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Abstract

A method for selecting a suitable subspace for discriminating signal components through an
oblique projection is proposed. The selection criterion is based on the consistency principle intro-
duced by M. Unser and A. Aldroubi and extended by Y. Elder. An effective implementation of this
principle for the purpose of subspace selection is achieved by updating of the dual vectors yielding
the corresponding oblique projector.

1 Introduction

Oblique projectors are of assistance to signal processing applications [1–7], in particular due to their

ability to discriminate signal components lying in different subspaces. Thereby, as discussed in [1],

oblique projectors are suitable for filtering structured noise. Let us suppose for instance that a given

signal f , represented mathematically as an element of a vector space H, is produced by the super-

position of two phenomena, i.e. f = f1 + f2 where f1 belongs to a subspace S1 ⊂ H and f2 belongs

to subspace S2 ⊂ H. Provided that S1 ∩ S2 = {0} we can obtain from f the component f1 by an

oblique projection onto S1 along S2, which maps f2 to zero without altering f1. The procedure is

straightforward and effective if the corresponding subspaces S1 and S2, such that S1 ∩ S2 = {0}, are

known [1]. Nevertheless, this may not be always the case. In this letter we address the problem of

selecting the appropriate subspace S1, from the spanning set of a larger subspace, in order to fulfil the

condition S1 ∩ S2 = {0} assuming that S2 is known and fixed.

Given a signal, our strategy for the selection of the representation subspace is in the line of Matching

Pursuit (MP) methodologies [8–12] and is made out of two ingredients i) the sampling/reconstruction

consistency requirement introduced in [2] and extended in [6] ii) a recursive procedure for adapting

the dual vectors giving rise to the corresponding oblique projector [13]. It will be shown here that

the latter yields an effective implementation of a selection criterion that we base on the consistency

principle.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78893285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/math/0610902v1


The letter is organized as follows: Sec 2 introduces the general framework and discusses the

ingredients of the approach. Namely, the consistency principle and the recursive updating of the

measurement vectors for achieving the required oblique projection. The Oblique Matching Pursuit

strategy is introduced in Sec 3. Its implementation is discussed in Sec 4 along with a numerical

example. The conclusions are drawn in Sec 5.

2 The consistency principle and stepwise updating of measurement
vectors

We represent a signal f as an element of an inner product space that without loss of generality

is assumed to be finite dimensional. The square norm is computed as ||f ||2 = 〈f, f〉, where the

brackets denote the corresponding inner product and we define the inner product in such a way

that if c is a complex number 〈cf, g〉 = c∗〈f, g〉, with c∗ the complex conjugate of c. Measurements

of a signal f (also called samples) will be represented as linear functionals. Thus a set of, say k,

sampling vectors wk
i , i = 1, . . . , k provides us with a set of k measurements on f given by the inner

products 〈wk
i , f〉, i = 1, . . . , k. The superscript k is used to indicate that to reconstruct the signal

we will need to modify the measurement vectors wk
i if an additional measure is considered. From

the sampling measurements we can construct an approximation fk of f using a set of reconstruction

vectors vi, i = 1, . . . , k. The consistency principle introduced in [2] states that the reconstruction fk

from 〈wk
i , f〉, i = 1, . . . , k should be self-consistent in the sense that if the approximation is sampled

with the same vectors the same samples should be obtained. In other words, a consistent reconstruction

must satisfy:

〈wk
i , f

k〉 = 〈wk
i , f〉, i = 1, . . . , k.

This requirement has been considered further in [6] where it is proved that: if the reconstruction vectors

vi, i = 1, . . . , k span a subspace Vk and the sampling vectors wk
i , i = 1, . . . , k span a subspace Wk such

that its orthogonal complement W⊥ satisfies Vk ∩W⊥ = {0}, then fk is a consistent reconstruction of

f if and only if fk is the oblique projection of f onto Vk along W⊥. We represent the corresponding
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oblique projector as ÊVkW⊥ . Hence, it is endowed with the following properties

Ê2

VkW⊥ = ÊVkW⊥

ÊVkW⊥v = v, for any v ∈ Vk

ÊVkW⊥w = 0, for any w ∈ W⊥.

Given the conditions of the above statement, the unique consistent approximation of f is therefore

fk = ÊVkW⊥f . The oblique projector can be expressed as ÊVkW⊥ =
∑k

i=1
vi〈w

k
i , ·〉 where 〈wk

i , ·〉

indicates that ÊVkW⊥ acts by performing inner products as in ÊVkW⊥f =
∑k

i=1
vi〈w

k
i , f〉. Explicit

equations for updating an oblique projector when a new pair of reconstruction/measurement vectors

is to be considered are given in [13]. As will be discussed in the next sections, for the purpose of this

contribution we can restrict the measurement vectors to be lineally independent. Hence the vectors

wk+1

i yielding oblique projectors along W⊥ onto nested subspaces Vk+1 = Vk + vk+1 = span{vi}
k+1

i=1

can be inductively obtained as follows:

Construct vectors ui = vi−P̂W⊥vi, with P̂W⊥ the orthogonal projector onto W⊥. From w1
1 = u1

||u1||2

every time a new vector is needed compute it, and update the previous ones, through the equations [13]:

wk+1

i = wk
i −wk+1

k+1
〈uk+1, w

k
i 〉, i = 1, . . . , k (1)

wk+1

k+1
=

qk+1

||qk+1||2
, qk+1 = uk+1 − P̂Wk

uk+1, (2)

where P̂Wk
is the orthogonal projector onto Wk = span{ui}

k
i=1. It should be noticed that Vk+1+W⊥ =

Wk+1 ⊕W⊥, with ⊕ indicating the orthogonal sum and + the direct sum.

In the next section we introduce a method for stepwise selection of the measurement vectors aiming

at finding a subspace Vk for reconstruction such that Vk ∩W⊥ = {0}. This property guarantees that

the reconstructed signal has no component in W⊥, i.e. the reconstruction of the signal in Vk behaves

like a filter of the component in W⊥.

3 Oblique Matching Pursuit (OBLMP)

Matching Pursuit strategies for signal representation evolve by stepwise selection of vectors, called

atoms, which are drawn from a large set called a dictionary. Unless the dictionary is orthonormal,
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the seminal approach [8] does not yield a stepwise reconstruction of the orthogonal projection of the

signal onto a selected subspace. A variation of this approach, called Orthogonal Matching Pursuit

(OMP) does yield the orthogonal projection [9]. Such a reconstruction is therefore optimal in the

sense of minimizing the norm of the approximation error. However, to render a matching pursuit

strategy suitable for discriminating signals representing different phenomena, the approach needs to

be generalized. In order to propose the Oblique Matching Pursuit (OBLMP) method addressing this

problem we make the following assumptions.

• The subspace W⊥ in which the signal component to be filtered lays is known.

• The signal we wish to filter admits a unique decomposition f = f1 + f2, with f1 ∈ Vk and

f2 ∈ W⊥. This is equivalent to assuming f ∈ Vk +W⊥ with Vk ∩W⊥ = {0}.

• The subspace Vk can be spanned by vectors of the dictionary in hand.

As discussed in the previous section, the reconstruction that eliminates the signal component in W⊥

is fk = ÊVkW⊥f . Our goal is to construct the oblique projector by using the appropriate dictionary

vectors. We know how to update ÊVkW⊥ to ÊVk+1W⊥ so as to account for the inclusion of an additional

vector vk+1. The question arises now as to how to select vk+1 giving rise to the right subspace. We

answer this question by recourse to the consistency principle [2,6]. Considering that at iteration k the

approximation fk of f is ÊVkW⊥f , let us define the consistency error with regard to a new measurement

wk+1

k+1
as ∆ = |〈wk+1

k+1
, f − ÊVkW⊥f〉|. Thus to construct the approximation fk+1 = ÊVk+1W⊥f we

propose to select the measurement vector wk+1

k+1
such that

wk+1

k+1
= argmaxℓ∈J |〈wk+1

ℓ , f − ÊVkW⊥f〉|, (3)

where J is the set of indices labeling the corresponding dictionary vectors not selected in the previous

steps.

Proposition 1. If vectors wk
i , i = 1 . . . , k have been selected by criterion (3) and |〈wk+1

k+1
, f−ÊVkW⊥f〉| 6=

0, the measurement vector wk+1

k+1
and the previously selected vectors wk

i , i = 1 . . . , k are linearly inde-

pendent.
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Proof. Assume that, on the contrary, |〈wk+1

k+1
, f − ÊVkW⊥f〉| 6= 0 and there exists a set of numbers

{ai}
k
i=1 such that wk+1

k+1
=

∑k
i=1

aiw
k
i . Since for the previously selected vectors the consistency condi-

tion holds, i.e. 〈wk
i , f〉 = 〈wk

i , ÊVkW⊥f〉, i = 1 . . . , k, we have

|〈wk+1

k+1
, f − ÊVkW⊥f〉| = |〈

k∑

i=1

aiw
k
i , f − ÊVkW⊥f〉| = |

k∑

i=1

a∗i (〈w
k
i , f〉 − 〈wk

i , ÊVkW⊥f〉)| = 0.

This contradicts our assumption, which implies that wk+1

k+1
6=

∑k
i=1

aiw
k
i .

Proposition 2. All measurement vectors wk+1

ℓ (C.f. eq. (3)) are orthogonal to the reconstruction

vectors selected in previous iterations.

Proof. Every wk+1

ℓ is computed as in (2) and for i = 1, . . . , k it is true that 〈qℓ, vi〉 = 〈uℓ, vi〉 −

〈P̂Wk
uℓ, vi〉 = 〈uk+1, ui〉 − 〈uk+1, P̂Wk

vi〉 = 〈uk+1, ui〉 − 〈uk+1, ui〉 = 0.

The last proposition allows us to re-state the OBLMP selection criterion (3) as

wk+1

k+1
= argmaxℓ∈J |〈wk+1

ℓ , f〉|. (4)

Proposition 1 ensures that, for a given tolerance δ > 0, by stopping the selection process when

the condition argmaxℓ∈J |〈wk+1

ℓ , f〉| < δ is reached, the method only selects linearly independent

measurement vectors. Assuming that at iteration k+1 the selected indices are ℓ1, . . . , ℓk+1, the signal

reconstruction is given as

fk+1 = ÊVk+1W⊥f =
k+1∑

i=1

〈wk+1

i , f〉vℓi =
k+1∑

i=1

ck+1

i vℓi . (5)

The coefficients in the last equation can be updated at each iteration according to (1) and (2), i.e.,

ck+1

k+1
= 〈wk+1

k+1
, f〉 (6)

c
k+1

i = cki − ck+1

k+1
〈wk

i , uk+1〉, i = 1, . . . , k. (7)

It is appropriate to point out that these equations, as well as (1) and (2), have the identical form of

the equations to modify the dual vectors and the coefficients in the Optimized Orthogonal Matching

Pursuit Approach (OOMP) [10]. However, now the equations involve vectors of different nature

yielding therefore a different approach. OOMP updating arises as the particular case, corresponding

5



to ui ≡ vi, for which ÊVk+1W⊥ ≡ P̂Vk+1
. Nevertheless, since the criterion for the selection process we

have adopted here does not necessarily minimize the norm of the residual error, OOMP is not a truly

particular case of the new approach. On the contrary, we are introducing an alternative selection

criterion based on the consistency principle, which could also be considered for producing yet one

more variation of OMP.

4 Implementation details and numerical example

In consistence with the hypothesis itemized in Sec. 3 we consider that the subspace W⊥ is given,

i.e. {ηi}
n
i=1 such that W⊥ = span{ηi}

n
i=1 is known. For constructing P̂W⊥ there are a number

of possibilities. In the example we present here the set {ηi}
n
i=1

is linearly dependent and we have

used the technique for dictionary redundancy elimination proposed in [14]. MATLAB code for its

implementation is available at [15]. The method produces a set of orthonormal vectors {ψi}
m
i=1

,

m ≤ n that we use to construct P̂W⊥ =
∑m

i=1
ψi〈ψi, ·〉.

Given a dictionary {vℓ}ℓ∈J we proceed to compute vectors {uℓ}ℓ∈J as uℓ = vℓ −
∑m

n=1
ψn〈ψn, vℓ〉.

Except for the selection criterion the next steps parallel those for the implementation of OOMP but

considering the dictionary {uℓ}ℓ∈J . A routine for implementation of OOMP based on Modified Gram

Smidth orthogonalization with re-orthogonalization is also available at [15]. With very minor changes

that routine can be used for the implantation of OBLMP. The algorithm is described below.

Starting by assigning γℓ = uℓ, ℓ ∈ J , at the first step we select the index ℓ1 corresponding to the

index for which 〈γℓ, f〉/||γℓ||
2 is maximal and set q1 = γℓ1/||γℓ1 ||, w

1
1 = q1/γℓ1 and c11 = 〈w1

1, f〉. The

index set J is changed to J = J \ ℓ1. At step k + 1 the sequence γℓ, ℓ ∈ J (at this stage J is the

subset of indices not selected in the previous k steps) is orthogonalized with respect to qk as: γℓ =

γℓ−qk〈qk, γℓ〉 and, if necessary, reorthogonalized with respect to q1, . . . , qk i.e., γℓ = γℓ−
∑k

j=1
qj〈qj , γℓ〉.

After selecting the index ℓk+1 as the maximizer of 〈γℓ, f〉/||γℓ||
2 we set qk+1 = γℓk+1

/||γℓk+1
||, wk+1

k+1
=

qk+1/γℓk+1
and ck+1

k+1
= 〈wk+1

k+1
, f〉 and compute {wk+1

i }ki=1
according to (1) and {ck+1

i }ki=1
according to

(7). For a given tolerance parameter δ the algorithm is to be stopped when 〈γℓ, f〉/||γℓ||
2 < δ for all

ℓ ∈ J . The reconstructed signal is then obtained as in (5).
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We illustrate now the proposed method and its motivation by the following example: Suppose

that from the two signals of Figure 1 we wish to eliminate the corresponding backgrounds. The

backgrounds are different, but both are known to belong to the subspace spanned by the set of

functions ηi(x) = (x+ 0.5)−0.03i , i = 1, . . . , 50. This set is highly redundant. A good representation

of the span can be achieved by just five linearly independent functions. Actually to avoid possible

bad conditioning we considered only three orthonormal functions for constructing P̂W⊥ . As verified a

posteriori, that was enough for the backgrounds we were dealing with. In regard to the signal space

we considered the cardinal cubic spline space, with distance 0.065 between consecutive knots, spanned

by the corresponding B-spline basis on the interval [0, 4]. Since in both cases the signal space is also

suitable for representing the background, the oblique projection onto the whole space does not yield

the desired signal splitting. The failed attempt to separate the signal components in the left graph of

Figure 1 is displayed by the broken line in the left graph of Figure 2. On the contrary, by applying

the OBLMP approach, we could pick from the whole basis some elements spanning a subspace such

that in the intersection with W⊥ there are only vectors of very small norm. Hence, as depicted in the

right graph of Figure 2, the signal discrimination is successful. The approximation coincides in the

scale of the figure with the true signal. The equivalent results, but concerning the signal in the right

graph of Figure 1, are shown in Figure 3. The continuous lines depict the target signal and the broken

lines the corresponding approaches.

5 Conclusions

A method, termed OBLMP, which allows for the selection of a suitable subspace for representing one

of the signal components, and leaving aside other components of different nature, has been proposed.

The approach evolves by stepwise selection of the subspace. The selection criterion is based on the

consistency requirement introduced in [2] and extended in [6]. An effective implementation is achieved

by stepwise updating of the measurement vectors yielding the appropriate oblique projector [13]. With

regard to implementation and complexity OBLMP is equivalent to the OOMP approach [10,12].
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Figure 1: Two different signals (left and right graphs) superpose on two different backgrounds belong-
ing to the given subspace W⊥ = span{(x+ 1)−0.03i}50i=1.
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Figure 2: The continuous line in both graphs represents the signal to be separated from the background.
The broken line in the left graph depicts the result of applying the oblique projection onto the subspace
spanned by the whole B-spline basis on [0, 4]. The broken line in the right graph, coinciding with the
continuous one, depicts the output of the proposed OBLMP approach.

Since the subspace selection is performed by picking a single vector at each step, there is no

guarantee that the required signal splitting will always be achieved. The success should depend on

the nature of the signal components and the dictionaries spanning the subspaces for representing

them. We hope that the results presented in this letter will stimulate further analysis of the proposed

approach.
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Figure 3: Same description as in Figure 2 but corresponding to the signal in the right graph of Figure
1
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