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NONLINEAR INTEGRAL EQUATION METHODS
FOR THE RECONSTRUCTION OF

AN ACOUSTICALLY SOUND-SOFT OBSTACLE

OLHA IVANYSHYN AND TOMAS JOHANSSON

ABSTRACT. The problem considered is that of determin-
ing the shape of a planar acoustically sound-soft obstacle from
knowledge of the far-field pattern for one time-harmonic in-
cident field. Two methods, which are based on the solution
of a pair of integral equations representing the incoming wave
and the far-field pattern, respectively, are proposed and inves-
tigated for finding the unknown boundary. Numerical results
are included which show that the methods give accurate nu-
merical approximations in relatively few iterations.

1. Introduction. In applications such as medical imaging, nonde-
structive testing, prospecting for oil and gas, and radar and sonar ob-
stacle detection, a typical problem is to find the shape of an unknown
obstacle using information from the influence that the obstacle has on
propagating waves. This situation can be modeled mathematically as a
so-called inverse obstacle scattering problem. In this paper we consider,
for simplicity, an inverse scattering problem where the shape of a planar
acoustically sound-soft obstacle is to be determined from measurements
of the far field pattern (the asymptotic behavior of the scattered field at
large distances from the obstacle) for one time-harmonic incident field
with wave number k > 0. The ideas presented can, in principle, be
applied to other types of inverse scattering problems for time-harmonic
waves, e.g., sound hard and impedance boundary conditions. The dif-
ficulty found when trying to solve for the shape of an obstacle is due
to the fact that the problem is both nonlinear and severely ill-posed in
the Hadamard sense [7].
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Several different iterative methods exist to approximate solutions
of the inverse scattering problem under consideration. One group of
methods decomposes it into two parts, a linear ill-posed equation for
finding the scattered wave from the far field and then a nonlinear well-
posed one to find the boundary, see for example Colton and Monk [3, 4],
Kirsch et al. [13] and Potthast [18]. Another group of methods recasts
the obstacle reconstruction in the form of a nonlinear operator equation
and uses iterative Newton type methods to find approximations to the
nonlinear equation, see Kirsch [11]. These methods often require the
solution of the direct scattering problem at each step. Alternative
approaches which avoid solving the direct problem have been considered
by Kress and Rundell [14] and Kress and Serranho [15], and whilst
these involve a linearization they do not require the solution of a
sequence of direct problems. All of the above-mentioned procedures
can, in principle, work with knowledge of the far field pattern for
only one incoming wave, although in most numerical examples several
different incoming waves are used to acquire accurate approximations.
Sampling methods such as the linear sampling method introduced by
Colton and Kirsch [1], the point-source method by Potthast [18], the
factorization method by Kirsch [12] and the probe method by Ikehata
[8], require knowledge of the far field pattern for a large number of
different directions of the incoming wave.

Recently a method, first proposed in [20], for the reconstruction of the
shape of a planar acoustically sound-soft obstacle from measurements
of the far-field pattern for one incident field was analyzed and imple-
mented, see Johansson and Sleeman [10]. Independently, Ivanyshyn
and Kress [9] have proposed a related approach. Both these meth-
ods are based on the boundary integral equations for the incident field
and the far-field pattern, respectively, (these equations can be found in
Section 3.1), together with the assumption that the boundary curve of
the obstacle has a polar representation. The numerical examples pre-
sented in [9, 10] show that these algorithms give accurate numerical
approximations, even on the shadow side, in relatively few iterations.

In this paper, we extend the methods [9, 10] to more general
boundary curves and make numerical comparisons between them. The
precise formulation of the inverse scattering problem under study and
some of its properties are given in Section 2. The two procedures
are then presented in Section 3. We also discuss the relationship
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between these algorithms and the classical approach in [2] which uses
the boundary to far field operator, see the remark at the end of the
paper. Numerical analysis and discussions of the iterative procedures
are presented in Section 4. These numerical experiments indicate that
both methods give accurate numerical approximations in few iterations.

2. The inverse scattering problem. Let the planar obstacle be
represented by a bounded simply connected domain D in R2 with C2

boundary Γ. The outward unit normal to Γ is denoted by ν and, as
usual, Δ denotes the Laplace operator. The space-dependent part of
the incoming time-harmonic wave is ui(x) = eikx·d, where the wave
number k is a real positive number and d = (cosϕ0, sinϕ0) is the
direction of the incoming wave. We denote the scattered field by us.

The direct scattering problem for a sound-soft obstacle is then: given
the incident field ui, find the total field u = ui + us such that u solves
the Helmholtz equation in the exterior of the obstacle and is zero on
the boundary, i.e.,

(2.1)
{

Δu+ k2u = 0 in R2 \D,
u = 0 on Γ,

and the scattered wave us satisfies the Sommerfeld radiation condition

lim
r→∞ r1/2

(
∂us

∂r
− ikus

)
= 0, where r = |x|,

uniformly in all directions. This condition ensures uniqueness of the
solution to the scattering problem and guarantees that the scattered
wave is outgoing. Since the boundary Γ is smooth there exists a unique
solution u ∈ C2(R2 \D) ∩ C(R2 \D), see Theorem 3.9 in Colton and
Kress [2]. Moreover, one can show the following asymptotic behavior
of the scattered field

us(x) =
eik|x|

|x|1/2

(
u∞(x/|x|) +O(|x|−1)

)
, |x| → ∞,

where u∞ is the far field pattern or the scattering amplitude and is
defined on the unit circle in R2.

Given measurements of the far field pattern for one incoming wave
it is natural to consider the question of finding the obstacle which
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produces such a far field. This is the inverse problem that we will
consider. It is both nonlinear and severely ill-posed, thus difficult
to solve. We assume that the data is chosen so that there exists a
solution and according to results of Colton and Sleeman [5] we also
have uniqueness:

Lemma 2.1. Let D1 and D2 be two planar scatterers contained in a
disk of radius R such that kR < C, where C is the smallest positive zero
of the Bessel function J0 (approximately 2.4048). If the corresponding
far field patterns coincide for one incident field with wave number k,
then D1 and D2 coincide.

Before ending this section, we recall, see [2, Section 3], that one can
choose a density ψ := ∂u/∂ν|Γ such that

(2.2) us(x) = − i

4

∫
Γ

H
(1)
0 (k|x− y|)ψ(y) dS(y), for x ∈ Γ,

and

(2.3) u∞(x̂) = γ

∫
Γ

e−ikx̂·y ψ(y) dS(y), for x̂ = x/|x|,

where γ = −eiπ/4/
√

8πk and H
(1)
0 is the Hankel function of the first

kind of order zero (apart from a constant it is the fundamental solution
to the Helmholtz equation in R2).

3. Two iterative methods for the inverse scattering problem.
We assume that the boundary Γ has a C2-smooth and 2π-periodic
representation

(3.1) z(t) = (z1(t), z2(t)), for t ∈ [0, 2π],

with positive orientation and |z′(t)| > 0, where t ∈ [0, 2π].

3.1 Boundary integral equations for ui and u∞. Here, we give
parameterized boundary integral operators representing the scattered
field and its far field pattern. Put

Φ(t, τ) =
i

4
H

(1)
0 (kr(t, τ)),



NONLINEAR INTEGRAL EQUATION METHODS 293

where r(t, τ) = |z(t)−z(τ)|, and let ϕ(t) = ψ(z(t))|z′(t)|. Furthermore,
let S : L2([0, 2π]) → L2([0, 2π]) be the parameterized single-layer
integral operator

(3.2) (Sϕ)(t) =
∫ 2π

0

Φ(t, τ)ϕ(τ) dτ, for t ∈ [0, 2π].

Similarly, let S∞ : L2([0, 2π]) → L2([0, 2π]) be the operator

(3.3) (S∞ϕ)(θ) = γ

∫ 2π

0

e−ikx∞(θ)·z(τ)ϕ(τ) dτ, for θ ∈ [0, 2π],

where x∞(θ) = (cos θ, sin θ) is a parameterization of the unit circle in
R2. To indicate the dependence on the boundary Γ, we write S(z, ϕ)
and S∞(z, ϕ) instead of Sϕ and S∞ϕ, respectively.

Using the sound-soft boundary condition in (2.1) together with the
knowledge of the far field pattern we obtain a system of two integral
equations

(3.4) S(z, ϕ)(t) = ui(z(t)), for t ∈ [0, 2π],

and

(3.5) S∞(z, ϕ)(θ) = u∞(θ), for θ ∈ [0, 2π].

The methods for the reconstruction of the shape of the obstacle pre-
sented in the next two subsections are based on this system.

3.2 Method A. The method presented here was considered in [10]
for boundaries Γ given by a polar representation. An extension of the
method to a more general class of boundary curves is described below.

To start the procedure, we make an initial guess of the unknown
boundary curve Γ of the obstacle. This guess is denoted by Γ0 and
is parameterized by v0. Then (3.4) with z = v0 is a Fredholm
integral equation of the first kind with a logarithmic singularity for
the determination of the density ϕ. Such an integral equation is well
studied and a solution can, for example, be obtained using the Nyström
method described below. Once this density is found, one substitutes it
into the nonlinear integral equation (3.5) to obtain a new approximation
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v1 to Γ. This integral equation can be solved by a variety of methods,
for example the Levenberg-Marquardt type method presented in [6].
The iterative procedure can then be repeated until the desired level of
approximation is obtained. To summarize:

1. Choose a (closed) curve Γ0 described as z = v0.

2. Knowing the curve Γm−1 parameterized by z = vm−1, wherem ≥ 1
and using (3.4), we calculate a new density ϕ = ϕm−1.

3. The next approximation to Γ will be Γm: z = vm, where z is
calculated from (3.5) with ϕ = ϕm−1.

The procedure then continues by iterating on the last two steps until a
suitable stopping criteria is satisfied.

For the numerical implementation of this procedure, let us first de-
scribe how one can solve (3.4) for the density ϕ given a parameterization
z. The kernel Φ has a logarithmic singularity and can be written as

Φ(t, τ) = Φ1(t, τ) ln
(

4 sin2 t− τ

2

)
+ Φ2(t, τ),

with smooth functions Φ1 and Φ2. For the numerical solution of (3.4)
it is effective to apply a Nyström type method using a trigonometrical
approximation ϕ̃ of the density ϕ, where

(3.6) ϕ̃(t) =
a0

2
+

n−1∑
m=1

(am cosmt+ bm sinmt) +
an

2
cosnt,

together with the trapezoidal rule and logarithmic singularity quadra-
ture on the mesh-points (π/n)j, j = 0, 1, . . . , 2n, see [16] for the details.

LetHp([0, 2π]) for p ≥ 1 be the Sobolev space of 2π-periodic functions
on the interval [0, 2π], i.e., the space of 2π-periodic functions ϕ with
the property

∞∑
m=−∞

(1 +m2)p|cm|2 <∞,

where the cm are the Fourier coefficients of ϕ. According to [16], we
have the following

Lemma 3.1. Assume that ϕ ∈ Hp([0, 2π]), where p > 3/2, is a
solution to (3.4). Then, for a sufficiently large integer n > 0, the
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corresponding discretized equations obtained from the Nyström method
have a unique solution ϕn of the form (3.6) and

(3.7) ‖ϕ− ϕn‖Hq([0,2π]) ≤ C
(π
n

)p−q

‖ϕ‖Hp([0,2π]), for 1 ≤ q ≤ p.

Note that for infinitely differentiable boundaries and data, the con-
vergence rate of the Nyström method is faster than any power of the
step length.

Now we describe how to solve equation (3.5) for the unknown param-
eterization z(t) for a given density ϕ. Let C�[0, 2π], where 0 ≤ 
 ≤ 2, be
the space of 2π-periodic and 
 times differentiable functions on [0, 2π],
(C = C0). By B(C[0, 2π], C[0, 2π]), we denote the space of bounded
linear operators on C[0, 2π]. From Theorem 3 in [17], we have

Lemma 3.2. The mapping C2[0, 2π] → B(C[0, 2π], C[0, 2π]) given
by z 
→ S∞(z, · ) is Fréchet differentiable with derivative

(S′
∞[z, ϕ]h)(θ)=−ikγ

∫ 2π

0

e−ikx∞(θ)·z(τ)ϕ(τ)x∞(θ) · h(τ) dτ,(3.8)

θ ∈ [0, 2π].

Given a density ϕ and a current approximation z(t) = vm−1(t), we
find vm using (3.5) as follows

(3.9) vm = vm−1−ρ ((S′
∞)∗S′

∞+λmIp)−1(S′
∞)∗(S∞(vm−1, ϕ)−u∞),

where S′
∞ = S′

∞[vm−1, ϕ] and (S′
∞)∗ stands for the L2 adjoint of S′

∞.
So the new approximation vm is obtained from a scaled Newton step
with Tikhonov regularization and Hp penalty term, where p ≥ 0. The
scaling factor ρ ≥ 0 is fixed throughout the iterations and according to
[6] the parameter λm can be chosen as

(3.10) λm = ‖u∞ − S∞(vm−1, ϕ)‖μ
L2 , μ > 0.

The integrals in (3.9) will be discretized using the trapezoidal rule.
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3.3 Method B. Here, we give an extension to more general parame-
terizations of the method introduced in [9]. This method involves the
full linearization of the system of integral equations (3.4) (3.5) with
respect to both the boundary parameterization and the density. After
linearization we obtain

(3.11)
{
S(z, ϕ) + S(z, ζ) + S′[z, ϕ]h = ui(z) + ui ′[z]h,
S∞(z, ϕ) + S∞(z, ζ) + S′

∞[z, ϕ]h = u∞.

Here

(S′[z, ϕ]h)(t) =
ik

4

∫ 2π

0

H
(1) ′
0 (kr(t, τ))

× [z(t) − z(τ)] · [h(t) − h(τ)]
r(t, τ)

ϕ(τ) dτ, t ∈ [0, 2π]

with r(t, τ) = |z(t)− z(τ)|, ui ′[z]h = ikui(d ·h) and S′∞[z, ϕ]h given by
Lemma 3.2. For simplicity we rewrite the system (3.11) in the form

(3.12) A

(
ζ
h

)
= f,

where

A =
(
S(z, · ) S′[z, ϕ] − ui ′[z]
S∞(z, · ) S′

∞[z, ϕ]

)
and f =

(
ui(z) − S(z, ϕ)
u∞ − S∞(z, ϕ)

)
.

To start the procedure we make an initial guess of the unknown
boundary Γ parameterized by v0(t). Then the density ϕ0 is found
from (3.4). Solving the linear system (3.12) with ϕ = ϕ0 and z = v0
gives the corrections ζ and h from which we update the density and
the boundary as ϕ1 = ϕ0 + ζ and v1 = v0 + h, respectively.

To summarize:

1. Choose a (closed) curve Γ0 parameterized by z(t) = v0(t).

2. Find ϕ = ϕ0 from (3.4).

3. Knowing the current approximation (ϕm−1, vm−1), where m ≥ 1,
from the linear system (3.12) we find a correction (ζ, h) and update the
approximation as ϕm = ϕm−1 + ζ and vm = vm−1 + h.
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Until a suitable stopping criteria is satisfied the procedure continues by
repeating the last step.

The ill-posedness of the inverse problem requires regularization to be
incorporated. We will use the well-established Tikhonov regularization,
so instead of (3.12) the following system will be solved

(A∗ A+ λmĨp)
(
ζ
h

)
= A∗f

with L2 ×Hp penalty term where

(3.13) Ĩp =
(
I0 0
0 Ip

)
and λm =

(
2
3

)m (
α
β

)
.

Discretization is carried out as in the previous section; for further
details, see [9].

4. Numerical examples. In this section we carry out numerical in-
vestigations of the two methods presented in Section 3. Reconstructions
of three different types of obstacles will be considered, from exact as
well as noisy data, for various initial guesses and incoming waves. The
corresponding far field pattern is numerically generated at 64 points
equally distributed around the unit circle by solving the integral equa-
tions (3.4) and (3.5) with the number of collocation points doubled in
order to avoid the “inverse crime.” Furthermore, we obtained similar
far field patterns by using coupled variants of these integral equations.
Noisy data uδ

∞ is constructed in the following way

(4.1) uδ
∞ = u∞ + δ

‖u∞‖L2

‖η‖L2
η,

where η = η1 + iη2 and η1 and η2 are normally distributed random
variables and δ is the relative noise level. For simplicity the wave
number k is set equal to 1 and the initial guess is taken to be a circle
indicated by dotted lines in the figures throughout the examples. We
also tried different shapes for the initial guess, for example an ellipse,
but changing the guess does not affect the procedure as long as this
guess is not too small or too large. In the first two examples we assume
that the boundary Γ of the obstacle has a polar parameterization, e.g.,

(4.2) z(t) = r(t)(cos t, sin t), t ∈ [0, 2π]
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which is not the case in the third example where instead the obstacle has
the general parameterization (3.1). We display the analytical boundary
curve as a solid line in all of the figures.

TABLE 1. Results for exact data, pinched ellipse.

Initial Rel. error Method A Method B
radius level (%) reg. par. number of reg. par. number of

μ iterations α β iterations
0.1 5 1 10 10−3 100 11

1 1 25 10−3 100 38
1.2 5 4 8 10−9 10−7 3

1 4 11 10−9 10−7 8
2 5 2 16 10−3 10−1 8

1 2 22 10−3 10−1 34

Example 1. We wish to reconstruct a pinched ellipse given by the
equation

z(t) =
3
2

(
1
4

cos2 t+ sin2 t

)1/2

(cos t, sin t), t ∈ [0, 2π].

Since the radial function r in (4.2) is 2π-periodic it is natural to
approximate it by a trigonometrical polynomial

(4.3) r̃(t) = a0 +
NT∑

m=1

(am cosmt+ bm sinmt), t ∈ [0, 2π].

In the discretized versions of methods A and B the coefficients in (4.3)
are constructed for the pinched ellipse. In Table 1 we present the
number of iterations needed for methods A and B to obtain 5% and
1% relative L2 error in the reconstruction for different initial guesses.
These guesses are circles centered at the origin with radii as stated in
the table, the direction of the incoming wave is (cosπ/3, sinπ/3) and
NT = 12 in (4.3). For method A the scaling factor in (3.9) is ρ = 0.8
and μ in (3.10) is given in the table, as well as the parameters α and β
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FIGURE 1. Reconstruction of a pinched ellipse noisy data.
a) Method A; b) Method B.

in (3.13) for method B. Throughout this example p = 1 in (3.9), (3.13),
i.e., an H1 penalty term is used in method A and an L2 ×H1 penalty
term is used in method B.

From Table 1 we conclude that method B gives a reasonable recon-
struction in fewer iterations than method A; on the other hand, to
decrease the relative error from 5% to 1% method A requires less iter-
ations in general.

As an initial guess the smallest and largest radii of circles with center
at the origin which give accurate approximations were 0.001 and 2.4 for
Method A and 0.001 and 2.9 for Method B, respectively. The direction
of the incoming wave can be changed and the methods produce similar
results.

For further investigations 10 different sets of perturbed far field data
in the form (4.1) with relative noise level δ = 0.03 were generated.
We used these data sets for both methods A and B and present in
Table 2 the best, respectively, average relative L2 error between the
reconstruction and exact curve and the mean number of iterations. The
parameters were kept fixed for different incident directions and initial
guesses and assumed the values ρ = 1, μ = 4 and α = 10−3, β = 1 for
the methods A and B, respectively. Initial guesses were chosen as in
the case of exact data.

In Figure 1 the reconstructions for the incoming wave direction
(cosπ/3, sinπ/3) with initial guess a circle of radius 0.1 are shown,
where the dashed lines and dash-dot lines are the approximations with
the minimal and maximal relative error from Table 2.
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TABLE 2. Results for noisy data, pinched ellipse.

Initial Incident Method A Method B

radius direction rel. error rel. error iterations rel. error rel. error iterations

(best) (mean) (mean) (best) (mean) (mean)

0.1 0 0.0207 0.0397 31 0.0246 0.0476 13

π/3 0.0218 0.0354 24 0.0272 0.0476 13

π/2 0.0153 0.0251 23 0.0246 0.0332 12

1.2 0 0.0224 0.0399 11 0.0375 0.0540 12

π/3 0.0243 0.0360 11 0.0189 0.0335 11

π/2 0.0152 0.0243 9 0.0242 0.0371 11

2 0 0.0152 0.0243 9 0.0502 0.0674 13

π/3 0.0217 0.0358 16 0.0245 0.0382 11

π/2 0.0169 0.0266 16 0.0216 0.0374 11

From Table 2 it can be seen that method B in general requires
less iterations but method A is more accurate. If the procedures are
continued beyond the iteration values given in the table, the relative
errors begin to magnify since the regularization parameters in (3.10)
and (3.13) are decreasing.

Example 2. The boundary of the obstacle to be reconstructed in this
example has the nonsymmetrical shape

z(t) =
(

1 + 0.9 cos t+ 0.1 sin2t
1 + 0.75 cos t

)
(cos t, sin t), t ∈ [0, 2π].

To obtain a faster reconstruction (with less unknowns in the proce-
dures) of the indented part of this obstacle, see Figure 3, we approx-
imate the function r in (4.2) by radial basis functions which have a
more localized behavior than (4.3), i.e.,

(4.4) r̃(t) =
NR∑

m=1

ame
−γ sin2(t−tm)/2, t ∈ [0, 2π],

where tm = 2πm/NR for m = 1, 2, . . . , NR and γ ≈ NR. This basis
function, for NR = 9 and γ = NR, is shown in Figure 2.

To compare the reconstructions for exact data obtained with trigono-
metrical and radial basis interpolations, we choose NT = 4 in (4.3) and
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FIGURE 2. A radial basis function.

NR = 9 in (4.4), that is, we maintain the same number of unknown
coefficients. In Figure 3 a) the reconstructions produced by method A
after 20 iterations with parameters ρ = 0.9 in (3.9) and μ = 3 in
(3.10) with L2 penalty term, are presented. Correspondingly, in Figure
3 b) we see the results generated by method B after 10 iterations and
parameters α = 10−8, β = 10−7, with L2 × L2 penalty term. In both
figures the initial guess is a circle of radius 0.8, the dash dot and dashed
lines are the reconstructions with trigonometrical and radial basis in-
terpolations, respectively. By the arrow we denote the direction of the
incoming incident wave.

With the same number of unknowns both methods produce a more
accurate reconstruction using the radial basis functions. However if we
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FIGURE 3. Reconstruction of an apple shaped contour, exact data.
a) Method A; b) Method B.
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FIGURE 4. Reconstruction of an apple shaped domain, noisy data.
a) Method A; b) Method B.

increase the degree of approximation the results become similar for both
the trigonometrical and radial basis interpolations. Note also that the
shadow side of the contour, containing the indented part, is accurately
reconstructed.

As in the first example, ten data sets of perturbed far field data
with 3% noise level are generated. In Figure 4 the reconstructions
using radial basis interpolation, with the least (dashed line) and the
highest (dash dot line) relative L2 error, are presented. The same
regularization parameters as in the case of exact data were used for
method A but for method B they were changed to α = 0.1, β = 1.
The error levels and the number of iterations for the procedures are
presented in Table 3.

TABLE 3. Noisy data, radial basis approximation.

Method A Method B
rel. error iterations rel. error iterations

least 0.0311 8 0.0325 14
average 0.0618 12 0.0694 16

Example 3. Finally, we attempt to reconstruct a boundary curve with
the parameterization

z(t) = (cos t+ 0.65 cos2t− 0.65, 1.5 sin t), t ∈ [0, 2π].

In [9] the reconstructions of this curve using the polar representation
(4.2) are presented. To improve the accuracy it is natural to use the
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FIGURE 5. Reconstruction of a kite contour, exact data.
a) Method A; b) Method B.

more general parameterization (3.1). Each of the functions z1, z2 in
(3.1) are approximated by the trigonometrical polynomials (4.3) with
NT = 7. We investigate how the location of the initial guess and the
direction of the incoming wave influence the procedures.

We begin by choosing the direction of the incoming wave as (cos 5π/6,
sin 5π/6) and the initial guess a circle of radius 0.4 with the center
located outside of the obstacle. To obtain a faster reconstruction the
parameter choice rule at each iteration step for method A was changed
from (3.10) to λm = 40 · 2−0.5m (m is the iteration index) with the
scaling factor ρ = 1. For method B the parameters are α = 0.1, β = 1.
Moreover, for both procedures, to acquire a smoother reconstruction,
we use p = 2 in (3.9) and (3.13).

The thick dotted line in Figure 5 a) and b) represents the boundary
curve obtained after 5 iterations, the dashed line after 25 iterations
and the dash dot line after 50 iterations for exact data. As we can see
from this figure, in method A, the initial guess is first moved almost
unchanged towards the center of the obstacle. Then the illuminated
region is reconstructed and finally the shadow is found. This is not the
case in method B, where the illuminated region is found almost directly
and then the shadow region is reached. We could move the initial guess
further to the right but not beyond the disk mentioned in Lemma 2.1.

We then placed the initial guess inside the obstacle but far from the
center, see Figure 6. The notations and parameters are the same as in
the previous figure. We point out that, if the initial guess is located in
the shadow region outside the obstacle, then inaccurate reconstructions
were obtained.
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FIGURE 6. Reconstruction of a kite contour, exact data.
a) Method A; b) Method B.

Next, the direction of the incoming wave is changed to (1, 0) and the
initial guess is moved towards the indented part, see Figure 7. Again,
the methods produced reconstructions in the same way as described-
above but fewer iterations are needed. The notations are as in the
previous figures except that the dashed lines denote the reconstruction
after 15 iterations and the dash dot lines after 30 iterations.
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FIGURE 7. Reconstruction of a kite contour, exact data.
a) Method A; b) Method B.

The initial guess for this direction can also be placed outside of the
obstacle provided that it is not located too far into the shadow region.
For the situation illustrated in Figure 8 the regularization parameter α
was changed to 0.01 for method B whilst the other parameters remained
the same for both methods.
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FIGURE 8. Reconstruction of a kite contour, exact data.
a) Method A; b) Method B.

Finally, ten sets of noisy data were generated with the noise level
δ = 0.03 in (4.1). The iterations were terminated once the term

(4.5) em =
1
64

( 63∑
j=0

min
x∈Γ

|x− x
(m)
j | + ∣∣|Γ| − |Γm|∣∣)

began to increase. In (4.5) the boundary curve Γm is the reconstruction
obtained at the mth step, x(m)

j are the corresponding collocation points
on this curve and |Γm| denotes the boundary length.

The dash dot line in Figure 9 is the least accurate reconstruction
using em as a stopping criteria whilst the dashed line is the best one.
The actual values are presented in Table 4. The parameters of the
procedures are unchanged from Figure 8.

TABLE 4. Noisy data, kite reconstruction.

Method A Method B
em iterations em iterations

least 0.0880 29 0.0924 18
highest 0.1684 29 0.1467 17
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FIGURE 9. Reconstruction of a kite contour, noisy data.
a) Method A; b) Method B.

Remark. Formally, if k2 is not an interior eigenvalue for the negative
Laplacian, given a parameterization z(t) one can uniquely solve (3.4)
for the density ϕ, i.e., the operator S0u

i(z) = S−1(z, · )ui(z) is well
defined. Using this expression in (3.5) we obtain the boundary to far
field operator

(4.6) F (z)(t) = u∞(t), for t ∈ [0, 2π],

where F (z) = S∞(z, S0u
i(z)). For a given z(t) one can linearize (4.6)

to find an update z + h. Linearizing this equation involves the Fréchet
derivative of the classical boundary to far field operator, see Section 5
in Colton and Kress [2]. The Fréchet derivative of the operator F can
be formally calculated in the following way

(4.7) F ′[z]h = S′
∞[z, S0u

i(z)]h+ S∞(z, S0S
′[z, S0u

i(z)]h)
+ S∞(z, S0(ui ′[z]h)).

The operators on the right-hand side of (4.7) have been defined in
subsections 3.1 3.3 so it is possible to build a third iterative method
for solving the inverse scattering problem. This approach is related to
a method described in [2, Section 5].

Conclusions. In this study the problem of reconstructing a planar
sound-soft obstacle from knowledge of the far field data for one incom-
ing wave has been considered. Two procedures were proposed based on



NONLINEAR INTEGRAL EQUATION METHODS 307

the integral equations for the incoming wave and the far field data. Nu-
merical comparisons were carried out between the two approaches for
several different types of obstacles, incoming waves and initial guesses.
In general, method B produces a good reconstruction in fewer itera-
tions than are required in method A. However, in order to decrease the
error level further method A requires fewer steps. Method A usually
performs in a way that it moves the initial guess towards the center
of the obstacle, then the illuminated region is found and finally the
shadow region is reconstructed while method B searches directly for
the illuminated part and then locates the shadow region. In addition,
with noisy data accurate reconstructions are obtained in relatively few
iterations for both methods with slightly better accuracy for Method A.
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17. R. Potthast, Fréchet differentiability of boundary integral operators in inverse
acoustic scattering, Inverse Problems 10 (1994), 431 447.

18. , A fast new method to solve inverse scattering problems, Inverse
Problems 12 (1996), 731 742.

19. , On the convergence of a new Newton-type method in inverse scat-
tering, Inverse Problems 17 (2001), 1419 1434.

20. B.D. Sleeman, The inverse problem of acoustic scattering, Appl. Math.
Institute Technical Report No. 114 A, University of Delaware, Newark, 1981.

Institute for Numerical and Applied Mathematics, Georg-August Uni-

versity of Göttingen, Lotzestr. 16 18, Göttingen, Germany

Email address: ivanyshy@math.uni-goettingen.de

School of Mathematics, University of Birmingham, Edgbaston, Birming-

ham B15 2TT, UK

Email address: b.t.johansson@bham.ac.uk


