CList=[c1, ..., cQ]) returns CS 
2 DummyCS 
3 PT 
4 

 5 for i=1,P 
6  for j=1,N 
7   DummyCS=CSj 
8   for k=1,M 
9    if rand(1)<PT 

10     replace DummyCSk with randomly picked cq ∉ DummyCS 
11    end 
12   end 
13   if count(DummyCS)==count(unique(DummyCS)) 
14    CS=[CS;DummyCS] 
15   end 
16  end 
17 end 

 

Figure 5.13 RIO pseudo code. Notations: CS - population of feasible cluster sets; CList - list of 

feasible clusters; DummyCS - copy of a cluster set in the population at generation j; PT - 

probability threshold. 

 

A cluster set (DummyCS) is iteratively selected for modification from vector (CS). A random 

selection probability is assigned to a cluster (DummyCSk) and if below the probability threshold 

PT, then it is replaced with an arbitrary cluster cq from vector CList, where cq cannot be 
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identical to any cluster in DummyCS (lines 9 and 10). Once all clusters have been considered 

for modification and there is no duplication of nodes between them, DummyCS is added to CS 

(lines 13 and 14). The aforementioned is repeated P times to increase the number of cluster 

sets in CS. 

 

This operator may have been used in place of MGSS to find a cluster set. Instead, it is selected 

as subsequent procedure to prevent wasting computational resources, if no feasible cluster 

set exists with those clusters defined in SCM.  

 

5.5.4 New Modified Greedy Selection Strategy (NEWMGSS) 

NEWMGSS is a selection scheme similar to MGSS. The purpose of this procedure is to 

determine a population of cluster sets for further assignment in the Parallel GA Model. It is 

desirable for such a population to converge to the near-optimal solution. The selection 

scheme selects cluster sets with the highest compactness, whilst ensuring sufficient diversity 

remains inside the population. The population diversity is important because cluster sets may 

share identical or very similar assignments to one another. The selection of similar cluster sets 

for the population is undesirable because it results in the repeated exploration of the same 

search space area. It is argued that a compact and diverse population type will increase the 

robustness of the search. Figure 5.14 illustrates the pseudo code. 
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1     NEWMGSS(S=[s1, ..., sY], L=[l1, ..., lY], IdenMax, PopSizeMax) returns BestPop 
2 Pop, DumS, DumL, IdenElem, ElemMax, IdenRatio 
3 PopSize, Pass, PopL, BestPopL 
4 

 5 BestPop=[] 
6 BestPopL=∞ 
7 

 8 for g=1:Y 
9  Pop=Sg, PopL=Lg 

10  DumS = S \ Sg, DumL = L \ Lg 
11  DumL,DumS=sort(DumL,DumS) 
12  PopSize=0 
13 

 14  for h=1:Y-1 
15   Pass=0 
16    
17   for i=1:M 
18    IdenRatio=[] 
19  
20    for j=1:N 
21    IdenElem=[], ElemMax=[] 
22  
23     for k=1:N 
24      IdenElem=[IdenElem, count(Popi,j∩DumSh,k)] 
25      ElemMax=[ElemMax, max(count(Popi,j) OR count(DumSh,k))] 
26     end 
27  
28     IdenRatio=[IdenRatio, max(IdenElem)/ElemMax(max(IdenElem))] 
29  
30    end 
31  
32    if sum(IdenRatio)/N<=IdenMax 
33     Pass=Pass+1 
34    else 
35     break 
36    end 
37   end 
38  
39   if Pass=M 
40    Pop=[Pop∪DumSh,k] 
41    PopL=PopL+DumLh 
42    PopSize=PopSize+1 
43   end 
44  
45   if PopSize=PopSizeMax 
46    if PopL<BestPopL 
47     BestPop=Pop 
48    end 
49    break 
50   end 
51   
52  end 
53 

 54 end 
 

Figure 5.14 NEWMGSS pseudo code. Notations: *S - vector with previously established cluster 

sets by MGSS and RIO; L - compactness measure of each cluster set in S; BestPop - a list of 
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diverse cluster sets selected for the population; Pop - a population of cluster sets determined 

in a generation; PopL – compactness measure of Pop in a generation; IdenMax - maximum 

permitted similarity between two cluster sets inside a Pop; DumS - vector S excluding Sg; DumL 

- vector L excluding Lg; IdenElem - vector that records the number of identical elements 

between two clusters; ElemMax - vector that records the largest count of identical nodes 

between two clusters from different sets; IdenRatio - average similarity of a cluster set 

DumS[h] and the Pop; PopSizeMax - maximum size of Pop; PopSize –population size count; 

Pass - diversity validation metric. 

 

Vector (S) defines the cluster sets constructed in MGSS and RIO. The population (Pop) is 

initialised with the inclusion of cluster set Sg (line 9). Iteratively, a cluster set DumSh from 

vector DumS is considered for insertion into Pop in decreasing order of their compactness 

measure (Equation 5.3), where DumS is a copy of S excluding Sg.  

 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
∑ 𝐷𝑐𝑖

𝑚
𝑖=1

∑ 𝑁𝑐𝑖
𝑛
𝑖=1

 

(5.3) 

where Dci defines the minimum routing distance in a cluster, Nci is the number of cluster nodes 

and m is the number of clusters in a set. 

 

DumSh must introduce diversity into Pop in order to be included. A similarity metric 

(IdenRatio) is used to measure the proportion of requests that are identical between a pair of 

cluster sets (lines 23 to 28). DumSh is only eligible for insertion, if IdenRatio is within the 

maximum similarity threshold (IdenMax) for all comparisons between DumSh and the cluster 

sets in Pop (lines 32 to 40). IdenMax is set to 50% because it was demonstrated over a number 

of runs to provide a satisfaction tradeoff between exploration and computational resource 

consumption. The assignment of cluster sets from DumS to Pop will continue until the 

maximum Pop size (PopSizeMax) is reached (lines 45 and 49). The above process is repeated Y 

times by initialising a new Pop with a different cluster set in S (lines 8 and 9). The Pop with the 

greatest compactness measure is stored and selected for further investigation in Phase 2 and 3 

of the SDPmethod (lines 46 and 47). However, if a diverse population cannot be found, Phase 

1 is repeated with lower cluster capacity constraints.  
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5.6 Phase 2 (Assignment possibilities) 

Following the construction of a partial solution in Phase 1, the purpose of this phase is to 

reduce the complexity of the remaining assignment challenge. This problem is computational 

complex because a significantly large number of assignment possibilities exist. Phase 2 is used 

to define assignment possibilities of non-clustered requests to clusters determined in Phase 1. 

This phase consists of three sequential procedures: Radial Expansion Method (REM), Defining 

Segment Method (DSM) and Single Request Adjustment Method (SRAM). The REM method is 

used to determine assignment possibilities based on radial proximity of non-cluster requests 

to the clusters. This method derives from an assumption that the assignment probability 

increases inversely with the Euclidean distance between the non-cluster request and clusters. 

The requests with the same assignment possibilities are combined to form a segment in DSM. 

Finally, the segments with a single assignment possibility restriction are relaxed using SRAM. 

The aforementioned methods are adopted because they are simple and computationally 

inexpensive. 

 

5.6.1 Radial Expansion Method (REM) 

The purpose of REM is to determine assignment possibilities for non-clustered requests based 

on their relative distance to the set of clusters. It is alleged that such assignment possibilities 

will define fruitful search spaces for exploration, as shown in the pseudo code in Figure 5.15. 

 

1 REM(G=[P=[p1, ..., pN], S=[s1, ..., sM], R=[r1, ..., rM], c) returns Q 
2 Q=[], T=[] 
3 

 4 while (count(P) ~=count(T)) 
5 

 6  for i=1:M 
7 

 8   Ri=Ri+c 
9   Qi=[Qi,find(P(dist(P,Si)≤Ri))] 

10   Qi=unique(Qi) 
11   T=[T,Qi] 
12   T=unique(T) 
13   
14  end 
15  
16 end 

 

Figure 5.15 REM pseudo code. Notations: P - unassigned nodes; S - cluster seeds; R - vector of 

cluster radiuses; c - fixed distance, Qi - vector that defines the number of nodes within a 

particular distance of the cluster seed, T - termination validation metric. 
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The cluster radius Ri is increased by a fixed length (c) from cluster seed Si and the unassigned 

nodes (P) that are within this distance are added to vector Qi (lines 8 and 9), which defines a 

group of nodes in the spatial proximity of the cluster represented by Si. The above process is 

repeated for all cluster seeds in S (lines 6 to 14), until the number of nodes in vector (T) is 

equal to the number of nodes in P (line 4). 

 

The circular vicinities used to determine the set of clusters in SCM are expanded from their 

seeds. The process of incremental expansion is carried out in parallel, until all requests in the 

region are overlapped, as shown in Figure 5.16. A circular vicinity represents a cluster in an 

expanded form. The assignment of non-clustered requests is limited to those cluster(s) where 

the circular vicinity(s) overlap. REM restricts the assignment of unassigned requests to 

cluster(s) based on spatial proximity to the cluster seeds. It is assumed that fruitful search 

spaces will be identified using the approach described. REM assumes a fully connected graph, 

however where an asymmetric network exists the performance of the approach is hindered. A 

possible example, which illustrates the previously stated problem, consists in accessibility 

constraints like geographic obstacles or one-way streets. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Expanded Clusters 

 

5.6.2 Defining Segments Method (DSM) 

The purpose of DSM is to organise the assignment possibilities determined in REM. The goal is 

to create segments that can be later used as building blocks (a sub-chromosome that 

potentially increases the quality of the host individual). A segment is defined as a set of 

requests situated in the overlapping region of one or more expanded cluster vicinities, as 

Key: 
Depot 
Cluster Requests 

Multi-Overlapped Request 
Single-Overlapped Request 
Cluster 

Expanded Cluster 
Region 
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shown in Figure 5.16. The assignment decisions for the combined segments represent a 

complete assignment of unassigned requests.  

 

5.6.3 Single Request Adjustment Method (SRAM) 

The segment(s) containing a single cluster do not require evaluation in terms of assignment. 

Therefore, these requests are the most isolated from their neighbouring cluster(s) because 

after the expansion phase they are located inside one vicinity only, as shown in Figure 5.17. 

When a single request is situated in the expansion area of one cluster, it may only be assigned 

to that driver. This situation may later impede the generation of a feasible solution given its 

reduced assignment flexibility. To reduce this risk, the assignment flexibility is increased by 

considering an additional cluster, namely the one which is spatially closest to the isolated 

request. The aforementioned cluster is added to the segment.  

 

 
Figure 5.17 Isolated Requests, which are represented by the square nodes 

 

5.7 Phase 3 (Complete solution) 

The purpose of Phase 3 is to assign the non-clustered requests using a Parallel GA Model, 

where the same genetic algorithm is run in parallel for each cluster set. These requests are 

assigned to the clusters constructed in Phase 1 using the assignment possibilities determined 

in Phase 2. The approach consists of the following steps: encoding, linear evaluation, selection 

for reproduction, application of genetic operators, selection of reinsertion and termination. 

These are now discussed in greater detail. 

 

5.7.1 Initial and genetic information processing 

The employed encoding approach consists of three procedures: chromosome construction, 

population generation and a modification procedure for the population. The first procedure 
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defines a chromosome, which encodes a solution. The second procedure builds a population 

of chromosomes for exploration. The final procedure amends the population to better 

represent the assignment possibilities defined in Phase 2. 

 

A chromosome is encrypted inside a linear structure using a finite alphabet. In the context of 

this work, such a linear structure represents an allocation of non-clustered requests. A 

chromosome comprises of sub-chromosome(s), each defining a potential assignment to a 

segment constructed in Phase 2. The sub-chromosomes are combined in a fixed sequence to 

form a chromosome. Each gene value encrypts a cluster and its position within the sub-

chromosome represents the request assigned to it. The sub-chromosome genes are attributed 

values from the same alleles set. Alleles define the legal set of clusters that can be assigned to 

a gene. The length of a chromosome is equal to the number of unassigned requests in the 

region and does not vary through the generations. Figure 5.18, depicts how sub-chromosomes 

are combined to form a chromosome.  

 

 
 

Figure 5.18 Chromosome Construction 

 

The population is built in such a way so that it covers the current search space under 

investigation. The population consists of 500 individuals because this size provides the best 

compromise between solution quality and algorithm speed. The population size has been 

determined experimentally in Chapter 6 by analysing the performance of the SDPmethod for 

different population sizes over a number of datasets. The population size is fixed to prevent an 
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incontrollable increase in the number of individuals during the evolution process. The initial 

population is randomly generated to effectively cover the solution space. All alleles are 

expected to be present inside the population. 

 

The gene values initially assigned to certain sub-chromosomes are replaced to more accurately 

reflect the outcome of Phase 2. More specifically, within Phase 2 segments containing only 

one cluster C1 are assigned an additional cluster C2, in order to increase assignment flexibility 

(section 5.6.3). The original cluster C1 is considered to be the most likely candidate for optimal 

assignment, since during the expansion phase no other cluster was spatially closer. This 

represents the reason for only considering cluster C1 for the initial population. However, this 

gene value restriction is not enforced during the evolution. 

 

5.7.2 Linear Evaluation 

This section deals with a threefold procedure consisting of defining: objective functions, 

Pareto sets and fitness computation. Here follows a more comprehensive description of these 

procedures.  

 

Objective Functions 

Objective functions are mathematic instruments used to assess the solution quality. In the 

context of this research, a chromosome is evaluated with respect to the minimisation of three 

objective functions: (1) number of unfeasible routes constructed for a predetermined vehicle 

fleet size, (2) total routing distance, (3) maximum variation between route distances (workload 

variation). The cost associated with servicing customer demand increases with the distance 

travelled. Most transportation operators aim to achieve similar workloads for all their routes, 

thus the variation between route workloads needs to be minimised. The number of unfeasible 

routes determines the number of unserviceable routes in each solution. In order to identify 

unfeasible routes, it is necessary to evaluate each route in terms of capacity and route 

distance feasibility. If a potential solution encrypts only feasible routes, the optimisation 

problem comprises of two dimensions: total routing distance and workload variation. The 

workload variation objective is meant to guide the solution towards equitable areas of the 

search space.  
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Pareto Set Separation 

The Pareto approach is an intermediary procedure required for fitness computation. The 

individuals are ranked inside the population in terms of dominance. Deb (2009) Continuously 

Update Procedure (CUP) is the Pareto approach implemented in this research because the 

method is computationally inexpensive compared to ‘Naive and Slow’. The entire population is 

ranked because all individuals are considered for reproduction. This strategy will result in 

greater population diversity, which is required to progress the search. Figure 5.19 outlines the 

pseudo code for CUP. 

 

1 ParetoSetSeparation (S=[s1,s2, ..., sN]) returns ND(count) 
2 REM 
3 add, count 
4 count=1 
5 

 6 while S≠Ø 
7 

 8  ND(count)=S1 
9 

 10  for i=2:N 
11   add=0 
12   REM=[] 
13   for j=1:ND(count) 
14    if Si<ND(count)j 
15     add=1 
16     REM=[REM, ND(count)j] 
17    end 
18    if Si=ND(count)j 
19     add=1 
20    end 
21   end 
22   if add=1 
23    ND(count)=ND(count)∪Si 
24    ND(count)=ND(count)\Sj 
25   end 
26  end 
27  
28  count=count+1 
29  S=S\ND(count) 
30 

 31 end 
 

Figure 5.19 Pareto Set Separation pseudo code. Notations: S - population: ND(count) - 

nondominated set, which decreases in importance in ascending order of rank, REM - vector 

with dominated individuals. 
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The 1st order Pareto set (ND1) is initialised with individual S1 from the population (S) (line 8). 

For each individual in S a dominance test is performed with incumbent individuals in ND1 

(lines 10 to 26). In consequence, the dominated solutions are removed and the nondominated 

solutions are inserted into ND1 (lines 23 and 24), which results in the discovery of a 

nondominated set. This is repeated with the exclusion of ND1 individuals, in order to discover 

the next order Pareto set ND(count). The process terminates once S is empty (line 6). 

 

A Pareto approach is adopted because the problem under consideration consists of multiple 

objectives that are conflicting, and the weighting information is unknown. To prevent the 

construction of an undesired solution, objective weights assumptions are avoided, therefore 

aggregation methods are non-applicable. A major benefit of a Pareto approach is that it can 

generate a range of solutions, each representing a different objectives trade-off, thus 

reflecting various user needs. A non-Pareto approach is not adopted because multiple 

objectives are not simultaneously considered, therefore the method is deemed slower than 

the one selected, see Chapter 4.  

 

Fitness Computation 

The dominance information is used to compute fitness values. These values are a relative 

measure computed by taking into account information with respect to all individuals inside the 

same population. The individuals with the higher fitness values have the greatest probability 

of survival. Fitness values are calculated using the following threefold procedure: Deb (2001) 

with Patelli (2011) amendment fitness formula, Estimated Difference (ED) and New Fitness 

Formula (NFF). The former method is used to calculate preliminary fitness values. The second 

method calculates the average fitness values between different fronts. This information is 

used in the latter method to recalculate fitness values that are truly representative for 

selection. The following describes the fitness computational method. 

 

• Deb (2001) Fitness Formula with Patelli (2011) Amendment 

Deb (2001) fitness formula with Patelli (2011) amendment (Chapter 4) is used to calculate 

preliminary fitness values for the individuals in the population. The fitness values are 

computed with respect to the order of the fronts, therefore individuals in PFi are assigned a 

higher fitness than any individual on PFi+1. In addition, the formula distinguishes between 

individuals on the same Pareto front in the following manner. An individual on a front situated 

in a weakly explored space is assigned a greater fitness value compared to an individual in an 



124 
 

extensively explored space. Therefore, this method promotes the exploration of new search 

spaces and discourages that of the same search space. 

 

• Estimated Difference (ED) 

The Estimated Difference (ED) is a coefficient that estimates the average fitness difference 

between a Pareto front(i) and the origin of the search space axes. The purpose of this metric is 

to gain an understanding of the relative quality of solutions situated on different fronts. 

Equations 5.4, 5.5 and 5.6 are used to compute ED. 

 

𝑁𝐷 = [𝑆𝑗,    𝑗 = 1, 𝑀] 

(5.4) 

where ND defines the Pareto set with individuals Sj and M refers to the number of individuals 

in the set. 

 

𝑑𝑗 = ��𝑆𝑗
1�2 + �𝑆𝑗

2�2 + �𝑆𝑗
3�2

 

(5.5) 

where dj outlines the distance in the objective space between individual Sj and the origin of 

the axes. The upper indices represent the objective being evaluated. 

 

𝑑𝑎𝑣𝑔 =
1
𝑀

𝛴𝑗=1
𝑀  𝑑𝑗 

(5.6) 

where davg denotes the average distance in the objective space between ND and the origin of 

the axes. 

 

• Newly Modified Deb (2001) Fitness Formula (NFF) 

This method considers the relative distance between different Pareto fronts when computing 

fitness values. The ED is incorporated into Deb (2001) fitness formula and the fitness values 

are recalculated. Equation 5.7 defines the fitness formula with the new amendment. As 

opposed to Deb (2001) and Patelli (2011), this approach additionally considers ED in a request 

to increase the fitness values accuracy. 
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Fit(c) = 𝐹𝑅
∑

𝑧𝜖𝑃𝐹𝑖
𝑑(𝑐,𝑧)≤𝜎

 �1−𝑑(𝑐,𝑧)
𝜎 � .∗ 𝐸𝐷

  

(5.7) 

 

The proposed fitness method requires fitness values to be calculated in two stages. Initially, 

fitness values are calculated for the purpose of determining the average distance between 

Pareto fronts and their origin. This information is used to refine the fitness values, i.e. 

calculate more accurate fitness values. This research experimentally supports in Chapter 6 the 

fact that the increase in accuracy will outweigh the extra computation expense. 

 

5.7.3 Selection for Reproduction 

The selection method takes into account a factor called selection pressure, which tends to 

increase in favour of fitter individuals, in order to encourage accuracy in the search. The 

Proportional Roulette Wheel Selection (PRWS) is adopted because it directly tunes the 

selection pressure whilst computing fitness values. Therefore, the area of the roulette wheel 

portion awarded to individuals is proportional to their fitness, with fitter individuals being 

assigned greater disk space, as illustrated in Figure 5.20. 

 

 
Figure 5.20 PRWS 

 

A shortcoming of PRWS is that, in case certain individuals are significantly fitter than their 

peers, they tend to get over selected, which may lead to diversity loss. This is due to the fact 

that the distance among two individuals is proportional to the difference between their fitness 

values. The Ranked Roulette Wheel Selection is less prone to diversity loss compared to PRWS 

because the proportion of disk awarded to an individual is in relation to their rank. However, 

this selection approach has not been adopted because it provides less selection pressure than 

Ind4 

Ind3 

Ind2 

Ind1 

Individual (Ind) Fitness 
1 1.44 
2 1.08 
3 0.72 
4 0.36 



126 
 

PRWS resulting in worse accuracy. Instead, genetic operators are used to reintroduce diversity 

into the population, as described in the next section. 

 

5.7.4 Genetic Operators 

The role of genetic operators is to produce offspring, which will desirably guide the evolution 

towards optimality. The following genetic operators are applied: 2-cut point crossover, gene 

level crossover, mutation, decimation and snapshot. The genetic operators are described in 

greater detail and their implementation via a switching mechanism is discussed in relation to 

the evolutionary process. Finally, a metric used to monitor the level of accuracy in the search 

is described. 

 

2-cut point crossover 

The 2-cut point crossover randomly selects two unique homologous indices in the layout of 

the two parents and in turn exchanges the genetic material of the latter considering the 

previously selected cut-off points, as illustrated in Figure 5.21. A homologous cut point 

selection scheme is used in order to maintain the chromosome structure, which encompasses 

a solution. Therefore, a heterogeneous cut point selection scheme is not considered because 

the resultant offspring will represent incomplete solutions. As each sub-chromosome (SC) may 

only assume gene values from a specific alleles set, selecting cut points at different locations 

within the parents may lead to illegal assignments.  
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Figure 5.21 Homologous cut-point crossover 

 

The experimental results in Chapter 6 illustrate the success of 2-cut point crossover to improve 

the level of accuracy in the search compared to other genetic operators. However, at a certain 

point in the evolutionary process, the operator may no longer generate offspring with 

improved fitness values because a local optimum has been reached. For the search to 

continue, population diversity is required.  

 

Gene level crossover 

The gene level crossover operator can provide significant search diversity and is controlled by 

a crossover threshold. This is set to 50%, which is standard probability used to promote the 

generation of diverse offspring (Deb, 2009). Probability values are assigned to the genes inside 

a chromosome using a random number generator. The genes assigned with a probability 

under the defined threshold are selected as cut points. The crossover of gene values is limited 

to the same sub-chromosome type. The sub-chromosomes and their subsequent genes are 

sequentially selected for crossover. A gene may only be selected once as a cut point. Where a 

pairing of genes inside a sub-chromosome is not possible, the genes are not swapped. Figure 

5.22 illustrates the gene level crossover procedure with a probability of 0.7. 
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Figure 5.22 Gene level crossover 

 

Like all crossover operators, the pitfall of the gene level one is that the mechanism is restricted 

to gene values existing within the population. In other words, this operator has no means of 

introducing new alleles to the population, which would encourage the exploration of new 

search space areas. 

 

Mutation 

The mutation operator provides an additional level of diversity to the search because it can 

introduce new alleles into the population. The level of mutation is controlled by the mutation 

probability threshold. This is set to 0.2 because it provides the highest level of search accuracy 

over a number of problems, as shown in section (6.6.1). Mutation is an asexual operator, 

which assigns probabilities values to genes in the same way as described in gene level 

crossover. The genes which have been assigned a probability under the threshold are mutated 

to a legal sub-chromosome allele. Figure 5.23 illustrates the operator with a mutation rate of 

0.2. 
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Figure 5.23 Mutation operator 

 

Decimation 

The decimation operator deletes a proportion of the individuals inside the reproductive pool. 

The purpose of this operator is to prevent offspring with a genotype similar to that of their 

parents from surviving into the next generation. This operator deletes 10% of such individuals 

in the reproductive pool with the lowest solution quality, which is defined based on fitness 

values. The percentage is rounded to the nearest integer.  

 

Snap-shot (Injection) 

The resultant offspring deficit is filled using Patelli (2011) snap-shot operator. This operator 

reintroduces individuals from the population recorded 10 generations ago into the current 

offspring population. The purpose of selecting individuals from a previous generation is to 

increase the population diversity, but at the same time minimise the negative impact on the 

average population fitness. In contrast, the deficit could have been filled using newly 

generated individuals; however, this might compromise the search, as randomly built 

chromosomes are unlikely to be fit. Since population diversity is not directly related to 

chromosome encoding, the promising results of using the Snap-shot operator reported in 

Patelli (2011) might also prove beneficial in the context of this approach. 

 

Hamming Distance 

The aforementioned genetic operators are each applied at different stages of the evolution, 

depending on the level of population diversity, which is measured using Hamming Distance. 

The Hamming Distance measures the number of requests that are unique between a pair of 

individuals (Coello Coello et al., 2007). The greater the Hamming Distance the higher the 

diversity level. Figure 5.24 illustrates how the Hamming Distance is calculated in a population 
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of four individuals consisting of 5 genes. The average Hamming Distance will be used as the 

diversity measurement for the entire population. 

 

 

Population 
Alleles Sets 

a and b a and c b and c b and d 
Individual 1 a c c b d 
Individual 2 b a a c b 
Individual 3 a c a c b 
Individual 4 b c a b b 

 

Pairings Identical Gene Values Hamming Distance 
Individual 1, Individual 2 1 1 1 1 1 5 
Individual 1, Individual 3 0 0 1 1 1 3 
Individual 1, Individual 4 1 0 1 0 1 3 
Individual 2, Individual 3 1 1 0 0 0 2 
Individual 2, Individual 4 0 1 0 1 0 2 
Individual 3, Individual 4 1 0 0 1 0 2 

Average Population Hamming Distance 2.83 
 

Figure 5.24 Population average Hamming Distance 

 

Diversity is not measured in every generation because it is unlikely to change drastically at 

such a fast pace and it also has a time complexity of O(P2), where P denotes the size of the 

population. Hamming Distance is computed every 10 generations to allow the genetic 

operators sufficient time to affect the search. The number of generations is deterministically 

determined. 

 

DIVmin and DIVmax are thresholds used to define the type of genetic operator to be 

employed in the search. DIVmin represents the minimum acceptable level of population 

diversity required in the search. Whereas, DIVmax defines a sufficient level of population 

diversity. The DIVmax is adaptively determined using the initial population because diversity is 

thought to be maximum at this stage. The DIVmin is set 30% lower than DIVmax. It is plausible 

that DIVmax will not be achievable throughout the search because it is expected that the 

population will converge to a certain area of the search space, over generations. Therefore, 

this adaptive parameter may need to be lowered.  
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The following novel self adaptive approach is adopted because it has a positive effect on the 

search, in addition to the fitness assignment contribution brought by (5.2), as illustrated in 

Chapter 6. At every diversity measurement interval, the Hamming Distance is computed and 

depending upon the population diversity, a different genetic operator is employed. At the 

start of the evolutionary process the improvement in accuracy is of prime importance because 

the population is diverse. Therefore, the accuracy improving 2-cut point crossover is the first 

genetic operator employed. However, if the Hamming Distance falls below DIVmin at the 

measurement interval, the focus of the search changes to promote greater diversity, in an 

attempt to prevent the search from becoming trapped in a particular area. The gene level 

crossover, mutation or snapshot and decimation operators are available to stimulate greater 

search diversity. The self adaptive approach applies these operators in ascending order of their 

expected effect on population diversity, in order to minimise the impact on the search 

accuracy. Gene level crossover provides the least amount of diversity because it is restricted to 

a set of alleles inside the population. In contrast, mutation is likely to provide a greater level of 

diversity because it may have access to alleles outside the population. Finally, the decimation 

and snapshot operators provide the greatest impact of population diversity because they 

delete and replace entire individuals within the population. Therefore, when the Hamming 

Distance is below DIVmin the self adaptive approach operates as follows. First the 2-cut point 

crossover operator is switched to gene level crossover to promote greater diversity. During the 

next interval, if DIVmax is met, the 2 cut point crossover is reintroduced to encourage 

accuracy. However, if the gene level crossover operator is unsuccessful in regaining DIVmax, it 

is substituted with the mutation operator in order to insert new alleles into the population. 

Once again, if DIVmax is reached, the 2 cut point crossover operator is reapplied instead of the 

mutation operator. Otherwise, 10% of the offspring population is deleted and new genetic 

material is added into the population using decimation and snapshot operators, respectively. 

Subsequently, cut point crossover is reintroduced in the same run. Figure 5.25 illustrates the 

switching parameter and Figure 5.26 outlines the respective pseudo code. 
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Figure 5.25 Switching Parameter 
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1 GeneticOperatorSwitchingMechanism(div, lb, ub) returns O 
2 initialise O=CPC  
3   
4 do  
5   
6  if ub<=div  
7   O=CPC  
8  else  
9   if lb<=div & O==CPC  

10    O=CPC  
11   else  
12    if O==CPC  
13     O=GLC  
14     break 
15    end  
16    if O==GLC  
17     O=Mut  
18     break 
19    end  
20    if O==Mut  
21     apply DEC & SS 
22     O=CPC  
23     break 
24    end  
25   end  
26  end 
27   
28 end  

 

Figure 5.26 Genetic operator switching mechanism pseudo code. Notations: div - average 

population diversity, lb - minimum diversity threshold, ub - maximum diversity threshold, O - 

Operator, CPC - 2-cut point crossover operator, GLC - Gene level crossover operator, Mut - 

Mutation operator, DEC - Decimation operator, SS – Snapshot operator Gene level crossover 

operator. 

 

The 2-cut point crossover (CPC) is set as the default genetic operator, which continues to be 

applied as long as the population diversity remains above the lower threshold level (lines 6 to 

10). In the case population diversity falls below this level, a set of diversity promoting 

operators: gene level crossover (GLC), mutation (Mut), decimation (DEC) and snapshot (SS) are 

applied in turn, until the upper threshold point is reached (lines 11 to 21), at which point CPC 

is applied again.  

 

The purpose of the aforementioned self adaptive mechanism is to prevent the search from 

becoming trapped in a particular search space area. However, a fitness metric that measures 

the improvement in the phenotype is required. Therefore, the average distance between the 
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1st order PF and the origin of the search space axes is computed. Figure 5.27 illustrates this 

process. If the PF has not moved closer towards the origin, after 5 intervals, the Decimation 

and Snapshot operators are applied. The Snapshot operator is meant to replenish the 

population whilst having a reduced negative influence on the overall population quality, in 

comparison to randomly generating new individuals. The subsequent operator that follows is 

the 2 cut point crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 Average distance between 1st order Pareto front and the origin of the axes 

 

The MOO problem considered here provided every objective with an equal importance, 

therefore to calculate the distance between the 1st order Pareto front and the origin of the 

axes, the objective values were normalised by scaling between 0 and 1. Normalisation was 

introduced to remove the bias resulting from different objective scale dimensions. Equation 

5.8 defines the normalisation approach, where xni,j is the normalised value of xi,j, the objective 

function value achieved by individual j for objective function i. Notations xmax and xmin 

represent, respectively, the highest and lowest objective values achieved by an individual in 

the first order Pareto front. 

 

xni,j = (xi,j - xmin) / (xmax - xmin) 

(5.8) 
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The normalised values are afterwards averaged over the entire first order Pareto front, as 

shown in equation (5.9), where M represents the number of individuals in the first order 

Pareto front.  

𝑥𝑛𝑖 =
∑ 𝑥𝑛𝑖𝑗

𝑀
𝑗=1

𝑀
 

(5.9) 

Finally, the distance between the 1st order Pareto front (PF1) and the origin O of the search 

space axes is computed using Equation 5.10, where Q denotes the number of objectives. 

 

D(O, PF1) = �� xni
2

Q

i=1

 

(5.10) 

where D(O, PF1) represents the distance between the 1st order Pareto front and the origin. 

 

5.7.5 Selection for Reinsertion 

Selection for reinsertion chooses the individuals from the current and offspring population for 

the next generation population. The stochastic Proportional Roulette Wheel Selection adopted 

in the selection for reproduction stage of the algorithm is not implemented here, as the high 

selection pressure is unlikely to encourage population diversity required for search space 

exploration. Instead, an adaptive deterministic selection approach is used to make a selection 

decision based on the current genetic operator in use, which is previously selected in 

accordance to the level of population diversity.  

 

The reinsertion decision is made using a population consisting of all current and offspring 

individuals. The individuals in the population are sorted according to their fitness values. The 

adopted reinsertion approach depends on the genetic operator currently employed. If the 

accuracy promoting cut point crossover is employed, the fittest individuals in the population 

will be selected for the next generation, therefore encouraging the increase accuracy of the 

search. Where more than two individuals share the same level of fitness, two individuals are 

randomly selected for the next generation. Whereas, if either the gene level crossover or 

mutation operator is applied, the selection process selects individuals occupying the centre of 

the population in terms of fitness. This is expected to promote diversity. The other option to 

select the worse performing individuals is dismissed even in the case when this is diversity 
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friendly because this does not encourage the search in terms of accuracy. Figure 5.28 

illustrates the selection process for four individuals.  

   

 

Selection for Reinsertion Accuracy Inducing Strategy 
Population Fitness Values Next Generation 
Offspring 2 0.9 Accept 
Individual 2 0.85 Accept 
Offspring 4 0.8 Accept 
Individual 4 0.75 Accept 
Individual 3 0.7 Reject 
Offspring 3 0.65 Reject 
Offspring 1 0.6 Reject 
Individual 1 0.55 Reject 

 

Selection for Reinsertion Diversity Inducing Strategy 
Population Fitness Values Next Generation 
Offspring 2 0.9 Reject 
Individual 2 0.85 Reject 
Offspring 4 0.8 Accept 
Individual 4 0.75 Accept 
Individual 3 0.7 Accept 
Offspring 3 0.65 Accept 
Offspring 1 0.6 Reject 
Individual 1 0.55 Reject 

 

Figure 5.28 Selection for Reinsertion 

 

5.7.6. Termination Criterion 

The evolutionary process is stochastic, therefore a stopping criterion is required. The 

generational stopping criterion is adopted because it is most commonly applied within 

evolutionary algorithms (Koza, 1998). The maximum number of search generations is 

experimentally tuned for each test problem evaluated in Chapter 6. The following evaluation 

(convergence) and exception stopping criterions were considered, however none are 

applicable in this research context. The evaluation criterion is not used because acceptable 

objective values have not been defined. The exception criterion is not applicable because 

genetic operators are used to reintroduce diversity into the population, therefore this criterion 

is unlikely to be met. 

 



137 
 

5.7.7 Proposed GA compared to NSGA-II 

The genetic algorithm proposed in SDPmethod is compared against the most prominent 

Pareto MOGA method, NSGA-II. The analysis will compare the design of each genetic 

algorithm aspect, in order to gain a better understanding of performance. Table 5.1 defines 

the commonalities and dissimilarities between the two methods.  

 

With respect to initialisation, both NSGA-II and SDPmethod aim to maximise exploration of the 

search space by randomly generating the initial population individuals. In particular, the 

SDPmethod experimentally tunes the population size for an improved search space 

exploration, although no such reference is made for the original NSGA-II.  

 

In the fitness computation stage, both methods perform nondominated sorting on the 

combined parent and offspring population, in an attempt to maintain the best individuals 

through to the next generation. The nondominated sorting methods have a O(MN2) 

computational complexity, where M is the number of objectives and N is the population size. 

Thus, the resources required to solve the problem are likely to be comparable. Moreover, each 

method assigns a uniform fitness value to individuals in the same nondominated set and a 

lower fitness importance to a set in ascending order of rank. Consequently, this fitness 

assignment approach promotes the selection of individuals on lower order Pareto sets, which 

increases the accuracy inducing capabilities of the two methods. However, a noticeable 

difference remains between how the solutions on the same front are differentiated by the two 

approaches. The SDPmethod distinguishes between solutions on the same Pareto set through 

fitness sharing, which is not adopted by NSGA-II due to the challenges related to defining a 

sharing parameter. Instead NSGA-II adopts an alternative crowding procedure in the selection 

for reinsertion phase, to set apart solutions on the same nondominated set. However, the 

SDPmethod introduces dynamic sizing of the sharing parameter, which overcomes the issues 

of defining the parameter. Therefore, the primary difference between the two methods is the 

way in which solutions on the same Pareto set are differentiated. 

 

The SDPmethod and NSGA-II differ in the selection for reinsertion, as the proportional roulette 

wheel selection and the binary tournament selection are respectively applied. The 

proportional roulette wheel selection provides greater search accuracy than the binary 

tournament because the selection for reproduction pressure is higher (De Jong, 2006). 
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Furthermore, the binary tournament may suffer from slow convergence to the Pareto optimal 

set as the tournament set may comprise of randomly selected low fitness individuals. 

 

The two methods differ with respect to the genetic operators used for offspring generation. 

The NSGA-II is limited to crossover and mutation operators for generating search accuracy and 

diversity respectively. Whereas, SDPmethod utilises the aforementioned, as well as a gene 

level crossover operator, in order to induce greater search diversity. Moreover, SDPmethod 

unlike NSGA-II, may utilise the population based operators decimation and snapshot to 

stimulate additional search diversity. In consequence, SDPmethod has a wider range of 

diversity inducing operators compared to NSGA-II, which reduces the risk of premature 

convergence. In addition, the SDPmethod has a more advanced approach towards search 

progression because it is able to differentiate between the need for greater search accuracy or 

diversity. This is achieved with the use of an adaptive genetic operator control mechanism, 

which applies a particular operator based on the needs of the search. Since the adaptive 

mechanism can apply varying degrees of diversity in the search, the SDPmethod can be 

considered superior in navigating through the search space.  

 

With respect to selection for reinsertion, both methods consider the parent and offspring 

individuals for reinsertion, which increases the likelihood for fitter individuals to remain in the 

search. NSGA-II applies an elitist approach by ensuring the fittest individuals are selected for 

the next generation population. In contrast, the SDPmethod selection strategy depends upon 

the needs of the search. For instance, NSGA-II elitist approach is adopted if the focus of the 

search is to induce greater accuracy, whereas mid range ranked fitness individuals are inserted 

for the next generation, if the focus of the search is to increase diversity. This adaptive 

selection strategy enables the exploration of improved areas of the search space. The two 

methods differ in the situation where the nondominated set to be added exceeds the next 

generation population size. NSGA-II applies the Crowding-sort procedure to select a diverse 

set of solutions from that set in the selection stage, whereas the SDPmethod used the 

previously determined fitness values to make the decision. There is no selection difference 

when using either fitness sharing or the crowding sort procedure, if the sharing parameter is 

calculated correctly, which in the case of SDPmethod is dynamically determined. Finally, both 

methods may suffer a loss of convergence ability when the 1st order Pareto set is larger than 

the next generation population because some non-dominated individuals are deleted to make 

space for others (Deb, 2009). 
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To summarise, the SDPmethod is an improvement to the NSGA-II because it provides a higher 

selection pressure at the selection for reproduction stage, which is likely to result in a mating 

pool of elite individuals. In addition, the SDPmethod has a larger depository of reproduction 

operators to generate a diverse offspring population. Finally, the recombination and selection 

for reinsertion stages are adaptively aligned with the needs of the search, unlike the NSGA-II.  
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Table 5.1 Proposed Multi Objective Genetic Algorithm compared to NSGA-II 

Genetic algorithm 
aspect Common Characteristics 

Unique Characteristics Expected advantage(s) of 
proposed MOGA over NSGA-II NSGA-II SDPmethod 

Initialisation Initial population randomly generated       

      Experimentally tuned population size Better search space coverage 

Linear Evaluation 

Nondominating sorting with combined 
parent and offspring population - O(MN2)   Fitness sharing   

Uniform fitness for same nondominated 
set individuals       

Selection for 
Reproduction   Binary tournament 

selection Proportional roulette wheel selection Greater search accuracy 

Genetic and 
Population Operators 

  Crossover and 
mutation 

2-cut point crossover, gene level crossover, 
mutation, decimation and snapshot 

Larger range of diversity 
inducing genetic operators 

    Adaptive parameter tuning to control the 
evolution 

Superior navigation through the 
search space 

Selection for 
Reinsertion 

Combined parent and offspring 
population Elitist Elitist and non-Elitist Superior navigation through the 

search space 

  Crowding 
procedure     
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6. RESULTS AND DISCUSSION 
 

This chapter will present and discuss the experimental contributions of this research in 

relation to the introduced routing heuristic, RouteAlg and the novel VRPSDP method called 

SDPmethod. The chapter is organised as follows: the experimental setup description is 

provided in section 6.1, the vehicle fleet size lower bounds are defined for the studied test 

problems in section 6.2, section 6.3 contains the published experimental case-studies 

overview, the RouteAlg results are presented and discussed in section 6.4, whereas the 

SDPmethod results are validated in section 6.5 and the genetic algorithm, a crucial component 

of the SDPmethod, is analysed in section 6.6. 

 

6.1 Experimental Setup Description 

The author implemented the RouteAlg and SDPmethod in Matlab and evaluated them on the 

test problems from Salhi and Nagy (1999), the most widely used benchmarked instances in the 

VRPSDP domain (Jun and Kim, 2012). 

 

The problem size ranges between 50 and 199 customers. There are two test problem types 

CMTkX and CMTkY, where CMT is the name of the test problem, k is the problem identifier 

(k=1, ..., 14) and X or Y refers to the demand type. A summary of the test problems is provided 

in Table 6.1. The Salhi and Nagy (1999) test problems were originally derived from the VRP 

instances given in Christofides et al. (1979). For every customer (j), the original demand was 

split to form a new delivery and pickup demand. The ratio rj of the split was calculated as 

min((xj/yj), (yj/xj)), where xj and yj are the coordinates for customer j. The delivery demand dj is 

set to rj×tj and the pickup demand pj to (1-rj)×tj, where tj is the original customer demand. 

Another set of problems classed as Y are generated by switching the demands for every other 

customer. In addition, the Euclidean distance between two customers can be calculated using 

their coordinates.  
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Table 6.1 Summary of the benchmark test problems 

Problem Number of Customers Vehicle Capacity (Tons) Maximum Route Length 
CMT1X/Y 50 8 N/A 
CMT2X/Y 75 7 N/A 
CMT3X/Y 100 10 N/A 
CMT4X/Y 150 10 N/A 
CMT5X/Y 199 10 N/A 
CMT6X/Y 50 8 200 
CMT7X/Y 75 7 160 
CMT8X/Y 100 10 230 
CMT9X/Y 150 10 200 

CMT10X/Y 199 10 200 
CMT11X/Y 120 10 N/A 
CMT12X/Y 100 10 N/A 
CMT13X/Y 120 10 720 
CMT14X/Y 100 10 1040 

 

Column 1 - Name of the test problem, Column 2 - Number of nodes considered in the problem, Column 3 - 

Homogenous vehicle capacity in Tons, Column 4 - Maximum length of a route. 

 

The vehicle capacity units for CMT1X/Y, ..., CMT10X/Y test problems were originally defined in 

terms of tons, whereas CMT11X/Y, ..., CMT14X/Y were defined in terms of Centum weight 

(cwt). For the purpose of consistency, the latter test problems are converted to tons, as 

presented in Table 6.1. The Salhi and Nagy (1999) test problems CMT1X/Y, ..., CMT10X/Y were 

generated using a random uniform distribution, whereas CMT11X/Y, ..., CMT14X/Y were 

generated using a clustering distribution, which is more reflective of the actual routing 

problems than the former, Christofides et al. (1979). In addition, CMT6X/Y, ..., CMT10X/Y, 

CMT13X/Y and CMT14X/Y test problems have a maximum route length restriction imposed. 

 

6.2 Vehicle Fleet Size Lower Bounds 

The vehicle fleet size lower bounds (nv) for the Salhi and Nagy (1999) test problems are 

provided in Table 6.2. Equation 6.1 is used to calculate the bounds based on the capacity 

requirements of each problem. 

 

nv = max ( ∑ Delivery Weight / Vehicle Capacity, ∑ Pickup Weight / Vehicle Capacity )  

(6.1) 
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The nv described in Table 6.2 for CMT6X/Y, ..., CMT10X/Y and CMT13X/Y, ..., CMT14X/Y test 

problems may need to be increased because they include a maximum route distance 

restriction. However, with respect to the test problems with no route limit, the lower and 

upper bounds are equal. The nv in Table 6.2 have been determined without considering service 

times for each node. 

 

Table 6.2 Vehicle fleet size lower bounds based on the capacity demands for each test 

problem 

Test 
Problem 

Total Delivery 
Weight (Tons)  

Total Pickup 
Weight (Tons) 

Vehicle Capacity 
(Tons) 

Vehicle Fleet Size 
Lower Bounds  

CMT1X 23.02 15.83 8 3 
CMT1Y 17.14 21.71 8 3 
CMT2X 40.84 27.36 7 6 
CMT2Y 35.23 32.97 7 6 
CMT3X 41.9 31 10 5 
CMT3Y 36.42 36.48 10 4 
CMT4X 64.92 46.83 10 7 
CMT4Y 53.56 58.19 10 6 
CMT5X 93.55 65.75 10 10 
CMT5Y 76.6 82.7 10 9 
CMT6X 23.02 15.83 8 3 
CMT6Y 17.14 21.71 8 3 
CMT7X 40.84 27.36 7 6 
CMT7Y 35.23 32.97 7 6 
CMT8X 41.9 31 10 5 
CMT8Y 36.42 36.48 10 4 
CMT9X 64.92 46.83 10 7 
CMT9Y 53.56 58.19 10 6 

CMT10X 93.55 65.75 10 10 
CMT10Y 76.6 82.7 10 9 
CMT11X 30.55 38.2 10 4 
CMT11Y 32.83 35.92 10 4 
CMT12X 47.1 43.4 10 5 
CMT12Y 46.16 44.34 10 5 
CMT13X 30.55 38.2 10 4 
CMT13Y 32.83 35.92 10 4 
CMT14X 47.1 43.4 10 5 
CMT14Y 46.16 44.34 10 5 

 

Column 1 - Name of the test problem, Column 2 - The sum of delivery weights for all nodes, Column 3 - The sum of 

pickup weights for all nodes, Column 4 - Homogenous vehicle capacity in Tons, Column 5 - Vehicle fleet size lower 

bounds based on the largest total weight requirement. 
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6.3 Published experimental case-studies overview 

The RouteAlg is compared against Vural (2007), the only paper featuring route information 

within the scope of this research. Vural (2007) has provided eighty six routing solutions for the 

following test problems: CMT1X/Y, CMT2X/Y, CMT3X/Y, CMT4X/Y, CMT5X, CMT11X/Y and 

CMT12X/Y. The published results have been validated here and all are correct with the 

exception of CMT11Y, where the total routing distance is understated. The herein 

experimental study will evaluate the RouteAlg with respect to only seventy routing problems 

studied in Vural (2007), whereas the other sixteen trivial problems with one or two route 

nodes are excluded because they provide no grounds for comparison. The SDPmethod is 

tested on all Salhi and Nagy (1999) test problems because several solutions have been 

published, which define the number of vehicles operated and the total routing distance. A 

comparison is made with the following research works in regards to the test problems with no 

maximum route distance restriction: Jun and Kim (2012), Subramanian et al. (2010a), Wassan 

et al (2008), Vural (2007) and Chen and Wu (2006). For those test problems where a limit is 

applied, the SDPmethod is compared against Wassan et al (2008) and Montane and Galvao 

(2006) because the authors have not imposed a service time at each node, which is consistent 

with this work. However, all the aforementioned research works, with the exception of Vural 

(2007) have not published their individual routing solutions, therefore their results cannot be 

verified and the solution quality in terms of the workload objective variation considered here 

cannot be universally analysed.  

 

The comparison conducted here has excluded many research works such as: Goksal et al 

(2013), Zachariadis et al (2010), Gajpal and Abad (2009), Crispim and Brandao (2005) and 

Dethloff (2001) because the test problem type CMTkY is constructed in a different manner 

than is defined in Salhi and Nagy (1999). The excluded works have swapped the delivery and 

pickup demands for every customer in the test problem type CMTkX, in order to generate the 

test problem type CMTkY. However, Salhi and Nagy (1999) recommend the swap should have 

been carried out for every other customer.  

 

6.4 RouteAlg Validation Results 

The components of the RouteAlg: Modified Nearest Neighbourhood (MNN) algorithm, Reverse 

procedure, Ejection/Reinsertion (EjRi) and 2-opt/Or-opt method are analysed in terms of their 

contribution to the performance of the algorithm. Thereafter, the complete algorithm is 
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compared against the solutions published by Vural (2007). Detailed routing information is 

provided in Appendix A, which has been determined in a single run.  

 

6.4.1 Modified Nearest Neighbourhood (MNN) algorithm 

The MNN algorithm is used to generate a reasonably good solution to the Travelling Salesman 

Problem (TSP), which is a relaxed version of the routing problem solved here. The proposed 

MNN algorithm is compared against the Nearest Neighbourhood (NN) algorithm and the 

findings are summarised in Figure 6.1. It is important to mention that the MMN algorithm will 

generate results of at least equal quality to the NN algorithm, as the former is derived from 

the latter, but offers additional diversity. The MNN algorithm is proven to be a more 

competitive approach in comparison to the NN algorithm because improved solutions have 

been found for the TSP for 80% (56) of the test problems studied, with a mean and median 

improvement of 5.81% and 4.38%, respectively, as shown in Figure 6.1. The most frequent 

amount of improvement was found in the 0% → 1% band with 19 routes. Although, there are 

other bands with a fair number of solutions that have reduced the routing distance, noticeably 

1% → 2%, 4% → 5%, 8% → 9% and 10% → 11% bands. The largest improvement was found in 

27% → 28%, which improved the solution quality by 27.36% for CMT2Y – Route: 3. In contrast, 

the MMN algorithm was unable to improve the solution quality for 20% (14) test problems. 

This result was not confined to a particular problem size, but was spread across routes with 

between 4 to 30 nodes. However, Figure 6.2 illustrates that the level of improvement 

introduced by MNN algorithm did on average diminish with an increase in the problem size, 

after eliminating statistical singularities 6% → 7% and 11% → 12% samples. 
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Figure 6.1: A bar graph showing the frequency the MNN algorithm found an improved route 

compared against the NN algorithm. Band limit convention: band x → y contains all values in 

interval x ≤ i < y. 
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Figure 6.2: Mean number of route nodes. Band limit convention: band x → y contains all 

values in interval x ≤ i < y. 

 

6.4.2 Reverse procedure 

For a vast majority, 81.43% (57) routes, the MNN algorithm was able to generate capacity 

feasible solutions. In consequence, the Reverse procedure was applied to address the capacity 

infeasibility issue relating to the remaining 13 routes. A capacity infeasible solution defines a 

route where a vehicle capacity violation has occurred on at least one node and is measured as 

 

𝑅𝐸

𝑅
∗ 100 

 (6.2) 

where RE defines the number of route nodes where the vehicle capacity has been exceeded 

and R is the number of route nodes. 

 

Figure 6.3 illustrates the effect of reversing the orientation of the 13 capacity infeasible routes 

has on their feasibility. The reverse procedure reduced the level of capacity infeasibility for 

53.85% (7) of the routes. In particular, the reverse procedure led to complete capacity 

feasibility in 38.46% (5) of instances: CMT2X – Route: 2; CMT2Y – Route: 3 & 5; CMT3Y – 
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Route: 3 and CMT5X – Route: 3, where the latter had the largest capacity infeasibility at 

77.27%. In contrast, the reverse procedure had a negative impact on feasibility for 46.15% (6) 

routes. However, this outcome mainly occurred for solutions with an insignificant initial 

infeasibility level. For instance: the incumbent infeasibility level for CMT2Y – Route: 2, CMT3Y 

– Route: 1 and CMT4Y – Route: 1 & 3 was 6.25%, 7.69%, 3.7% and 3.57%, respectively. 

Therefore, the experimental results suggest that the Reverse procedure is more efficient at 

introducing capacity feasibility on routes with an initially large infeasibility compared to ones 

with a relatively low base. On a different aspect of importance, no correlation exists between 

the Reverse procedure ability to induce route capacity feasibility with the route node size, as 

capacity infeasibility was increased and decreased over a range of routes sizes, as shown in 

Figure 6.4. 

   
Figure 6.3: A bar graph showing the percentage difference in route TSPSDP infeasibility 

following the application of the Reverse procedure. X-axis label - Last digit of the bar identifies 

the route in the particular test problem. 
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Figure 6.4 Number of route nodes. X-axis label - Last digit of the bar identifies the route in the 

particular test problem. 

 

6.4.3 Ejection/Reinsertion (EjRi) method 

The EjRi method guides the TSP solution towards a TSPSDP feasible space by resequencing 

nodes on a route in accordance to the criteria defined in Equation 5.1. The EjRi method was 

only applied to 9.30% (8) of the routes because the aforementioned MNN algorithm and the 

Reverse procedure were able to generate TSPSDP feasibility for the other routes. The TSPSDP 

infeasibilities levels of these routes, prior to the application of the EjRi method, are illustrated 

in Figure 6.5. The largest level of route infeasibility is 25% for CMT2Y – Route: 1 and followed 

closely by CMT4Y – Route: 8 at 23.08%. Whereas, the other instances have far lower route 

infeasibility levels, for example, CMT4Y – Route: 1 and 3. The EjRi method managed to 

introduce TSPSDP feasibility in all cases (ranging from 12 to 28 nodes), which demonstrates the 

effectiveness of the method. The subsequent route distances following the application of EjRi 

method can be found in the Appendix A in Table 14, which will be compared to the routing 

results from the forthcoming 2-opt/Or-opt method.  
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Figure 6.5: A bar graph showing the TSPSDP infeasibility percentage of the routes before EjRi 

method is applied. X-axis label - Last digit of the bar identifies the route in the particular test 

problem. 

 

6.4.4 2-opt/Or-opt method 

The 2-opt/Or-opt method is an optimisation method that uses intra-route operators in order 

to improve the quality of the existing route. The 2-opt/Or-opt method is evaluated by 

comparing its results with pre-optimisation routing distances, which have been determined by 

the MNN algorithm or following the application of the EjRi method. The results have been 

summarised in Figure 6.6. The 2opt/Or-opt method improved the solution quality for 91.43% 

(64) of routes, with a mean improvement of 9.13%. However, for a great number of the routes 

the level of improvement is modest, see 0% → 1% band, which has 6 routes with no 

improvement. This is mainly a consequence for routes with a small number of nodes. Figure 

6.7 shows a general positive correlation at various rates between the solution quality 

improvements introduced by the 2-opt/Or-opt method against an increase in the problem 

size. Initially, a sharp increase in the mean problem size (up to ~22 nodes) leads to a mild 

increase in solution quality up until 7% → 8% band. Thereafter, a small increase in the 

problem size results in a substantial increase in solution quality between 16% → 17% to 27% 

→ 28% bands, after excluding the statistical anomaly 18% → 19% band. Another aspect of 
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importance is that the 2-opt/Or-opt method improved the solution quality of all routes that 

were amended by the EjRI method. In particular, the largest improvement was achieved for 

CMT2Y – Route: 2, which was previously modified by the EjRI method. This improvement 

amounted to 32.74%, as shown in the 32% → 33% band. Therefore, the 2-opt/Or-opt method 

is powerful enough to improve pre-optimisation solutions, which are of a poorer quality. 

Moreover, the 2-opt/Or-opt method’s contribution in terms of overcoming route TSPSDP 

infeasibility is difficult to evaluate given the success of the reverse procedure and the EjRi 

method on this issue. However, the 2-opt/Or-opt method was able to improve the solution 

quality, whilst maintaining capacity feasibility, therefore is proven to be a powerful local 

search method for the TSPSDP.  

 
Figure 6.6: A bar graph showing the frequency the 2-opt/Or-opt method found an improved 

route compared against the MNN algorithm and EjRi method. Band limit convention: band x → 

y contains all values in interval x ≤ i < y. 
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Figure 6.7: Mean number of route nodes. Band limit convention: band x → y contains all 

values in interval x ≤ i < y. 

 

6.4.5 Results discussion 

Solution quality 

The computational output from the herein introduced RouteAlg is compared against that of 

Vural (2007) and is summarised in Figure 6.8. The RouteAlg found new best known solutions 

for 50% (35 routes) of the test problems evaluated by Vural (2007). The mean improvement 

was 2.12% with the largest single improvement of 16.58%, as shown in 16% → 17% band for 

test problem CMT5X – Route: 4. Although, the most amount of improvement lies within the 

0% → 1% band, the RouteAlg has generated a fair number of solutions, which feature a 

decrease in routing distance, especially in the 1% → 2% and 5% → 6%. In contrast, the 

RouteAlg found worse solutions than Vural (2007) for only 6.98% (6 routes) of the test 

problems: CMT1Y – Route 2, CMT2X – Route 2, CMT2Y – Route 2, CMT4Y – Route 4, CMT5X – 

Route 5 and CMT12Y – Route 5 and the number of nodes on each route were 16, 13, 16, 28, 25 

and 20, respectively. However, 4.65% (4) routes were only less than 1% worse than Vural 

(2007). The worst solution found by RouteAlg was only 2.26% higher than the one found by 

Vural (2007), in terms of routing distance, for the instance CMT5X – Route: 5. Given that the 

number of testcases where RouteAlg generated improved routes with respect to Vural (2007) 
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results far exceeds the number of worse solutions, the RouteAlg is recommended as a note-

worthy tool in the field of TSPSDP problem solving. In addition, Figure 6.9 illustrates that the 

performance of the RouteAlg relatively improves with an increase in the problem size, as there 

are two regions of increase delimitated by: 0% → 1% to 3% → 4% bands and 5% → 6% to 13% 

→ 14% bands. 

 
Figure 6.8: A bar graph showing the frequency the RouteAlg found an improved route 

compared against those found by Vural (2007). Band limit convention: band x → y contains all 

values in interval x ≤ i < y. 
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Figure 6.9: Mean number of route nodes. Band limit convention: band x → y contains all 

values in interval x ≤ i < y. 

 

Computational time 

The RouteAlg computational time consumption in regards to the test problems evaluated is 

summarised in Figure 6.10. Unfortunately, the computational time of the RouteAlg cannot be 

compared against Vural (2007) because this measure has not been published in their work. 

The RouteAlg is proven to be computationally resource efficient for all test problems varying 

between 4 to 36 nodes, as the mean computational time consumption was 1.49s. 

Furthermore, 55.71% (39) of the routes were solved within the 0s → 1s band, which increased 

to 77.14% (54) with the 0s → 2s band. The RouteAlg consumed the most computational time 

8.09s, for CMT11Y – Route: 3, which contained the second greatest number of nodes (33) 

compared to the other studied problems. Subsequently, the link between the number of 

nodes on a route and the computational time consumed by the RouteAlg is analysed, see 

Figure 6.7. There is a positive correlation between the computational time consumed by the 

RouteAlg and the number of route nodes. The computational time consumption of the 

RouteAlg remains constant in the 1 → 10 nodes band, but subsequently the rate of growth 

begins to exponentially increase. Another noteworthy point relates to the widening of 

absolute values between routes with the same number of nodes, as the route size is 
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increased. This variation becomes stronger for routes in band 20 ≤ → < 31, as illustrated in 

Figure 6.11. A potential cause may relate to the number of loops applied in the 2-opt/Or-opt 

method. 

 
Figure 6.10: A bar graph showing the computational time consumption frequency of the 

RouteAlg determined routes. Band limit convention: band x → y contains all values in interval 

x ≤ i < y. 
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Figure 6.11: A absolute value chart showing the computation time consumption of the 

RouteAlg against the route size. Vertical Red Lines - Computational time consumption offset 

between different test problems of equal size. 

 

The RouteAlg in summary has proven to be an effective method for solving the TSPSDP, as 

equal or improved quality solutions were found for 91.43% (64 routes), when compared 

against the results provided by Vural (2007). Another noteworthy contribution is it’s 

computational efficiency, as the RouteAlg solved 55.71% (39) of the instances within less than 

one second. In addition, the RouteAlg has proven to be powerful in determining feasible 

TSPSDP solutions. This is contributed to the fact that it features three procedures, which are 

able to induce such feasibility: Reverse procedure, EjRi method and 2-opt/Or-opt method. The 

EJRI method in particular has proven to be successful in this regard because all TSPSDP 

infeasible solutions became feasible following its application. 
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6.5 SDPmethod Validation Results 

The proposed SDPmethod is evaluated in this section, in terms of minimising the following 

objectives: vehicle fleet size, total routing distance and workload variation. The latter objective 

refers to the difference between the longest and shortest routes encrypted by a solution and 

is considered here for the first time in the VRPSDP domain. A comparison is made between the 

best known solutions found in the literature for the Salhi and Nagy (1999) test problems with 

those generated by the SDPmethod. However, a limitation of the comparison is that the 

workload variation objective cannot be evaluated in the case of the best known solutions since 

their corresponding routes have not been published. In order to evaluate this objective, the 

workload variation has been manually computed for the solutions of Vural (2007) and Jun and 

Kim (2012), curtsey of the data personally provided by the authors. 

 

6.5.1 Comparison with Best Known Results   

The best known solutions for Salhi and Nagy (1999) test problems found in the VRPSDP 

domain are provided in Tables 6.3 and 6.4, along with those obtained by the introduced 

SDPmethod. The tables are identical, with the exception that the test problems provided in 

Table 6.4 have imposed a maximum route distance constraint. A detailed analysis of the 

results is provided here, in terms of the following objectives: the operated vehicle fleet size, 

the total routing distance and the workload variation, in the respective order. The latter 

objective refers to the maximum deviation among route distances. The solutions utilised for 

this experimental analysis are selected from the central area of the 1st order PF, which 

comprises a set of trade-offs between the employed objectives, the total routing distance and 

the workload variation, with practical utility, as opposed to solutions situated towards the PF 

extremes. The actual routes for the solutions published in Tables 6.3 and 6.4 are provided in 

the Appendix B, in Figures B.1 → B.28. The complete set of solutions on the 1st order PF is 

provided in Appendix B, in Tables B.1 → B.28. 
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Table 6.3 Result comparison against best solutions found for Salhi and Nagy (1999) test 

problems 

Test 
Problem 

Best Known Results SDPmethod Results 
Total Routing 

Distance 
Vehicle 

Fleet Size Ref Total Routing 
Distance 

Workload 
Variation (%) 

Vehicle 
Fleet Size 

CMT1X 466.77 3 S 495.12 1.97 3 
CMT1Y 466.77 3 S 484.18 5.45 3 
CMT2X 668.77 6 W 766.78 22.58 6 
CMT2Y 663.25 6 W 767 11.86 6 
CMT3X 715.32 5 J 825.76 15.11 5 
CMT3Y 745.46 4 W 800.12 9.8 4 
CMT4X 852.46 7 S 1248.65 18.62 7 
CMT4Y 852.35 7 C 1088.4 33.51 6 
CMT5X 1029.25 10 S 1650.1 31.83 10 
CMT5Y 1054.46 9 W 1289.38 34.29 9 

CMT11X 833.92 4 S 1208.93 32.1 4 
CMT11Y 830.39 4 W 1023.76 19.55 4 
CMT12X 644.7 5 W 850.75 29.98 5 
CMT12Y 662.99 5 J 777.21 15.23 5 

 

Column 4 - References: J - Jun and Kim (2012), S - Subramanian et al (2010, 37), W - Wassan et al (2008) and C - 

Chen and Wu (2006). Red highlight - SDPmethod solution has a smaller vehicle fleet size in comparison to the best 

known solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 
 

Table 6.4 Result comparison against best solutions found for Salhi and Nagy (1999) test 

problems, with distance constraint 

Test 
Problem 

Best Known Results SDPmethod Results 
Total Routing 

Distance 
Vehicle 

Fleet Size Ref Total Routing 
Distance 

Workload 
Variation (%) 

Vehicle 
Fleet Size 

CMT6X 471.89 3 W 480.57 2.15 3 
CMT6Y 467.7 3 W 484.18 5.45 3 
CMT7X 663.95 6 W 766.78 22.58 6 
CMT7Y 662.5 6 W 845.82 13.04 6 
CMT8X 720 5 M 854.65 2.21 5 
CMT8Y 721 5 M 820.5 3.79 4 
CMT9X 880.61 7 W 1200.82 12.74 7 
CMT9Y 886.84 7 W 1385.3 29.09 6 

CMT10X 1079.99 10 W 1650.1 31.83 10 
CMT10Y 1058.09 10 W 1289.38 34.29 9 
CMT13X 858.48 5 W 1208.93 32.1 4 
CMT13Y 880.56 4 W 1027.69 13.12 4 
CMT14X 644.7 5 W 850.75 29.98 5 
CMT14Y 659.52 6 W 847.93 20.39 5 

 

Column 4 - References: W - Wassan et al (2008) and M - Montane and Galvao (2006). Red highlight - SDPmethod 

solution has a smaller vehicle fleet size in comparison to the best known solution. 

 

Vehicle Fleet Size 

The SDPmethod solutions were identical to the lower bound vehicle fleet sizes defined in 

Table 6.2, which demonstrates the efficiency of the SDPmethod in determining solutions with 

the minimum fleet size. It is also noteworthy that the maximum route distance restriction 

imposed on the test problems in Table 6.4 had no bearing on the minimum vehicle fleet size 

because the identical fleet size was determined in Table 6.3. 

 

The SDPmethod improved the best known solutions in terms of a reduction in the vehicle fleet 

size for 21.43% (6) of the test problems: CMT4Y, CMT8Y, CMT9Y, CMT10Y, CMT13X and 

CMT14Y, where one less vehicle was utilised. The majority of the improvements with respect 

to the vehicle fleet size were found in Table 6.4, where a maximum route distance limit was 

imposed on the test problems, with the exception of the CMT4Y test problem in Table 6.3. This 

suggests that the SDPmethod is more robust than its counterparts in finding solutions to 

problems were a maximum route distance constraint is imposed. This is contributed to the 

multi-objective nature of the SDPmethod, which aims to balance the workload variation, an 

item to be discussed shortly. In consequence, the SDPmethod on average was able to increase 
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the number of nodes assigned to each vehicle, which reduced the need to expand the vehicle 

fleet size. 

 

Total Routing Distance  

Initially, the routing solutions provided by the SDPmethod in Table 6.3 and 6.4 may appear 

uncompetitive compared to the best known. However, the SDPmethod solutions were 

selected from the central vicinity of the 1st order Pareto front (PF), in order to balance the 

trade-off between the two objectives. It is noteworthy that the SDPmethod did find solutions 

on the 1st order PF that were improved in terms of the total routing distance objective, than 

the solutions provided by the SDPmethod in Tables 6.3 and 6.4, as shown in the Appendix B, in 

Tables B.1 → B.28, but, these were worse in terms of the workload variation objective. 

 

The SDPmethod found new best solutions, in terms of total routing distance for 10.71% (3) of 

the test problems: CMT1Y, CMT6X and CMT6Y, which were 462.22, 471.53 and 462.22 

respectively. The solution routes are provided in the Appendix B, in Figures B29 → B31. 

Furthermore, the SDPmethod found the optimal solution for the CMT1X test problem defined 

by Subramanian et al (2010, 37) as 466.77, see Appendix B, in Figure 32.  

 

The SDPmethod solutions were expected to have a higher total routing distance than the best 

known for the test problems where the vehicle fleet size had been reduced because the 

remaining routes have more nodes to service, resulting in longer routing distances. This type 

of solution may be welcomed by an operator, if the increase in the total routing distance is 

moderate because the vehicle fleet size represents the largest proportion of total costs. 

 

Workload Variation 

The workload variation objective was considered here for the first time in the VRPSDP domain. 

Unfortunately, a direct workload variation comparison between the SDPmethod solutions and 

the best known was not possible, as the routes for the latter have not been published. 

Subsequently, a direct comparison is made against the research works of Vural (2007) and Jun 

and Kim (2012). This comparison was made possible due to the support of the authors, which 

is profoundly appreciated. However, a limitation of the comparison is that the authors have 

not provided the workload difference for all test problems studied in this research. 
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6.5.2 Comparison with Vural (2007) 

Table 6.5 presents the solutions obtained by Vural (2007) and the SDPmethod for a set of Salhi 

and Nagy (1999) test problems. It is used to evaluate the solution quality, in terms of the 

objectives considered here.  

 

Table 6.5 Vural (2007) results comparison 

Test 
Problem 

Vural (2007) Results SDPmethod Results 
Total 

Routing 
Distance  

Workload 
Variation 

(%) 

Vehicle 
Fleet Size 

Total 
Routing 
Distance  

Workload 
Variation 

(%) 

Vehicle 
Fleet Size 

CMT1X 484.22 91.47 4 495.12 1.97 3 
CMT1Y 607 97.73 7 484.18 5.45 3 
CMT2X 757.9 66.88 7 766.78 22.58 6 
CMT2Y 725.78 39.29 6 767 11.86 6 
CMT3X 774.74 66.65 5 825.76 15.11 5 
CMT3Y 823.97 10.57 4 800.12 9.8 4 
CMT4X 1103.59 33.93 7 1248.65 18.62 7 
CMT4Y 1247.09 95.98 11 1088.4 33.51 6 
CMT5X 1237.58 61 8 1650.1 31.83 10 

CMT11X 1152.05 95.53 9 1208.93 32.1 4 
CMT11Y 925.87 95.51 7 1023.76 19.55 4 
CMT12X 802.56 51.98 6 850.75 29.98 5 
CMT12Y 664.42 26.09 5 777.21 15.23 5 

 

Column 3 - The maximum deviation between route distances found by Vural (2007), Column 6 - The maximum 

deviation between route distances found by the SDPmethod. Red highlight - SDPmethod solution has a smaller 

vehicle fleet size and/or total routing distance in comparison to the Vural (2007) solution. 

 

Vehicle Fleet Size 

The SDPmethod determined solutions with a reduced vehicle fleet size for 53.85% (7) of test 

problems, as shown in Table 6.5. The largest improvement was found for CMT4Y and CMT11X 

test problems, where a reduction of 5 vehicles was achieved. In contrast, Vural (2007) found 

an improved vehicle fleet size solution than SDPmethod for 7.69% (1) test problems, CMT5X. 

This solution operated two fewer vehicles than is capacity-wise feasible, which is defined as 

10, in Table 6.2. Therefore, a discrepancy may exist in terms of how CMT5X test problem was 

generated by Vural (2007). 
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Total Routing Distance 

The SDPmethod solutions have not improved the total routing distances found by Vural (2007) 

for a substantial proportion of the test problems, although they are in the near vicinity (within 

a mean of 5.31%) for test problems: CMT1X, CMT2X, CMT2Y, CMT3X, CMT11X and CMT12X, as 

shown in Table 6.5. However, this was expected for the solutions with a reduced vehicle fleet 

size because the fewer routes may have to travel further distances to service the additional 

nodes that were incorporated. Nevertheless, the SDPmethod has obtained solutions with a 

reduced total routing distance for 23.08% (3) of test problems: CMT1Y, CMT3Y and CMT4Y. 

Although, contrary to the above, the solutions determined for CMT1Y and CMT4Y test 

problems had also operated a smaller vehicle fleet size. 

 

Workload Variation 

The solutions obtained by the SDPmethod were considerably better in terms of workload 

variation for all test problems, as illustrated in Figure 6.12. Noticeably, the maximum workload 

deviation between route distances is significantly higher for Vural (2007) test problems, when 

compared against the offset achieved by the SDPmethod. For 38.46% (5) of test problems: 

CMT1X, CMT1Y, CMT4Y, CMT11X and CMT11Y, the workload deviation exceeded 90%, as show 

in Figure 6.8. This large variation implies that at least one vehicle in the respective test 

problems was severely underutilised. Whereas, the largest workload variation found by the 

SDPmethod was 33.51% for CMT4Y test problem, which in comparison is sizeably less than 

Vural (2007) maximum. The best workload variation result determined by Vural (2007) was 

10.57% for CMT3Y test problem, which is in the near vicinity of the offset determined by the 

SDPmethod. However, the SDPmethod solution was also shorter in terms of total routing 

distance. 
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Figure 6.12 Workload variation comparisons with Vural (2007). Bars: Red - workload variation 

found by the SDPmethod and Blue - workload variation found by Vural (2007). Both coloured 

bars start on the horizontal axis. 

 

6.5.3 Comparison with Jun and Kim (2012)  

A direct result based comparison is not possible for all the test problems in Table 6.6 because 

only the instances: CMT3X, CMT3Y, CMT4Y and CMT5X have been constructed in an identical 

manner. The remaining test problems have applied a service time at the customer nodes, 

which was not considered here. Therefore, a direct comparison was made only in terms of the 

vehicle fleet size and total routing distance minimisation, whereas the entire test problem set 

was considered for the workload variation objective. 
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Table 6.6 Jun and Kim (2012) results comparison 

Test 
Problem 

Jun and Kim (2012) Results SDPmethod Results 
Total 

Routing 
Distance  

Workload 
Variation 

(%) 

Vehicle 
Fleet Size 

Total 
Routing 
Distance  

Workload 
Variation 

(%) 

Vehicle 
Fleet Size 

CMT3X 715.32 74.03 5 825.76 15.11 5 
CMT3Y 719.33 79.91 5 800.12 9.8 4 
CMT4Y 847.58 65.09 7 1088.4 33.51 6 
CMT5X 1036.36 78.65 10 1650.1 31.83 10 
CMT6X 555.43 61.5 6 480.57 2.15 3 
CMT6Y 555.43 61.47 6 484.18 5.45 3 
CMT7X 901.22 35.48 11 766.78 22.58 6 
CMT9X 1161.37 64.71 14 1200.82 12.74 7 
CMT9Y 1161.37 64.71 14 1385.3 29.09 6 

CMT10X 1392.36 86.13 18 1650.1 31.83 10 
CMT13X 1549.79 80.86 11 1208.93 32.1 4 
CMT14X 821.75 61.72 10 850.75 29.98 5 
CMT14Y 821.75 61.69 10 847.93 20.39 5 

 

Column 3 - The maximum deviation between route distances found by Jun and Kim (2012), Column 6 - The 

maximum deviation between route distances found by the SDPmethod. Red highlight - SDPmethod solution has a 

smaller vehicle fleet size and/or total routing distance in comparison to the Jun and Kim (2012) solution. 

 

Vehicle Fleet Size 

The SDPmethod was competitive in terms of the vehicle fleet size objective because the 

number of vehicles operated in each solution was either smaller or equal to that found by Jun 

and Kim (2012) for CMT3X, CMT3Y, CMT4Y and CMT5X test problems, as shown in Table 6.6. 

In particular, the vehicle fleet size was reduced by one for 50% (2) of the test problems: 

CMT3Y and CMT4Y. 

 

Total Route Distance 

Jun and Kim (2012) solutions found a lower total routing distance for the CMT3X, CMT3Y, 

CMT4Y and CMT5X test problems, when compared to the herein presented SDPmethod. 

However, longer route distances were implied for 50% (2) of the test problems: CMT3Y and 

CMT4Y because a smaller vehicle fleet size solution was found by the SDPmethod, as shown in 

Table 6.6. 
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Workload Variation 

The SDPmethod found solutions with substantially lower workload variation for all test 

problems, when comparing against Jun and Kim (2012), as shown in Figure 6.13, therefore 

indicating its competitiveness in minimising this objective. The success is further 

demonstrated by the fact that the minimum workload variation found by the SDPmethod was 

2.15% for the CMT6X test problem, which was considerably less than the lowest 35.48% 

determined by Jun and Kim (2012) for the CMT7X test problem. Moreover, the largest 

workload variation found by the SDPmethod was 33.51% for the CMT4Y test problem, which 

was significantly less than the 86.13% found by Jun and Kim (2012) for the CMT10X test 

problem. Therefore, the solutions provided by Jun and Kim (2012) indicate that there is 

considerable inequality in terms of route distances, especially as for 92.31% (12) of the test 

problems studied, the workload offset exceeded 60%. 

 
Figure 6.13 Workload variation comparisons with Jun and Kim (2012). Bars: Red - workload 

variation found by the SDPmethod and Blue - workload variation found by Jun and Kim (2012). 

Both coloured bars start on the horizontal axis. 

 

The suggested SDPmethod has been demonstrated to be a competitive method in solving the 

VRPSDP, when compared to other methods from the domain. The SDPmethod has found 

solutions to all test problems in alignment with the minimum vehicle fleet sizes determined in 
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Table 6.2. In particular, the SDPmethod improved the vehicle fleet size solution quality for 

21.43% (6), 53.85% (7) and 50% (2) comparable test problems, in comparison with the best 

known solutions, Vural (2007) and Jun and Kim (2012), respectively. Therefore, the 

SDPmethod has proven to be extremely effective in terms of minimising this objective. 

Another issue of importance relates to the minimisation of the total routing distance 

objective, as the SDPmethod has found improved solutions in relation to the best known ones 

for 10.71% (3) of the test problems and one solution equal to the best known one. The 

SDPmethod solutions are also better than those found by Vural (2007), in terms of the total 

routing distance objective for 23.08% (3) test problems. In general, the SDPmethod has been 

able to generate solutions in the vicinity of the best known total routing distances, while 

providing competitive results in terms of workload difference in all test instances. Indeed, the 

SDPmethod solutions are better in terms of minimising the workload variation for all 

comparisons made with Vural (2007) and Jun and Kim (2012) results. The level of 

improvement in the majority of cases is substantial, therefore illustrating the effectiveness of 

the method in generating routes with similar workload variation. 

  

6.6 Genetic Algorithm Analysis 

The genetic algorithm introduced in Phase 3 of the SDPmethod will be analysed here as it 

presents a key contribution to this work. The following is an outline of the discussion. The 

experimental outcome used to dynamically determine the population size and mutation rate is 

analysed first. Secondly, a control mechanism enforced via switching thresholds is used to 

transition between different genetic operators. The effect these operators had on the search 

will be discussed here in greater detail. Thirdly, a cross analysis is performed using different 

sets of measurements: the Hamming distance and the average distance between the 1st order 

PF and the origin, as illustrated by Figures 6.10 and 6.11, respectively. The Hamming distance 

measures the level of population diversity at set intervals, while the distance between the 1st 

order PF and the origin provides insight on the accuracy improvement at every generation. 

Finally, the genetic algorithm is analysed in terms of the distribution of non-dominated 

individuals across the 1st order PF, as depicted in Figure 6.12. The aforementioned figures all 

relate to the CMT3X test problem, which will be the focus of this analysis. 

 

6.6.1 Population size, maximum number of generation’s and mutation rate setup 

A convenient value for the genetic algorithm population size is determined via a set of 

experiments conducted relative to various individual test problems. The results are presented 
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in the Appendix C, in Table C.1. The purpose of the statistical output analysis is to determine 

the population size that provides the highest level of search accuracy within 100 generations. 

Table 6.7 describes the best results obtained over 10 runs for CMT1X test problem, which is 

taken from Appendix C, Table C.1. It is evident that a relationship exists between the search 

accuracy and the implemented population size, given that the distance between the 1st order 

PF and the origin of the search space axes continues to decrease as the population size 

increases, until the saturation point is reached at population size 500. Therefore, a population 

size of 500 is used for the genetic algorithm. The other algorithm parameter configured via this 

line of experiments is the maximum number of search generations. The latter is set to 100 

because the best results (in terms of minimising the distance between the first order PF and 

the search space axes origin) found for each considered population size are between 

generations 87 and 93, as illustrated in Table 6.7. With respect to the remaining test problems 

in Appendix C, in Table C.1, a sufficiently similar setup is found to that of CMT1X. The 

saturation point of the population size (i.e., the value where the distance between the first 

order PF and the search space axes origin stops decreasing) is less than a hundred individuals, 

therefore it is reasonable to consider a population size of 500 for all test problems. 

 

Table 6.7 GA Parameter Setting 

Pop Size Avg Dis Generation 
100 0.31 89 
200 0.29 91 
300 0.27 93 
400 0.26 90 
500 0.25 87 
600 0.25 88 

 

Column 1 - Number of individuals in the population, Column 2 - the average distance between all individuals on the 

1st order Pareto front and the origin and Column 3 - the generation at which the minimum average distance was 

found.  

 

A sensitivity analysis for mutation probability determination was carried out, as shown in 

Table 6.8, for three arbitrarily chosen test problems: CMT1X, CMT3X and CMT5X. The best 

accuracy in each case is highlighted in bold. The genetic algorithm population size is set to the 

previously configured value of 500 individuals for the purpose of the mutation sensitivity 

analysis. Since there were no noteworthy differences in the recorded values for the monitored 

accuracy output, the chosen value for mutation probability is 0.2, as the average accuracy of 

the individuals reached peak values for this particular entry. 
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Table 6.8 Mutation Rate Tuning 

Test Problem Mutation Probability (%) Accuracy Generation 

CMT1X 

0.05 0.44 93 
0.10 0.36 91 
0.15 0.34 88 
0.20 0.31 87 
0.25 0.35 84 

CMT3X 

0.05 0.75 97 
0.10 0.65 94 
0.15 0.59 93 
0.20 0.5 93 
0.25 0.55 96 

CMT5X 

0.05 0.98 98 
0.10 0.96 92 
0.15 0.94 94 
0.20 0.92 90 
0.25 0.94 96 

 

Column 1 - Test problem, Column 2 - Mutation rate, Column 3 - Average distance between the 1st order Pareto 

front and the origin of the axes and Column 4 - Generation when the minimum average distance between the 1st 

order Pareto front and the origin of the axes was found. 

 

6.6.2 Review of the proposed Multi Objective Genetic Algorithm 

The search impact of the genetic operator control mechanism enforced via switching 

thresholds will be discussed here by performing a cross analysis using different sets of 

measurements: the Hamming distance and the average distance between the 1st order PF and 

the origin, as illustrated by Figures 6.14 and 6.15, respectively. 
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Figure 6.14 The average distance between the 1st order Pareto Front and the origin. Line: Red - 

The average distance between the 1st order PF and the origin. 
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Figure 6.15 The average population Hamming Distance. Vertical Lines: Blue - 2-cut point 

crossover operator is introduced, Green – gene level crossover operator is introduced, Red - 

mutation operator is introduced and Purple - decimation, snap-shot and 2-cut point crossover 

operators are introduced in the respective order. Horizontal Lines: Yellow lower - the 

minimum acceptable level of population diversity required in the search and Yellow upper - 

defines a sufficient level of population diversity. 

 

Cut Point Crossover 

The 2-cut point crossover operator was applied in conjunction with an elite selection strategy 

for reproduction and reinsertion, in order to increase the level of accuracy in the search. This 

operator was dynamically applied, depending on the average Hamming distance of the 

population. As the population diversity was above the considered threshold level, the 2-cut 

point crossover operator was applied between generations 6 → 30, 51 → 70 and 91 → 100, as 

shown in the Figure 6.14. The implementation of the operator corresponded to the sizeable 

increase in the search accuracy, as shown in Figure 6.15. Over the generations, a gradual 

decline in the distance between the 1st order PF and the origin is noticeable, as shown in 

Figure 6.11 at generations 34 and 73. 
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A shortcoming of the 2-cut point crossover operator is that the population becomes 

dominated by elite individuals, which eventually resulted in the search becoming trapped in a 

particular area of the space. The population diversity had fallen below the considered 

threshold level at generations 23, 61 and 99, Figure 6.14, which allowed for little or no 

additional improvement in terms of accuracy, Figure 6.15. Therefore, to prevent this situation 

from persisting, a control mechanism enforced via switching thresholds was used to change 

the genetic operator. 

 

The link between accuracy and the population diversity is experimentally illustrated by the fact 

that it was necessary to apply the 2-cut point crossover for a greater number of generations in 

the initial stages of the search compared to the later. This is a likely consequence of the initial 

population being randomly generated and therefore the level of diversity was found to be the 

greatest at this point. 

 

Gene Level Crossover 

The gene level crossover operator was the first genetic operator to be applied, in order to 

regain the population diversity to the required threshold level. This operator was applied in 

conjunction with a diversity friendly reproduction and reinsertion selection scheme, in order 

to effectively induce diversity. As the measured average population diversity dropped below 

the considered threshold at generations 31 → 40 and 71 → 80, gene level crossover operator 

was applied to compensate for that effect, as shown in Figure 6.14. However, this was 

followed by a limited improvement in population diversity, which may be attributed to the 

exchange of genetic material between similar individuals. This issue was probably further 

exaggerated by the crossover process being confined at a sub-chromosome level, probably 

implying a limited number of genes were available. On a different issue of importance, the 

distance between the 1st order PF and the origin increased during the application of the gene 

level crossover operator, as illustrated in Figure 6.15. This tendency was expected as a greater 

number of exchanges between individuals were likely, which was possibly exaggerated by the 

diversity friendly selection scheme.  

 

Mutation 

The mutation operator was applied to induce population diversity to the considered threshold 

level, should the gene level crossover operator fail in this respect. In case of the population 

being dominated by elite individuals, this operator was capable of introducing new gene 
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values into the population from the alleles set, which the gene level crossover operator may 

have not had access to. The mutation operator was dynamically applied between generations 

41 → 50 and 81 → 90, as shown in Figure 6.14, due to the fact that the considered threshold 

level for population diversity had not been achieved by the gene level crossover operator. The 

mutation operator led to an increase in the level of diversity at a higher rate than the one 

obtained by applying the gene level crossover operator. The introduction of gene values was 

likely to have led to the re-insurgence of diversity. However, despite the sizeable increase in 

the population diversity, results show that it remained slightly below the considered threshold 

level. It is also noteworthy that the level of accuracy in the search deteriorated in the 

generations when the mutation operator was applied, as shown in Figure 6.15. This effect was 

most likely amplified by the fact that the implemented selection scheme was diversity friendly.  

 

Decimation and Snapshot operators 

The most powerful diversity friendly genetic operators at the use of the search were the 

decimation and snap-shot. The decimation operator deleted 10% of the individuals in the 

population and the snap-shot operator filled the deficit with individuals from a past 

generation, in order to generate additional population diversity and to maintain a link with the 

gained accuracy. The operators were applied following the failure of the mutation operator in 

increasing the population diversity to the considered threshold level. As the measured average 

population diversity was below the considered threshold at generations 50 and 90, the 

decimation and snap-shot operators were applied, as shown in Figure 6.14. Following the 

application of the decimation and snapshot operators, the 2-cut point crossover was 

employed, given the fact that the measured level of population diversity was the highest at 

those points, using the applied portfolio of genetic operators. 

 

6.6.3 Distribution of non-dominated individuals 

Figure 6.16 defines the non-dominated solutions that have been determined during the search 

for the CMT3X test problem. The set contains solutions that are evenly distributed along the 

entire spread of the 1st order PF, representing feasible trade-offs between the two considered 

objectives namely: the total routing distances and the workload variation. This indicates that 

the proposed SDPmethod has been successful in solving the multi-objective problem studied 

in this work, given that most of the generated solutions were located in the central area of the 

PF. Indeed, there are few extreme points on the 1st order PF, suggesting that the employed 

operators have been successful in directing the search towards the central area of the PF. It is 
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also noteworthy that the even distribution of individuals on the 1st order PF is a consequence 

of the fitness formula 5.2, illustrated in chapter 5, which promotes the search space 

exploration around the non-dominated individuals and especially those where the search had 

previously been limited. 

 
Figure 6.16 Non-dominated individuals found during the search. Red Asterisk - the objective 

qualities of a non-dominated solution that has been determined during the search. 

 

This section has demonstrated the efficiency of the genetic algorithm in guiding the search 

towards the vicinity containing the global solutions, whilst preventing it from becoming 

trapped in a local optimum. For the majority of the search, the level of population diversity is 

within the defined thresholds. Furthermore, the genetic operators combined with the 

selection mechanism have proven successful in regaining the population diversity to the 

considered threshold level in the situations where greater diversity is required, generations 23 

→ 40 and 61 → 83. The even distribution of individuals on the 1st order PF reveals the success 

of the genetic algorithm in generating a variety of tradeoffs between the considered 

objectives, which is similar to the findings of Deb et al. (2002) for a different optimisation 

problem. As this analysis shows, the experimental results obtained and recorder herein 

support the intuitive expectations described and conceptually justified in Chapter 5. 
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This chapter has evaluated the proposed RouteAlg and SDPmethod using the widely 

benchmarked Salhi and Nagy (1999) test problems. The RouteAlg has proven to be a 

competitive routing heuristic for the TSPSDP because high quality solutions are obtained using 

low amounts of computational effort. The solution quality for 93.02% (80) routes studied 

matched or improved the results provided by Vural (2007). In addition, 64% (55) of the 

instances are solved in less than one second. The main contribution of this research work is 

the SDPmethod, a solution method for the multi-objective VRPSDP, which aims to minimise 

the following objectives: operated vehicle fleet size, total routing distance and the workload 

variation. The SDPmethod found solutions to all test problems in alignment with the lower 

bound vehicle fleet sizes determined in Table 6.2. Furthermore, the SDPmethod improved the 

vehicle fleet size solution quality for 21.43% (6) of test problems, in comparison with the best 

known solutions in the domain. In addition, the SDPmethod has found improved total routing 

distance solutions in relation to the best known ones for 10.71% (3) of the test problems and 

one solution equal to the best known one. The SDPmethod solutions are better in terms of 

minimising the workload variation for all comparisons made with Vural (2007) and Jun and Kim 

(2012) results. The level of improvement in the majority of cases is substantial, therefore 

illustrating the effectiveness of the method in generating routes with similar workload 

variation. 
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7. CONCLUSIONS 

 

7.1 Problem description 

The thesis addresses the delivery and pickup transportation problem (DPP), an extension of 

the vehicle routing problem (VRP), where the delivery and pickup demands may occupy the 

same route. This problem has been formulated here as the Vehicle Routing Problem with 

Simultaneous Delivery and Pickup (VRPSDP), which requires the concurrent service of delivery 

and pickup demands at a customer location, in the respective order of service. A new multi-

objective VRPSDP is tackled here, which requires the minimisation of the following objectives: 

operated vehicle fleet size, total routing distance and the workload variation (maximum 

variation between route distances).  

 

7.2 Problem importance  

The theoretical interest in designing effective methods for the DPP has been fuelled partially 

by the growing importance of reverse logistics (Dethloff, 2001) and by the complex nature of 

the problem, arising from the difficulty of managing the fluctuating capacities at the route 

nodes (Parragh et al., 2008). The significance is further supported by the fact that the VRPSDP 

formulation provides commercial benefits in terms of lower routing costs for the service 

provider and less the handling effort for the recipient, when compared against other 

formulation types (Parragh et al., 2008). The current interest in the VRPSDP is high as 

demonstrated by the amount of literature works that have been published within the past 

decade (Wang and Chen, 2012). 

 

7.3 Proposed methods  

This thesis presents a new methodology to solve the VRPSDP encompassing two components: 

SDPmethod and RouteAlg. The main contribution of this research work is the solution to solve 

the multi-objective VRPSDP, herein termed SDPmethod. For the first time in the VRPSDP 

domain, the SDPmethod has attempted to identify a partial solution in the vicinity of the near-

optimal solution and then focused the computational effort on solving the sub-problem, which 

is deemed more difficult because the assignment decisions are less intuitive. Another 

noteworthy contribution is the routing heuristic, RouteAlg, proposed to solve the travelling 

salesman problem simultaneous delivery and pickup (TSPSDP), which is a sub-problem of the 

VRPSDP. Initially, the RouteAlg invests computational effort in guiding the search towards a 

TSPSDP feasible space, before spending additional resources on optimising the solution. 
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7.4 Introduced benefits 

The implications of this research work are substantial. The SDPmethod can generate a range of 

non-dominated solutions for the multi-objective VRPSDP, representing various trade-offs 

between the considered objectives. The non-dominated solutions allow users to make a 

selection based on their specific needs, which narrows the gap between theoretical study and 

practical implementation. Moreover, the SDPmethod employs a workload variation objective, 

which is considered here for the first time in the VRPSDP domain. The purpose of this 

objective is to encourage the generation of routes of similar lengths, which is an important 

consideration in the practical domain. For instance, a balanced workload between drivers is 

likely to reduce the employee turnover rate because workers are no longer disgruntled about 

receiving dissimilar therefore unfair amounts of work. Also, the compliance visibility with 

respect to the host country’s driving hours regulations becomes easier to manage with a 

workload balanced solution. Additionally, the SDPmethod is of a new design, which protects 

potentially valuable building blocks from modification during the solutions’ evolution. The 

benefit of the proposed design is that computational effort can be targeted towards less 

intuitive assignments, which should hopefully increase the computational efficiency of the 

SDPmethod. This design represents a complete transformation of the existing approach, found 

extensively in the VRPSDP domain, where the initialisation and modification of a solution are 

separate steps within the optimisation phase. Moreover, the solution design has a practical 

importance on problems where a client may want to achieve some efficiency gains (e.g. 

operate a reduced vehicle fleet size), without jeopardising their entire solution design, which is 

possible with the use of building blocks.    

 

The RouteAlg is a powerful heuristic for generating high quality feasible solutions for the 

TSPSDP. The RouteAlg design focuses on introducing TSPSDP feasible solution, therefore 

increasing the probability that a near-optimal solution can be found because it is located in the 

feasible area of the search space.  

 

7.5 Research objectives and contributions 

To address the research objectives, this thesis has introduced a new theoretical design, the 

SDPmethod, to solve the multi-objective VRPSDP. The method consists of three phases: the 

first phase constructs a set of diverse partial solutions, where at least one is expected to be in 

the vicinity of the near-optimal solution, the second phase determines assignment possibilities 

for each sub-problem and finally the third phase uses a parallel genetic algorithm to solve the 
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sub-problems. This is the first time in the VRPSDP domain that a parallel genetic algorithm has 

been presented, which has independently evolved a set of diverse populations. To enhance 

the performance of the genetic algorithm, the following tools have been introduced: a new 

genetic operator switching mechanism enforced via diversity thresholds and a customised 

fitness computational formula. In addition, a previously neglected or inaccessible tool to 

measure the accuracy in the search is proposed, which calculates the distance between the 1st 

order Pareto front and the origin. The SDPmethod is proficient as it can generate a wide range 

of good solutions for the multi-objective problem, for which a workload variation objective is 

new to the domain. The aforementioned contributions have all been demonstrated to be 

successful at addressing the objectives, as illustrated by the results. 

 

7.6 Results 

7.6.1 Experimental Comparisons 

The SDPmethod solutions are compared against the best known in the VRPSDP domain and 

the results are provided in Chapter 6, Tables 6.3 and 6.4. The SDPmethod has obtained an 

improvement over the best known solutions for a number of test problems, in terms of 

minimising the following objectives: operated vehicle fleet size and the total routing distance 

travelled. In particular, the SDPmethod found solutions for all test problems in alignment with 

the lower bound vehicle fleet sizes determined in Chapter 6, Table 6.2. In addition, the routing 

solutions found by the SDPmethod are mainly in the vicinity of the best known. 

 

The SDPmethod has considered a new workload variation objective. Unfortunately, a direct 

comparison with the best known solutions is not possible in relation to this objective because 

routing solutions have not been published. Instead, a direct comparison is made with Vural 

(2007) and Jun and Kim (2012) research works, which have provided this thesis with their 

routing information. The SDPmethod solutions obtained an improvement in the workload 

variation for all test problems and in most cases it is shown to be substantial, as illustrated in 

Chapter 6, Figures 6.8 and 6.9, respectively.  

 

The RouteAlg solutions for the TSPSDP were benchmarked against the results from Vural 

(2007), see Appendix A, Tables A1-A13. The comparison was limited to Vural (2007) because 

this was the only available research work with published routing solutions. The RouteAlg 

obtained TSPSDP feasible routing solutions for all studied instances. In particular, the RouteAlg 
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results were equal or improved for the majority of studied instances, therefore underpinning 

the competitive nature of the routing heuristic. 

 

7.6.2 Impact of proposed design 

The genetic algorithm helped generate a set of non-dominated solutions on the 1st order PF 

for the multi-objective VRPSDP tackled here, as illustrated in Table 6, Figure 6.12. The majority 

of non-dominated individuals were evenly distributed along the centre vicinity of the 1st order 

PF, indicating the effectiveness of the genetic algorithm in determining solutions with 

balanced tradeoffs between objective values. 

 

7.6.3 Impact of proposed tools 

A new genetic operator switching logic controlled via diversity thresholds is introduced in the 

VRPSDP domain for the first time to effectively guide the search towards higher quality search 

space. This mechanism has demonstrated to be successful in inducing accuracy and diversity 

into the search at the required generations, as illustrated in Chapter6, Figure 6.11. The 

mechanism has also prevented the search from becoming trapped at the local optimum, which 

is a major concern for all approximation methods. 

 

This research for the first time in the VRPSDP domain has evaluated the performance of the 

genetic algorithm during the evolution by measuring the distance between the 1st order 

Pareto front and the origin. The introduced genetic algorithm has demonstrated to be an 

effective method in improving the level of accuracy in the search, as illustrated in Chapter 6, 

Figure 6.10.  

 

Patelli (2011) fitness formula is enhanced to consider the estimated distance between the 

Pareto sets, therefore increasing the accuracy of the fitness computation. This extension led to 

an improvement in the pace of search accuracy because a rapid decrease in the distance 

between the 1st order Pareto front and the origin was demonstrated in Chapter 6, Figure 6.10 

for a particular test problem. 

 

7.7 Future Research 

This research work has not considered time window restrictions at the nodes, which are 

encountered in the practical domain. Therefore, to bridge the gap between theoretical study 

and practical relevance, the SDPmethod should be modified to consider the VRPSDP with time 
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windows (VRPSDPTW). It is important to mention that this research work has introduced the 

EjRi method, a component of the RouteAlg, which rearranges the cycle nodes, in order to 

induce capacity and time window feasibility. The success of this method in terms of 

introducing capacity feasibility has been demonstrated here. However, a computational study 

is required in relation to evaluate the performance of the method on time windows. 

 

Future research may investigate the SDPmethod solution quality for a relaxed version of the 

VRPSDP, where the simultaneous service restriction is loosely applied during the search. This 

formulation is likely to increase the flexibility of the SDPmethod, as vehicle loads can be better 

managed. 

 

The underlining framework of the proposed genetic algorithm is universally applied by 

practitioners, (Gendreau and Potvin, 2010), therefore the genetic algorithm enhancements 

introduced here, for example, the genetic operator switching mechanism via population 

diversity thresholds, may be applied to other research works over a wide range of disciplines. 

On a different standpoint, future research may substitute the genetic algorithm introduced 

here with an evolutionary strategy (ES), in order to evaluate the effect a self adaptive 

algorithm configuration may have on the search. It is noteworthy that the proposed genetic 

operator switching mechanism enforced via population diversity thresholds has effectively 

managed the application of genetic operators during the search. It is therefore suggested that 

the search improvement provided by ES is likely to be limited. Although, the ES will 

substantially reduce the level of input required from the human practitioner, in order to 

configure parameter settings. 

 

Future research work may want to apply the SDPmethod to other vehicle routing problem 

(VRP) variants. The SDPmethod without modification can be applied directly to solve the VRP 

by setting either the customer delivery or pickup demands to zero. In addition, the SDPmethod 

can be applied to the DPP with the vehicle routing problem with mixed backhauls (VRPMB) 

formulation, where the customer requires the service of a single demand type, Nagy and Salhi 

(2005). In particular, the SDPmethod should be applied to a multi-objective problem, as it is 

proven to be successful in this regard. On a different issue of importance, the 1st order PF 

solutions provided for Salhi and Nagy (1999) test problems in the Appendix B are benchmark 

results, which should be used by researchers to evaluate their own methods, in order to 

progress the quality of solution methods in the domain. 
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Additional research attention is required in the VRPSDP domain with regards to the 

identification of high quality solution traits in the initial solution construction phase, as their 

determination here has successfully led to the identification of high quality solutions.  

 

The research was evaluated using the widely benchmark test problems of Salhi and Nagy 

(1999), which contained between 50 and 199 customers. Future research may want to 

evaluate the performance of the SDPmethod using a larger test problem size, for instance, on 

Montane and Galvao (2006) test problems comprising of up to 400 nodes. 
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Routing Results 

 

Table A.1 

 

Table A.1: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 

 

 

 

 

 

CMT1X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 149.87 149.17 0.47 0 0 0 129.96 129.96 0 0.31 
2 197.97 189.97 4.04 0 50 0 150.69 150.69 0 0.52 
3 246.39 216.29 12.22 0 57.89 0 187.57 187.57 0 0.74 
4 16 16 0 0 0 0 16 16 0 0.08 

Mean 152.56 142.86 4.18 0 26.97 0 121.06 121.06 0 0.41 
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Table A.2 

CMT1Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 204.26 204.26 0 0 38.1 0 193.41 193.41 0 1 
2 247.42 238.37 3.66 0 0 0 197.19 196.14 -0.54 0.62 
3 16.12 16.12 0 0 0 0 16.12 16.12 0 0.09 
4 42.05 42.05 0 0 0 0 42.05 42.05 0 0.09 
5 46.17 46.17 0 0 0 0 46.17 46.17 0 0.09 
6 120.22 109.63 8.81 0 0 0 107.18 109.63 2.23 0.16 
7 4.47 4.47 0 0 0 0 4.47 4.47 0 0.09 

Mean 97.24 94.44 1.78 0 5.44 0 86.66 86.86 0.24 0.31 
 

Table A.2: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.3 

CMT2X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 124.34 101.56 18.32 0 0 0 101.54 101.54 0 0.11 
2 153.18 152.62 0.37 15.38 0 0 136.32 136 -0.24 0.26 
3 156.04 147.67 5.36 0 53.33 0 144.49 147.05 1.74 0.34 
4 87.57 87.57 0 0 0 0 67.49 67.49 0 0.17 
5 111.24 101.26 8.97 0 0 0 99.55 103.74 4.04 0.16 
6 164.05 164.05 0 0 76.47 0 151.81 151.81 0 0.53 
7 50.28 50.28 0 0 0 0 50.28 50.28 0 0.1 

Mean 120.96 115 4.72 2.2 18.54 0 107.35 108.27 0.79 0.24 
 

Table A.3: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.4 

CMT2Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 151.71 135.52 10.67 41.67 25 0 127.83 127.83 0 0.24 
2 203.23 170.59 16.06 6.25 68.75 0 151.44 148.47 -2 0.58 
3 197.73 143.63 27.36 35.71 0 0 127.9 127.9 0 0.32 
4 134.46 134.46 0 0 41.18 0 124.97 124.97 0 0.54 
5 145.41 134.67 7.39 50 0 0 104.67 104.67 0 0.24 
6 102.22 93.67 8.36 0 0 0 91.94 91.94 0 0.11 

Mean 155.79 135.42 11.64 22.27 22.49 0 121.46 120.96 -0.33 0.34 
 

Table A.4: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.5 

CMT3X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 305.09 279.88 8.26 0 60.87 0 226.03 226.03 0 1.45 
2 227.82 201.5 11.55 0 80 0 179.58 180.62 0.58 1.62 
3 142.09 139.76 1.64 0 0 0 138.61 138.61 0 1.12 
4 201.98 190.63 5.62 0 40.91 0 154.1 154.1 0 1.84 
5 75.37 75.37 0 0 0 0 75.37 75.37 0 0.11 

Mean 190.47 177.43 5.41 0 36.36 0 154.74 154.95 0.12 1.23 
 

Table A.5: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.6 

CMT3Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 270.32 241.47 10.67 7.69 61.54 0 208.91 235.16 11.16 3.15 
2 226.48 226.48 0 0 80 0 186.83 193.96 3.68 3.51 
3 267.96 235.85 11.98 66.67 0 0 207.19 207.19 0 1.5 
4 199.15 199.15 0 0 0 0 187.09 187.66 0.3 0.95 

Mean 240.98 225.74 5.66 18.59 35.39 0 197.51 205.99 3.79 2.28 
 

Table A.6: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.7 

CMT4X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 162.53 151.73 6.64 0 0 0 146.25 151.27 3.32 0.84 
2 252.15 239.89 4.86 44.44 11.11 0 201.19 203.92 1.34 3.08 
3 138.93 136.75 1.57 0 86.36 0 132.92 147.49 9.88 1.08 
4 145.23 137.62 5.24 0 0 0 134.6 134.6 0 0.86 
5 174.71 174.71 0 0 74.07 0 163.23 169.61 3.76 2.1 
6 147.5 140.94 4.45 0 0 0 133.02 137 2.91 0.37 
7 178.12 173.9 2.37 0 0 0 157.45 159.5 1.29 0.78 

Mean 171.31 165.08 3.59 6.35 24.51 0 152.67 157.63 3.21 1.3 
 

Table A.7: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.8 

CMT4Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 210.98 204.36 3.14 3.7 70.37 0 186.01 196.84 5.5 2.09 
2 10 10 0 0 0 0 10 10 0 0.09 
3 249.04 249.04 0 3.57 75 0 224.87 224.87 0 3.83 
4 220.99 213.71 3.29 0 75 0 197.94 196.74 -0.61 3.07 
5 18.11 18.11 0 0 0 0 18.11 18.11 0 0.09 
6 24.08 24.08 0 0 0 0 24.08 24.08 0 0.09 
7 273.21 267.77 1.99 0 92.31 0 249.02 268.99 7.42 1.91 
8 185.01 180.3 2.55 23.08 38.46 0 164.87 167.25 1.42 2.06 
9 122.28 122.28 0 0 0 0 107.14 107.55 0.38 0.27 

10 12.65 12.65 0 0 0 0 12.65 12.65 0 0.09 
11 20 20 0 0 0 0 20 20 0 0.09 

Mean 122.4 120.21 1 2.76 31.92 0 110.43 113.37 1.28 1.24 
 

Table A.8: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.9 

CMT5X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 232.25 208.86 10.07 11.11 62.96 0 192.66 204.38 5.73 3.54 
2 167.29 134.5 19.6 0 0 0 123.45 129.66 4.79 0.39 
3 181.46 164.25 9.48 77.27 0 0 136.62 136.62 0 1.3 
4 130.29 129.03 0.97 0 0 0 126.08 151.14 16.58 0.78 
5 243.34 243.34 0 0 48 0 211.04 206.38 -2.26 1.85 
6 165.01 150.11 9.03 0 0 0 136.99 145.31 5.73 0.75 
7 205.5 181.85 11.51 0 30.43 0 161.52 181.79 11.15 1.47 
8 93.61 83.35 10.96 0 0 0 82.3 82.3 0 0.15 

Mean 177.34 161.91 8.95 11.05 17.67 0 146.33 154.7 5.22 1.28 
 

Table A.9: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.10 

CMT11X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 363.91 323.49 11.11 0 0 0 306.5 309.82 1.07 7.93 
2 350.23 343.37 1.96 0 0 0 316.09 321.15 1.58 5.89 
3 357.83 353.76 1.14 0 0 0 296.07 305.51 3.09 4.7 
4 14.14 14.14 0 0 0 0 14.14 14.14 0 0.09 
5 92.97 92.97 0 0 0 0 92.97 92.97 0 0.09 
6 58.51 52.16 10.85 0 0 0 52.16 52.16 0 0.22 
7 16.56 16.56 0 0 0 0 16.56 16.56 0 0.1 
8 17.9 17.07 4.64 0 0 0 17.07 17.07 0 0.11 
9 22.66 22.66 0 0 0 0 22.66 22.66 0 0.1 

Mean 144.29 137.35 5.42 0 0 0 126.02 128 0.64 2.14 
 

Table A.10: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.11 

CMT11Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 350.74 326.91 6.79 0 0 0 315.22 316.43 0.38 6.76 
2 341.58 313.52 8.21 0 0 0 294.79 296.03 0.42 3.96 
3 227.63 225.42 0.97 0 0 0 183.63 211.82 13.31 8.09 
4 76.2 74.96 1.63 0 0 0 72.46 72.46 0 0.54 
5 14.99 14.99 0 0 0 0 14.99 14.99 0 0.1 
6 58.51 52.16 10.85 0 0 0 52.16 52.16 0 0.2 
7 14.14 14.14 0 0 0 0 14.14 14.14 0 0.09 

Mean 154.83 146.01 4.06 0 0 0 135.34 139.72 2.02 2.82 
 

Table A.11: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.12 

CMT12X 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 140.17 138.34 1.31 0 0 0 132.09 132.29 0.15 2.47 
2 148.75 142.75 4.03 0 0 0 135.82 144 5.68 1.23 
3 198.99 164.22 17.47 0 0 0 151.47 151.47 0 0.66 
4 183.12 161.01 12.07 0 0 0 150.16 151.43 0.84 0.69 
5 152.02 152.02 0 0 0 0 150.62 150.62 0 0.46 
6 72.74 72.74 0 0 0 0 72.74 72.74 0 0.1 

Mean 149.3 138.51 5.81 0 0 0 132.15 133.76 1.11 0.94 
 

Table A.12: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.13 

CMT12Y 

Route NN 
Results 

MNN 
Results 

Difference 
(NN & MNN) 

[%] 

MNN 
Infeasibility 

[%] 

Reverse MNN 
Infeasibility 

[%] 

EjRi 
Infeasibility 

[%] 

RouteAlg 
Results 

Vural 
(2007) 
Results 

Difference (Vural 
(2007) & RouteAlg) 

[%] 

Time 
[s] 

1 117.8 117.6 0.17 0 0 0 108.78 115.54 5.85 1.32 
2 140.6 138.86 1.24 0 0 0 133.98 145.91 8.18 0.72 
3 146.21 131.64 9.97 0 0 0 125.6 135.81 7.52 1.01 
4 157.01 150.25 4.31 0 0 0 147.18 149.34 1.45 1.11 
5 135.16 124.13 8.16 0 0 0 118.01 117.82 -0.16 0.92 

Mean 139.36 132.5 4.77 0 0 0 126.71 132.88 4.57 1.02 
 

Table A.13: Column 1 - Route name, Column 2 - Routing distance determined using the Nearest Neighbourhood (NN) algorithm, Column 3 - Routing distance determined using the Modified 

Nearest Neighbourhood (MNN) algorithm, Column 4 – Percentage variation between the routing distance determined by the NN algorithm and the MNN algorithm, Column 5 - The 

percentage of nodes on the route determined by the MNN algorithm that are TSPSDP infeasible, Column 6 - The percentage of TSPSDP infeasible nodes on the reverse MNN algorithm route, 

Column 7 - The percentage of nodes on the route determined by the EjRi method that are TSPSDP infeasible, Column 8 - Routing distance determined using the 2-opt/Or-opt method, Column 

9 - Routing distance determined by Vural (2007), Column 10 - Percentage difference between the routing distance determined by the 2-opt/Or-opt method and Vural (2007) and Column 11 - 

Computational time consumption of the RouteAlg. 
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Table A.14 

Dataset Route Distance 

CMT2Y 
1 143.64 
2 225.15 

CMT3Y 1 271.35 
CMT4X 2 259.99 

CMT4Y 
1 212.96 
3 308.45 
8 198.1 

CMT5X 1 246.18 
 

Table A.14: Column 1 - Name of dataset, Column 2 - Routing name, Column 3 - The routing distance following the application of the EjRi method. 
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Routing Information 

 

Figure A.1 

Route CMT1X 
1 0 11 38 9 50 16 2 29 21 34 30 39 10 49 5 0           
2 0 47 4 18 13 41 40 19 42 44 45 33 15 37 17 12 46 0       
3 0 32 1 22 20 35 36 3 28 31 26 8 48 23 7 43 24 25 14 6 0 
4 0 27 0                                     

 

Figure A.1: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure A.2 

Route CMT1Y 
1 0 11 38 5 49 9 50 16 29 21 34 30 10 39 33 45 15 44 42 37 17 4 0 
2 0 47 18 41 19 40 13 14 24 43 7 23 6 48 26 8 32 0      
3 0 12 0                     
4 0 2 0                     
5 0 25 0                     
6 0 1 22 20 35 36 3 28 31 27 0             
7 0 46 0                     

 

Figure A.2: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.3 

Route CMT2X 
1 0 38 65 66 11 59 8 0                       
2 0 17 40 50 18 55 25 31 10 58 72 39 9 12 0         
3 0 51 16 63 1 43 42 64 41 56 23 49 24 3 44 32 0     
4 0 75 30 48 5 29 45 27 52 46 34 0               
5 0 68 2 28 22 61 21 74 4 67 26 0               
6 0 7 35 53 14 19 54 13 57 15 37 20 70 60 71 69 36 47 0 
7 0 6 33 73 62 0                           

 

Figure A.3: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure A.4 

Route CMT2Y 
1 0 7 53 11 66 65 38 31 10 58 35 8 46 0      
2 0 17 12 72 39 9 32 44 50 25 55 18 24 49 51 6 26 0  
3 0 75 68 2 22 64 42 43 41 56 23 63 16 3 40 0    
4 0 67 34 52 27 13 57 15 37 20 70 60 71 69 36 47 74 30 0 
5 0 33 1 73 62 28 61 21 48 5 29 45 4 0      
6 0 54 19 59 14 0              

 

Figure A.4: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.5 

Route CMT3X 

1 
0 50 33 81 51 9 35 71 65 66 20 32 90 63 64 49 36 46 47 19 11 62 10 52 
0                                               

2 
0 26 12 80 68 76 77 3 79 78 34 29 24 54 4 55 25 39 67 23 56 75 72 73 

21 40 0                                           
3 0 89 6 96 59 99 5 84 17 45 8 82 48 7 88 31 70 30 1 69 27 28 53 0 
4 0 94 95 97 92 98 37 100 91 16 86 38 44 14 42 43 15 57 41 22 74 2 58 0 
5 0 13 87 93 85 61 60 83 18 0                             

 

Figure A.5: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure A.6 

Route CMT3Y 

1 
0 69 1 50 33 81 51 9 71 35 34 78 79 3 77 76 68 80 29 24 55 25 67 23 

39 4 28 0                                         

2 
0 89 6 96 99 59 98 85 91 100 37 92 97 2 57 42 14 43 15 41 22 74 75 56 

72 73 21 54 12 26 40 0                                 

3 
0 53 58 13 87 95 93 44 38 86 16 61 84 17 45 8 46 47 36 49 64 11 62 88 

52 0                                             
4 0 94 5 60 83 18 7 82 48 19 63 90 32 66 65 20 30 70 10 31 27 0     

 

Figure A.6: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.7 

Route CMT4X 
1 0 112 53 40 149 139 39 67 25 55 130 24 121 79 3 77 116 68 80 109 12 0     

2 
0 132 51 120 9 103 66 20 128 131 32 90 63 126 108 10 62 107 11 64 49 143 36 47 

124 46 52 146 0                                       
3 0 89 147 6 94 117 95 92 37 93 5 118 84 113 17 45 125 8 114 48 19 123 106 0 
4 0 13 59 60 83 82 7 148 88 127 31 101 70 30 122 1 69 28 138 26 105 0     

5 
0 58 137 87 97 96 104 99 98 85 91 100 42 57 145 41 22 133 23 56 75 74 73 72 

110 4 54 150 0                                       
6 0 134 29 129 78 34 135 35 136 65 71 81 33 102 50 76 0               
7 0 27 111 21 115 2 144 15 43 142 14 119 44 38 140 86 141 16 61 18 0       

 

Figure A.7: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.8 

Route CMT4Y 

1 
0 6 59 96 93 98 37 100 91 85 61 60 18 83 46 124 47 48 82 106 7 88 123 19 

107 11 10 70 0                                       
2 0 112 0                                           

3 
0 1 33 78 9 120 135 35 136 65 71 103 20 30 131 32 90 126 63 64 49 143 36 114 

125 45 17 84 5 0                                     

4 
0 13 95 117 87 137 2 115 73 21 72 74 23 41 145 15 43 42 142 14 44 86 140 38 

141 16 92 99 104 0                                     
5 0 58 0                                           
6 0 94 0                                           

7 
0 146 27 69 101 122 51 66 128 108 62 148 52 89 147 118 8 113 119 97 144 57 75 39 

139 110 40 0                                         

8 
0 127 31 132 111 76 116 77 3 68 80 150 109 54 130 55 25 134 24 29 121 79 129 34 

81 102 50 0                                         
9 0 105 26 12 149 4 67 56 133 22 53 0                         

10 0 28 0                                           
11 0 138 0                                           

 

Figure A.8: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.9 

Route CMT5X 

1 
0 147 6 94 95 92 59 99 96 118 84 113 17 45 8 114 18 153 106 7 82 46 124 47 

36 143 11 90 0                                       
2 0 77 3 129 78 34 135 35 136 65 71 9 120 81 33 122 0               
3 0 27 111 28 138 154 12 109 150 134 54 130 55 25 139 39 67 23 56 74 72 21 149 0 
4 0 105 152 137 2 115 57 15 43 38 140 86 141 91 100 85 93 104 97 117 0       

5 
0 146 88 148 62 159 10 70 101 69 116 80 68 20 66 128 131 32 126 63 64 49 107 19 

123 52 0                                           
6 0 13 151 98 37 87 144 42 142 14 119 44 16 61 5 60 83 125 48 89 0       

7 
0 26 76 50 157 51 103 79 158 121 29 24 155 4 110 75 133 22 41 145 73 40 58 53 
0                                               

8 0 132 1 102 30 108 31 127 112 156 0                           
 

Figure A.9: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.10 

Route CMT11X 

1 
0 67 69 70 71 74 72 75 78 80 79 77 76 73 68 40 43 45 51 50 48 42 39 38 

41 32 35 36 34 33 30 28 21 94 0                           

2 
0 99 54 57 55 60 63 66 64 62 61 65 59 47 49 46 44 37 29 31 27 24 22 25 

19 23 26 20 17 16 12 91 0                               

3 
0 81 84 117 113 83 2 3 4 5 6 7 9 10 11 15 14 13 8 52 53 58 56 98 

110 115 97 109 108 118 18 114 90 0                             
4 0 120 0                                           
5 0 1 0                                           
6 0 107 104 103 116 100 96 93 92 89 85 112 0                       
7 0 119 88 0                                         
8 0 87 86 111 82 0                                     
9 0 95 102 101 106 105 0                                   

 

Figure A.10: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.11 

Route CMT11Y 

1 
0 21 26 23 20 17 16 19 25 22 24 27 33 30 31 34 36 35 28 32 29 44 46 47 

50 51 45 39 79 77 78 75 72 74 73 71 70 0                     

2 
0 110 37 38 42 41 49 48 43 40 59 57 54 52 53 55 58 61 65 62 64 66 63 60 

56 80 68 76 67 69 104 106 0                               

3 
0 82 81 112 84 117 113 83 2 1 3 4 5 6 7 9 10 11 15 14 13 12 8 108 

118 109 115 98 116 97 96 92 86 88 0                           
4 0 111 85 89 91 90 18 114 94 93 102 101 99 100 103 107 105 120 0           
5 0 87 95 0                                         
6 0 107 104 103 116 100 96 93 92 89 85 112 0                       
7 0 119 0                                           

 

Figure A.11: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure A.12 

Route CMT12X 

1 
0 43 42 41 40 44 45 48 46 47 49 52 50 51 31 32 33 35 37 38 39 36 30 28 

26 0                                             
2 0 20 21 22 23 25 24 27 29 34 17 11 10 8 9 6 7 5 3 4 2 1 75 0 
3 0 90 91 89 88 85 84 83 82 81 78 76 71 70 73 77 79 80 72 0         
4 0 87 86 74 62 61 64 55 54 53 56 58 60 59 68 69 63 65 67 0         
5 0 98 96 95 94 92 93 97 100 99 12 14 16 15 19 18 13 0             
6 0 66 57 0                                         

 

Figure A.12: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure A.13 

Route CMT12Y 
1 0 20 24 25 27 29 32 33 31 35 37 38 39 36 34 30 28 26 23 22 21 0   
2 0 99 100 97 93 92 94 95 96 98 91 89 88 85 84 82 83 86 87 90 0     
3 0 43 42 41 40 57 55 54 53 56 58 60 59 44 45 46 48 51 50 52 49 47 0 
4 0 69 66 68 64 61 72 80 79 77 73 70 71 76 78 81 74 62 63 65 67 0   
5 0 7 3 5 75 1 2 4 6 8 9 12 14 16 15 19 18 17 13 11 10 0   

 

Figure A.13: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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APPENDIX B 

 

 

SDPmethod 
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1st order Pareto front solutions 

 

Table B.1 

CMT1X 
Solution Total Routing Distance Workload Variation (%) 

1 466.77 30.71 
2 483.45 18.71 
3 484.87 11.5 
4 487.63 9.82 
5 488.01 8.28 
6 490.8 7.42 
7 492.59 6.86 
8 493.47 6.57 
9 493.66 6.14 

10 495.12 1.97 
11 504.75 1.46 
12 563.7 1.12 
13 579.88 0.7 
14 585.24 0.33 
15 587.17 0.31 
16 623.46 0.29 

 

Table B.1: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.2 

CMT1Y 
Solution Total Routing Distance Workload Variation (%) 

1 462.22 18.19 
2 471.78 8.01 
3 473.4 7.64 
4 484.18 5.45 
5 506.33 3.13 
6 508 3.03 
7 509.65 2.38 
8 554.05 1.45 
9 566.99 0.06 

 

Table B.2: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 
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Table B.3 

CMT2X 
Solution Total Routing Distance Workload Variation (%) 

1 766.78 22.58 
 

Table B.3: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.4 

CMT2Y 
Solution Total Routing Distance Workload Variation (%) 

1 731.78 17.26 
2 766.11 14.17 
3 767 11.86 
4 779.37 8.84 
5 782.26 6.96 

 

Table B.4: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.5 

CMT3X 
Solution Total Routing Distance Workload Variation (%) 

1 816.38 23.85 
2 822.89 20.56 
3 825.76 15.11 
4 838.29 13 
5 848.79 12.69 
6 849.99 10.11 
7 856.49 9.71 
8 860.98 7.94 
9 866.06 5.88 

10 878.7 4.47 
11 902.7 4.4 

 

Table B.5: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 
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Table B.6 

CMT3Y 
Solution Total Routing Distance Workload Variation (%) 

1 769.59 38.74 
2 774 32.77 
3 776.05 22.66 
4 780.75 20.68 
5 791.09 20.13 
6 793.76 19.85 
7 795.38 18.65 
8 797.73 14.39 
9 800.12 9.8 

10 805.9 9.56 
11 809.09 9.43 
12 815.93 4.81 
13 816.6 4.74 
14 819.15 4.14 
15 825.59 2.7 
16 841.12 1.78 

 

Table B.6: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.7 

CMT4X 
Solution Total Routing Distance Workload Variation (%) 

1 1191.19 44.66 
2 1197.2 36.53 
3 1248.65 18.62 
4 1262.9 15.5 
5 1263.57 14.19 
6 1355.47 10.41 

 

Table B.7: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 
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Table B.8 

CMT4Y 
Solution Total Routing Distance Workload Variation (%) 

1 1088.4 33.51 
 

Table B.8: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.9 

CMT5X 
Solution Total Routing Distance Workload Variation (%) 

1 1601.44 42.75 
2 1612.68 34.14 
3 1650.01 31.83 
4 1668.27 28.09 

 

Table B.9: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation between 

route distances. 

 

Table B.10 

CMT5Y 
Solution Total Routing Distance Workload Variation (%) 

1 1234.01 70.07 
2 1283.26 39.73 
3 1289.38 34.29 
4 1360.67 32.72 
5 1364.67 21.08 

 

Table B.10: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.11 

CMT11X 
Solution Total Routing Distance Workload Variation (%) 

1 1127.6 126.65 
2 1127.81 81.78 
3 1128.44 78.03 
4 1147.12 64.49 
5 1197.8 41.46 
6 1198.44 39.94 
7 1203.07 36.69 
8 1208.93 32.1 
9 1220.21 30.21 

10 1263.19 28.71 
 

Table B.11: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.12 

CMT11Y 
Solution Total Routing Distance Workload Variation (%) 

1 867.58 88.37 
2 951.43 87.1 
3 954.7 80.79 
4 954.73 62.82 
5 960.85 48.9 
6 979.87 45.21 
7 982.48 40.01 
8 987.48 38.71 
9 1021.11 23.48 

10 1023.76 19.55 
11 1032.11 17.74 
12 1057.04 17.31 
13 1082.4 15.02 
14 1091.22 13.3 
15 1099.03 12.97 
16 1106.82 11.63 

 

Table B.12: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.13 

CMT12X 
Solution Total Routing Distance Workload Variation (%) 

1 831.79 62.15 
2 850.75 29.98 
3 885.24 28.92 

 

Table B.13: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.14 

CMT12Y 
Solution Total Routing Distance Workload Variation (%) 

1 749.29 33.35 
2 749.46 32.88 
3 777.21 15.23 
4 815.08 14.64 
5 831.25 12.95 
6 841.64 12.34 
7 848.69 11.69 
8 865.19 9.79 
9 936.93 8.73 

10 952.29 7.29 
 

Table B.14: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.15 

CMT6X 
Solution Total Routing Distance Workload Variation (%) 

1 471.53 13.96 
2 474.93 13.5 
3 480.57 2.15 
4 503.02 2.04 
5 514.54 0.39 

 

Table B.15: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.16 

CMT6Y 
Solution Total Routing Distance Workload Variation (%) 

1 462.22 18.19 
2 471.78 8.01 
3 473.4 7.64 
4 484.18 5.45 
5 506.33 3.13 
6 508 3.03 
7 509.65 2.38 
8 554.05 1.45 
9 566.99 0.06 

 

Table B.16: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.17 

CMT7X 
Solution Total Routing Distance Workload Variation (%) 

1 766.78 22.58 
 

Table B.17: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.18 

CMT7Y 
Solution Total Routing Distance Workload Variation (%) 

1 735.31 55.64 
2 737.96 54.14 
3 739.36 49.8 
4 742.56 45.69 
5 753.7 41.56 
6 754.71 39.66 
7 762.09 39.31 
8 763.51 36.75 
9 774.79 29.59 

10 807.38 25.89 
11 821.7 22.37 
12 835.42 21.23 
13 836.95 21.01 
14 845.82 13.04 
15 875.15 12.34 
16 882.44 11.18 
17 892.21 8.19 
18 897.96 8.13 

 

Table B.18: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.19 

CMT8X 
Solution Total Routing Distance Workload Variation (%) 

1 836.81 22.25 
2 849 17.82 
3 849.17 14.74 
4 849.34 8.83 
5 854.65 2.21 
6 1012.92 1.42 

 

Table B.19: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.20 

CMT8Y 
Solution Total Routing Distance Workload Variation (%) 

1 769.59 38.74 
2 774 32.77 
3 776.05 22.66 
4 780.75 20.68 
5 791.09 20.13 
6 793.76 19.85 
7 795.38 18.65 
8 797.73 14.39 
9 800.12 9.8 

10 805.9 9.56 
11 809.09 9.43 
12 815.93 4.81 
13 816.6 4.74 
14 819.15 4.14 
15 825.59 2.7 
16 841.12 1.78 

 

Table B.20: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.21 

CMT9X 
Solution Total Routing Distance Workload Variation (%) 

1 1139.78 51.08 
2 1166.01 39.49 
3 1191.39 25.11 
4 1198.09 25.03 
5 1200.82 12.74 

 

Table B.21: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.22 

CMT9Y 
Solution Total Routing Distance Workload Variation (%) 

1 1385.3 29.09 
 

Table B.22: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 



226 
 

 

Table B.23 

CMT10X 
Solution Total Routing Distance Workload Variation (%) 

1 1601.44 42.75 
2 1612.68 34.14 
3 1650.01 31.83 
4 1668.27 28.09 

 

Table B.23: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.24 

CMT10Y 
Solution Total Routing Distance Workload Variation (%) 

1 1234.01 70.07 
2 1283.26 39.73 
3 1289.38 34.29 
4 1360.67 32.72 
5 1364.67 21.08 

 

Table B.24: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.25 

CMT13X 
Solution Total Routing Distance Workload Variation (%) 

1 1127.6 126.65 
2 1127.81 81.78 
3 1128.44 78.03 
4 1147.12 64.49 
5 1197.8 41.46 
6 1198.44 39.94 
7 1203.07 36.69 
8 1208.93 32.1 
9 1220.21 30.21 

10 1263.19 28.71 
 

Table B.25: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.26 

CMT13Y 
Solution Total Routing Distance Workload Variation (%) 

1 902.87 62.25 
2 911.04 60.26 
3 912.43 51.49 
4 980.19 49.47 
5 984.75 42.65 
6 996.1 31.61 
7 1018.93 19.03 
8 1020.75 18.29 
9 1027.69 13.12 

10 1042.8 11.78 
11 1048.23 9.69 
12 1049.62 9.57 
13 1050.46 8.14 
14 1057.32 5.77 
15 1106.97 5.67 

 

Table B.26: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 

 

Table B.27 

CMT14X 
Solution Total Routing Distance Workload Variation (%) 

1 831.79 62.15 
2 850.75 29.98 
3 885.24 28.92 

 

Table B.27: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Table B.28 

CMT14Y 
Solution Total Routing Distance Workload Variation (%) 

1 773.62 37.14 
2 814.41 35.28 
3 815.18 31.83 
4 839.16 29.4 
5 841.23 27.77 
6 847.93 20.39 
7 860.94 16.97 
8 870.01 14.02 
9 872.3 12.9 

 

Table B.28: Column 1 - Name of solution, Column 2 - Total routing distance, Column 3 - Maximum variation 

between route distances. 
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Routing Information for the SDPmethod Solutions 

 

Figure B.1 

Route CMT1X 
1 0 27 48 8 26 31 28 3 36 35 20 2 22 1 32 0             
2 0 46 11 38 5 49 9 50 16 29 21 34 30 10 39 33 45 15 44 37 17 0 
3 0 12 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0         

 

Figure B.1: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.2 

Route CMT1Y 
1 0 46 11 38 5 49 9 34 30 10 39 33 45 15 44 37 17 12 0   
2 0 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0       
3 0 27 48 8 26 31 28 3 36 35 20 29 21 50 16 2 22 1 32 0 

 

Figure B.2: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.3 

Route CMT2X 
1 0 75 68 2 33 63 23 56 49 24 3 17 51 6 0         
2 0 73 1 43 41 42 64 22 62 28 61 21 47 48 0         
3 0 46 8 35 7 53 59 19 54 13 57 15 0             
4 0 67 40 12 58 72 39 9 25 55 18 50 32 44 16 0       
5 0 26 4 34 52 27 45 30 74 69 36 71 60 70 20 37 5 29 0 
6 0 14 11 66 65 38 10 31 0                     

 

Figure B.3: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.4 

Route CMT2Y 
1 0 51 12 39 31 10 65 53 7 35 8 46 26 0         
2 0 11 66 59 14 19 54 13 27 45 52 34 0           
3 0 67 38 58 72 9 25 55 50 32 44 3 40 0         
4 0 75 30 48 47 36 69 71 60 70 20 37 57 15 5 29 4 0 
5 0 33 63 43 42 41 56 23 49 24 18 17 0           
6 0 6 16 73 1 64 22 62 28 61 21 74 2 68 0       

 

Figure B.4: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

 

 



231 
 

Figure B.5 

Route CMT3X 
1 0 13 94 6 96 59 93 91 16 44 14 38 86 17 45 46 8 83 84 5 60 89 0     
2 0 69 1 51 9 78 79 3 77 29 24 54 55 25 39 67 23 56 75 74 72 21 40 53 0 
3 0 58 2 57 87 97 95 92 99 61 85 98 37 100 42 43 15 41 22 73 4 26 0     
4 0 28 12 80 68 34 35 71 65 66 30 70 31 88 62 11 82 52 0             
5 0 27 76 50 33 81 20 32 90 10 63 64 49 36 47 19 48 7 18 0           

 

Figure B.5: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.6 

Route CMT3Y 
1 0 53 58 13 6 94 95 97 92 37 86 38 43 15 42 87 2 57 41 22 74 56 39 72 73 21 40 0   
2 0 27 50 76 77 12 80 68 3 79 33 81 35 34 78 29 24 54 55 25 67 23 75 4 26 0       
3 0 1 70 30 51 9 71 65 66 20 32 90 63 64 11 19 47 48 62 10 88 31 69 28 0         
4 0 89 18 83 60 5 99 96 59 93 85 98 100 91 14 44 16 61 84 17 45 8 46 36 49 82 7 52 0 

 

Figure B.6: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.7 

Route CMT4X 

1 
0 96 104 93 53 138 26 149 40 21 73 72 74 75 56 39 139 4 110 54 134 121 3 132 

69 0                                             

2 
0 58 112 6 99 92 98 100 119 14 142 42 144 57 2 115 133 22 15 43 38 140 86 61 

17 84 5 146 0                                       
3 0 27 111 28 12 109 80 150 116 77 50 102 81 78 29 24 130 55 25 67 23 41 145 0 
4 0 147 123 10 31 101 1 70 122 30 128 20 103 136 34 129 79 68 0           
5 0 105 87 117 95 59 91 44 16 118 60 83 114 8 45 46 124 48 19 11 89 0     
6 0 76 33 51 9 120 135 35 71 65 66 131 32 90 108 126 63 64 49 47 0       
7 0 94 13 137 97 37 85 141 113 125 36 143 107 62 148 88 127 106 7 82 18 52 0   

 

Figure B.7: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.8 

Route CMT4Y 

1 
0 106 7 11 64 123 48 124 47 36 46 82 114 8 125 45 17 86 113 84 5 118 60 83 

18 0                                             

2 
0 147 96 95 97 92 59 99 104 93 85 98 37 100 91 16 141 44 140 38 119 42 57 145 

115 117 94 6 52 0                                     
3 0 87 144 41 22 133 75 74 72 110 4 139 39 56 23 67 25 55 130 24 134 0     

4 
0 132 69 1 101 70 30 122 51 9 71 65 20 128 131 90 63 126 108 10 31 127 88 148 

62 107 49 143 19 0                                     

5 
0 54 68 121 29 129 79 78 34 135 35 136 66 32 103 120 81 33 102 50 3 77 116 76 
0                                               

6 
0 53 105 26 149 109 80 150 12 138 28 111 27 146 89 61 14 142 43 15 2 73 21 40 

58 137 13 112 0                                       
 

Figure B.8: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.9 

Route CMT5X 

1 
0 105 144 87 117 92 151 99 16 61 60 166 18 83 125 45 46 36 143 175 182 7 194 153 

52 31 101 0                                         
2 0 79 120 103 161 71 136 135 34 169 121 29 24 163 187 0                 
3 0 146 112 6 95 93 37 15 2 22 75 186 21 198 110 80 68 12 26 180 40 53 0   
4 0 156 58 178 115 171 72 179 130 54 177 150 196 157 185 78 134 55 25 170 23 56 0   
5 0 152 137 97 142 14 38 44 192 91 193 100 98 104 5 173 84 199 8 124 48 82 89 0 
6 0 111 116 122 1 132 69 162 190 127 106 148 62 107 123 47 174 118 96 183 0       
7 0 3 158 129 33 164 35 65 66 188 20 128 30 160 181 64 63 88 0           
8 0 28 176 50 81 9 51 70 159 189 10 108 131 32 90 126 11 19 49 168 114 167 0   
9 0 13 57 172 42 43 140 119 191 141 86 113 17 85 59 94 147 0             

10 0 27 102 77 76 184 138 154 109 195 149 155 4 165 67 39 139 197 74 133 41 145 73 0 
 

Figure B.9: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.10 

Route CMT5Y 

1 
0 18 114 46 36 143 175 11 126 10 189 159 62 148 88 127 190 31 70 101 162 69 132 167 

27 0                                             
2 0 146 106 194 182 7 82 48 123 19 107 64 49 168 47 124 174 8 199 118 0       
3 0 90 63 181 32 128 188 103 161 9 120 164 135 35 136 65 71 66 20 30 122 0     

4 
0 92 37 98 93 85 100 193 91 191 141 44 119 192 14 142 42 43 38 140 86 113 16 61 

173 84 83 60 0                                       

5 
0 108 131 160 51 81 33 185 79 129 78 34 169 29 121 158 3 77 116 196 76 157 102 50 
1 176 0                                           

6 0 52 166 151 97 58 152 53 105 26 180 40 197 56 68 184 138 154 28 0         

7 
0 137 149 195 179 198 110 4 155 139 187 67 170 25 55 165 130 54 134 24 163 150 80 177 

109 12 0                                           
8 0 21 73 171 74 72 39 23 186 75 133 22 41 145 15 172 144 57 178 115 2 0     
9 0 111 13 87 117 95 94 96 59 104 99 5 17 45 125 153 89 147 6 183 112 156 0   

 

Figure B.10: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.11 

Route CMT11X 

1 
0 56 60 63 66 64 62 61 65 57 59 43 45 48 51 50 49 47 46 44 42 41 37 29 

32 35 36 33 30 27 24 22 19 20 26 21 0                       

2 
0 119 81 82 111 86 85 112 84 117 83 108 2 4 6 7 9 10 15 13 8 109 97 110 

98 67 70 120 0                                       

3 
0 87 92 89 91 90 18 114 115 100 71 72 74 76 68 40 39 38 34 31 28 25 23 17 

16 14 3 113 0                                       

4 
0 95 102 105 106 107 104 116 73 77 79 52 54 58 55 53 80 78 75 69 103 99 101 96 

93 94 118 12 11 5 1 88 0                               
 

Figure B.11: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.12 

Route CMT11Y 

1 
0 120 106 116 110 115 109 21 20 23 26 28 31 36 34 33 30 27 24 22 16 15 11 10 
6 5 4 3 1 2 108 114 93 96 0                           

2 0 17 19 25 32 35 29 37 38 39 42 41 44 46 47 49 50 51 48 45 43 40 54 0 

3 
0 100 57 59 65 61 62 64 66 63 60 56 58 55 53 52 79 80 78 77 68 76 73 74 

72 75 71 70 67 107 99 95 0                               

4 
0 105 102 101 104 103 69 98 97 94 92 89 91 90 18 118 8 12 13 14 9 7 83 113 

117 84 85 112 81 119 82 111 86 87 88 0                         
 

Figure B.12: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.13 

Route CMT12X 
1 0 7 9 96 95 94 92 93 97 100 12 14 16 15 19 18 17 13 0           

2 
0 90 98 99 2 1 75 5 3 4 6 8 23 26 28 30 34 29 27 25 24 22 21 20 
0                                               

3 0 49 47 43 42 41 40 44 45 46 48 51 52 32 33 35 37 38 39 36 10 11 85 0 
4 0 67 65 63 69 66 62 74 72 61 64 68 55 54 56 57 59 50 31 0         
5 0 91 88 89 87 86 84 83 82 81 78 76 71 70 73 77 79 80 53 58 60 0     

 

Figure B.13: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.14 

Route CMT12Y 
1 0 5 1 98 4 6 8 11 12 14 16 15 19 18 17 13 28 25 24 23 0       
2 0 59 58 56 57 51 31 32 33 35 37 38 39 36 34 29 30 27 26 0         

3 
0 65 63 72 61 55 54 53 60 40 41 42 44 46 45 48 50 52 49 47 43 20 22 21 
0                                               

4 0 87 86 85 84 81 78 76 71 70 73 77 79 80 74 62 64 68 69 66 67 0     
5 0 75 3 7 10 9 2 99 100 97 93 92 94 95 96 91 89 88 82 83 90 0     

 

Figure B.14: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.15 

Route CMT6X 
1 0 12 47 18 4 17 37 15 45 44 42 19 40 41 13 25 14 6 0 
2 0 11 38 9 50 16 2 29 21 34 30 39 33 10 49 5 46 0  
3 0 32 1 22 20 35 36 3 28 31 8 26 7 43 24 23 48 27 0 

 

Figure B.15: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.16 

Route CMT6Y 
1 0 46 11 38 5 49 9 34 30 10 39 33 45 15 44 37 17 12 0   
2 0 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0       
3 0 27 48 8 26 31 28 3 36 35 20 29 21 50 16 2 22 1 32 0 

 

Figure B.16: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.17 

Route CMT7X 
1 0 75 68 2 33 63 23 56 49 24 3 17 51 6 0         
2 0 73 1 43 41 42 64 22 62 28 61 21 47 48 0         
3 0 46 8 35 7 53 59 19 54 13 57 15 0             
4 0 67 40 12 58 72 39 9 25 55 18 50 32 44 16 0       
5 0 26 4 34 52 27 45 30 74 69 36 71 60 70 20 37 5 29 0 
5 0 14 11 66 65 38 10 31 0                     

 

Figure B.17: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.18 

Route CMT7Y 
1 0 4 45 27 13 54 67 26 40 49 73 2 75 0     
2 0 7 35 11 66 59 14 19 8 46 34 52 15 0     
3 0 29 5 57 37 20 70 60 71 36 47 48 30 62 0   
4 0 17 51 16 3 44 25 55 18 24 23 63 33 6 68 0 
5 0 53 38 65 31 10 58 72 39 9 50 32 12 0     
5 0 1 43 56 41 42 64 22 28 61 69 21 74 0     

 

Figure B.18: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.19 

Route CMT8X 
1 0 89 6 95 59 93 60 83 8 82 7 47 36 49 64 63 32 90 62 88 31 27 0 
2 0 96 99 85 98 37 87 42 100 91 44 38 86 16 61 5 84 17 45 46 18 52 0 
3 0 28 76 77 79 34 35 71 65 66 20 51 30 70 10 11 19 48 0         
4 0 69 1 50 3 33 81 9 78 29 24 68 80 12 54 55 4 56 75 2 40 58 0 
5 0 13 94 97 92 14 43 15 57 41 22 23 67 25 39 74 72 73 21 26 53 0   

 

Figure B.19: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.20 

Route CMT8Y 

1 
0 53 58 13 6 94 95 97 92 37 86 38 43 15 42 87 2 57 41 22 74 56 39 

73 21 40 0                                       

2 
0 27 50 76 77 12 80 68 3 79 33 81 35 34 78 29 24 54 55 25 67 23 75 

26 0                                           

3 
0 1 70 30 51 9 71 65 66 20 32 90 63 64 11 19 47 48 62 10 88 31 69 
0                                             

4 
0 89 18 83 60 5 99 96 59 93 85 98 100 91 14 44 16 61 84 17 45 8 46 

49 82 7 52 0                                     
 

Figure B.20: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.21 

Route CMT9X 

1 
0 147 95 97 117 26 149 109 150 79 24 134 54 110 4 139 39 56 75 133 41 74 72 

21 40 0                                         

2 
0 6 94 96 104 99 100 61 84 125 113 86 141 44 119 14 142 42 43 15 57 144 53 
0                                             

3 0 27 111 102 76 116 3 129 34 29 121 68 80 130 55 25 67 23 22 145 115 2 105 
4 0 101 31 148 62 11 70 122 30 128 103 65 136 35 135 78 33 77 12 0       
5 0 69 146 89 60 118 5 83 114 8 47 46 17 140 38 16 85 98 137 58 0     
6 0 28 50 51 81 120 9 71 66 20 131 32 90 108 126 63 64 49 143 36 124 127 0 
7 0 112 13 87 92 59 37 91 93 45 82 48 123 19 107 10 88 7 106 18 52 1 132 

 

Figure B.21: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.22 

Route CMT9Y 

1 
0 69 106 82 114 99 104 95 97 87 144 42 142 119 14 43 15 57 2 115 145 41 22 

23 39 138 0                                       

2 
0 132 70 10 90 128 20 103 33 81 34 129 79 3 77 50 76 116 68 80 150 121 29 

134 55 67 109 12 0                                   
3 0 1 137 59 37 85 61 44 38 113 17 84 5 118 60 83 125 45 8 36 143 49 0 

4 
0 105 93 52 148 62 7 48 124 46 47 123 19 107 11 64 63 126 108 66 65 136 71 

120 0                                           

5 
0 111 26 149 54 130 110 4 139 56 75 74 72 73 21 40 100 18 127 31 30 9 35 

102 0                                           

6 
0 53 28 27 146 88 101 32 131 122 78 25 58 13 117 92 98 91 141 140 86 16 96 
6 147 89 112 0                                     

 

Figure B.22: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.23 

Route CMT10X 

1 
0 105 144 87 117 92 151 99 16 61 60 166 18 83 125 45 46 36 143 175 182 7 194 153 

52 31 101 0                                         
2 0 79 120 103 161 71 136 135 34 169 121 29 24 163 187 0                 
3 0 146 112 6 95 93 37 15 2 22 75 186 21 198 110 80 68 12 26 180 40 53 0   
4 0 156 58 178 115 171 72 179 130 54 177 150 196 157 185 78 134 55 25 170 23 56 0   
5 0 152 137 97 142 14 38 44 192 91 193 100 98 104 5 173 84 199 8 124 48 82 89 0 
6 0 111 116 122 1 132 69 162 190 127 106 148 62 107 123 47 174 118 96 183 0       
7 0 3 158 129 33 164 35 65 66 188 20 128 30 160 181 64 63 88 0           
8 0 28 176 50 81 9 51 70 159 189 10 108 131 32 90 126 11 19 49 168 114 167 0   
9 0 13 57 172 42 43 140 119 191 141 86 113 17 85 59 94 147 0             

10 0 27 102 77 76 184 138 154 109 195 149 155 4 165 67 39 139 197 74 133 41 145 73 0 
 

Figure B.23: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.24 

Route CMT10Y 

1 
0 18 114 46 36 143 175 11 126 10 189 159 62 148 88 127 190 31 70 101 162 69 132 167 

27 0                                             
2 0 146 106 194 182 7 82 48 123 19 107 64 49 168 47 124 174 8 199 118 0       
3 0 90 63 181 32 128 188 103 161 9 120 164 135 35 136 65 71 66 20 30 122 0     

4 
0 92 37 98 93 85 100 193 91 191 141 44 119 192 14 142 42 43 38 140 86 113 16 61 

173 84 83 60 0                                       

5 
0 108 131 160 51 81 33 185 79 129 78 34 169 29 121 158 3 77 116 196 76 157 102 50 
1 176 0                                           

6 0 52 166 151 97 58 152 53 105 26 180 40 197 56 68 184 138 154 28 0         

7 
0 137 149 195 179 198 110 4 155 139 187 67 170 25 55 165 130 54 134 24 163 150 80 177 

109 12 0                                           
8 0 21 73 171 74 72 39 23 186 75 133 22 41 145 15 172 144 57 178 115 2 0     
9 0 111 13 87 117 95 94 96 59 104 99 5 17 45 125 153 89 147 6 183 112 156 0   

 

Figure B.24: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.25 

Route CMT13X 

1 
0 56 60 63 66 64 62 61 65 57 59 43 45 48 51 50 49 47 46 44 42 41 37 29 

32 35 36 33 30 27 24 22 19 20 26 21 0                       

2 
0 119 81 82 111 86 85 112 84 117 83 108 2 4 6 7 9 10 15 13 8 109 97 110 

98 67 70 120 0                                       

3 
0 87 92 89 91 90 18 114 115 100 71 72 74 76 68 40 39 38 34 31 28 25 23 17 

16 14 3 113 0                                       

4 
0 95 102 105 106 107 104 116 73 77 79 52 54 58 55 53 80 78 75 69 103 99 101 96 

93 94 118 12 11 5 1 88 0                               
 

Figure B.25: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.26 

Route CMT13Y 

1 
0 3 4 10 11 15 14 13 12 17 16 19 20 21 26 23 28 25 22 24 27 33 30 31 

34 36 35 32 29 49 50 48 40 0                             

2 
0 37 38 39 42 41 44 46 47 51 45 43 59 65 61 62 64 66 63 60 56 58 55 53 

54 57 52 0                                         

3 
0 120 70 69 90 114 18 118 108 8 9 1 2 83 113 117 84 112 81 119 82 111 86 85 

89 92 87 88 0                                       

4 
0 95 102 101 99 100 116 97 94 96 93 91 5 6 7 109 115 110 98 68 73 76 77 79 

80 78 75 72 74 71 67 103 104 107 106 105 0                       
 

Figure B.26: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.27 

Route CMT14X 
1 0 7 9 96 95 94 92 93 97 100 12 14 16 15 19 18 17 13 0           

2 
0 90 98 99 2 1 75 5 3 4 6 8 23 26 28 30 34 29 27 25 24 22 21 20 
0                                               

3 0 49 47 43 42 41 40 44 45 46 48 51 52 32 33 35 37 38 39 36 10 11 85 0 
4 0 67 65 63 69 66 62 74 72 61 64 68 55 54 56 57 59 50 31 0         
5 0 91 88 89 87 86 84 83 82 81 78 76 71 70 73 77 79 80 53 58 60 0     

 

Figure B.27: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.28 

Route CMT14Y 
1 0 7 3 1 98 95 92 93 100 12 14 16 15 19 18 17 13 11 9 0         
2 0 63 5 4 6 8 10 23 26 28 30 39 38 35 33 29 27 25 24 22 21 20 0   
3 0 47 49 52 32 34 36 37 31 51 50 48 45 44 60 58 56 59 40 41 42 46 43 0 
4 0 67 65 74 79 77 73 70 80 53 54 57 55 68 64 61 72 62 66 69 0       
5 0 90 91 89 87 86 81 78 76 71 82 83 84 85 88 94 97 96 99 2 75 0     

 

Figure B.28: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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New Best Known Solutions 

 

Figure B.29 

Route CMT1Y 
1 0 46 11 38 5 49 9 34 30 10 39 33 45 15 44 37 17 12 0   
2 0 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0       
3 0 27 48 8 26 31 28 3 36 35 20 29 21 50 16 2 22 1 32 0 

 

Figure B.29: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Figure B.30 

Route CMT6X 
1 0 12 47 18 4 17 37 15 45 44 42 19 40 41 13 25 14 6 0 
2 0 11 38 9 50 16 2 29 21 34 30 39 33 10 49 5 46 0   
3 0 32 1 22 20 35 36 3 28 31 8 26 7 43 24 23 48 27 0 

 

Figure B.30: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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Figure B.31 

Route CMT6Y 
1 0 46 11 38 5 49 9 34 30 10 39 33 45 15 44 37 17 12 0   
2 0 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0       
3 0 27 48 8 26 31 28 3 36 35 20 29 21 50 16 2 22 1 32 0 

 

Figure B.31: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 

 

Best Known Solutions 

 

Figure B.32 

Route CMT1X 
1 0 27 48 8 26 31 28 3 36 35 20 2 22 1 32 0             
2 0 46 11 38 5 49 9 50 16 29 21 34 30 10 39 33 45 15 44 37 17 0 
3 0 12 47 18 4 42 19 40 41 13 25 14 24 43 7 23 6 0         

 

Figure B.32: Column 1 - Routing name, Column 2-onwards - The sequence nodes are serviced on the route, where ‘0’ denotes the depot. 
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APPENDIX C 

 

 

Multi Objective Genetic Algorithm Parameter Setup  
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Population size and maximum number of generation’s setup results 

 

Table C.1 

Test Problem Population Size Accuracy Generation 

CMT1X 

100 0.45 89 
200 0.41 91 
300 0.36 93 
400 0.35 90 
500 0.29 87 
600 0.3 88 

CMT1Y 

100 0.41 91 
200 0.37 99 
300 0.32 96 
400 0.3 91 
500 0.27 95 
600 0.28 97 

CMT2X 

100 0.68 95 
200 0.61 95 
300 0.57 94 
400 0.49 89 
500 0.45 100 
600 0.45 96 

CMT2Y 

100 0.62 91 
200 0.57 99 
300 0.45 96 
400 0.42 91 
500 0.4 95 
600 0.42 97 

CMT3X 

100 0.79 95 
200 0.71 95 
300 0.56 100 
400 0.53 89 
500 0.48 97 
600 0.5 96 

CMT3Y 

100 0.77 91 
200 0.69 99 
300 0.64 96 
400 0.58 91 
500 0.44 95 
600 0.47 97 

CMT4X 

100 0.85 95 
200 0.79 95 
300 0.76 92 
400 0.73 89 
500 0.7 100 
600 0.71 96 
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Test Problem Population Size Accuracy Generation 

CMT4Y 

100 0.83 91 
200 0.8 99 
300 0.72 96 
400 0.7 91 
500 0.66 95 
600 0.68 97 

CMT5X 

100 0.96 95 
200 0.95 95 
300 0.94 100 
400 0.92 89 
500 0.9 96 
600 0.9 100 

CMT5Y 

100 0.93 91 
200 0.91 99 
300 0.86 96 
400 0.83 91 
500 0.79 95 
600 0.8 97 

CMT6X 

100 0.51 95 
200 0.37 100 
300 0.35 95 
400 0.29 89 
500 0.26 100 
600 0.29 96 

CMT6Y 

100 0.51 91 
200 0.46 99 
300 0.35 96 
400 0.31 91 
500 0.27 95 
600 0.28 97 

CMT7X 

100 0.7 95 
200 0.66 95 
300 0.56 93 
400 0.51 89 
500 0.49 99 
600 0.49 96 

CMT7Y 

100 0.66 91 
200 0.6 99 
300 0.57 96 
400 0.53 91 
500 0.5 95 
600 0.52 97 
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Test Problem Population Size Accuracy Generation 

CMT8X 

100 0.85 95 
200 0.7 95 
300 0.64 89 
400 0.54 100 
500 0.5 100 
600 0.52 96 

CMT8Y 

100 0.8 91 
200 0.62 99 
300 0.55 96 
400 0.5 91 
500 0.45 95 
600 0.48 100 

CMT9X 

100 0.88 95 
200 0.86 95 
300 0.79 100 
400 0.75 89 
500 0.7 97 
600 0.71 96 

CMT9Y 

100 0.89 91 
200 0.87 99 
300 0.84 96 
400 0.82 91 
500 0.78 95 
600 0.78 97 

CMT10X 

100 0.97 95 
200 0.96 95 
300 0.93 99 
400 0.91 89 
500 0.89 99 
600 0.9 96 

CMT10Y 

100 0.9 91 
200 0.86 99 
300 0.83 96 
400 0.8 91 
500 0.78 95 
600 0.78 97 

CMT11X 

100 0.93 95 
200 0.9 95 
300 0.88 100 
400 0.85 89 
500 0.83 96 
600 0.85 100 
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Test Problem Population Size Accuracy Generation 

CMT11Y 

100 0.83 91 
200 0.81 99 
300 0.75 96 
400 0.73 91 
500 0.66 95 
600 0.7 97 

CMT12X 

100 0.71 95 
200 0.7 95 
300 0.68 96 
400 0.64 89 
500 0.61 100 
600 0.62 100 

CMT12Y 

100 0.74 91 
200 0.71 99 
300 0.63 96 
400 0.56 91 
500 0.49 95 
600 0.53 97 

CMT13X 

100 0.94 95 
200 0.91 95 
300 0.89 100 
400 0.86 89 
500 0.84 93 
600 0.84 96 

CMT13Y 

100 0.73 91 
200 0.71 99 
300 0.69 96 
400 0.63 91 
500 0.59 95 
600 0.6 97 

CMT14X 

100 0.79 97 
200 0.74 95 
300 0.69 95 
400 0.66 89 
500 0.6 100 
600 0.63 96 

CMT14Y 

100 0.69 91 
200 0.66 99 
300 0.59 96 
400 0.56 91 
500 0.53 95 
600 0.54 97 

 
Column 1 - Test problem, Column 2 - Number of individuals in the population, Column 3 - Average distance 

between the 1st order Pareto front and the origin of the axes and Column 4 - Generation the minimum average 

distance between the 1st order Pareto front and the origin of the axes was found. 


