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Abstract  

To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel 

blood oxygen saturation measurements using poly-bead solutions of varying concentrations. 

Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects 

underwent digital blood pressure measurements, assessment of non-contact intraocular 

pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography 

(Oxymetry Modul, Imedos Systems, Germany). To simulate light scatter, cells comprising a 

plastic collar and two plano lenses were filled with solutions of differing concentrations 

(0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA).  The 

adopted light scatter model showed an artifactual increase in venous optical density ratio 

(p=0.036), with the 0.004% condition producing significantly higher venous optical density 

ratio values when compared to images without a cell in place. Spectrophotometric analysis, 

and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter.  
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1. Introduction  

In vivo, non-invasive retinal vessel oxygen saturation measurements are relatively novel. 

Due to the non-invasive nature of this technology and its good reproducibility (Hammer et al., 

2008, Lasta et al., 2012), it has attracted interest in the clinical community for the 

assessment of systemic and ocular disease with a vascular component. Diseases 

investigated so far include diabetic retinopathy (Hammer et al., 2009, Hardarson and 

Stefansson, 2012b), glaucoma (Hardarson et al., 2009, Traustason et al., 2009) and retinal 

vein occlusion (Hardarson and Stefansson, 2010, Hardarson and Stefansson, 2012a). Ease 

of use and low variability paired with high sensitivity and specificity are essential for any 

diagnostic technology. Although the eye offers a unique possibility to non-invasively observe 

the retinal microcirculation, it also requires certain prerequisites in order to obtain good 

quality images, including clear media (cornea, lens, vitreous and anterior chamber) and an 

adequate ability to fixate by the individual under observation.  

With increasing age and in the presence of systemic or ocular disease, media transmission 

is invariably altered (Wuerger 2013, Sakanishi et al. 2012, Artigas et al. 2012, Bron et al., 

2000, Polo et al., 1996). This change in ocular media transparency and scattering effect 

(light diffusion) produced by a cataract can affect both spectral transmission and 

morphology. By degrading the spatial resolution of the retinal features the detection of the 

vessel lumen and exterior can thus impact the measurement of optical density of the retinal 

vessels (Mita et al. 2012). Optical density contributes to the calculation of retinal vessel 

blood oxygen saturation measurements. Despite this, the impact of lens opacity on the 

assessment of blood oxygen saturation is unknown. Previous studies from our group have 

quantified the influence of artificial light scatter on various retinal imaging instruments (Azizi 

et al., 2007, Burke et al., 2006, Venkataraman et al., 2005). In order to mimic the change in 

lens morphology, we introduced an additional plano lens, filled with a polybead solution to 

simulate light scatter.  



We hypothesised that light scatter, typical in an ageing lens, could alter retinal vessel oxygen 

saturation measurements as it might impact upon fundus and vessel reflection which form 

the basis of the retinal vessel blood oxygen saturation calculation.  

 

2. Materials and Methods  

The study adhered to the tenets of the Declaration of Helsinki and was approved by the 

Aston University institutional review board. Written informed consent was provided. We 

included eight young healthy participants (mean age 32+/-4 years). All participants were 

drug free with no systemic disease, no ocular abnormalities, and no history of any ocular 

surgery. Participants had no lens opacity, exhibited intraocular pressures less than 21 

mmHg, a logMAR (logarithm of the minimum angle of resolution) visual acuity of 0.0 or 

better, and a refractive error ≤ ±6.00 DS and ≤ ±2.50 DC. 

All measurements were taken in the morning between 9-11am with the participants having 

abstained from caffeinated and carbonated beverages, alcohol, chocolate, red meat, vitamin 

C or participated in any forms of exercise for a minimum of 4 hours. Intra ocular pressure 

was measured using the Keeler IntelliPuff (Keeler Instruments, UK) prior to instillation of one 

drop of Tropicamide 1% (Minims, Chauvin Pharmaceuticals Ltd, UK) to dilate the pupil. After 

resting in a sitting position and acclimatizing to a temperature of 22ºC for 15-20 minutes 

blood pressure (BP) was measured using a digital BP monitor (UA-779, A7D Instruments, 

UK) according to best practice guidelines (Williams et al., 2004). 

 

2.1. Artificial Light Scatter Model 

The details of the artificial light scatter model have been published elsewhere (Azizi et al., 

2007, Burke et al., 2006, Venkataraman et al., 2005). In brief, cells comprising a plastic 

collar (inner diameter 25 mm) and two 35 mm removable CR39 plano parallel lenses (with a 



spacing of 4.5 mm between the lenses and a thickness of 2.04 mm each) were filled with 

solutions of differing concentrations of polystyrene microspheres (Polybead© Polysciences 

Inc., USA). The total volume of each cell was 2.2 ml. The diameter of the microspheres was 

chosen to be similar to the mean diameter of aggregated lens proteins (500 nm) that are 

thought to produce intraocular light scatter in the normal aging lens. Microsphere 

concentrations of 0.001%, 0.002%, and 0.004% were made up from a 0.16% stock solution. 

A cell filled with distilled water only was also used as an additional control. Cells filled with a 

solution of 0.008% were tested for imaging but proved to produce images which could no 

longer be analysed. 

The cells were re-filled with solution for each subject as the microsphere solution is not 

constantly homogenous (i.e. the microspheres can deposit and settle with gravity if left over 

time). Furthermore, cells were checked regularly with a spectrophotometer to ensure 

consistency of the optical transmission and absorption characteristics throughout the course 

of the study. 

 

2.2. Image acquisition: 

The cells were mounted on the objective lens of the Zeiss FF450+ using a custom made 

adaptor that incorporated a 20˚ tilt to minimise surface reflections. After full pupil dilation was 

reached, we obtained a minimum of 5 images per condition (i.e. no lens, distilled water, 

microsphere polybead concentrations of 0.001%, 0.002% and 0.004%) with the camera 

angle set at 30 degrees and the optic nerve head centered. A minimum of 5 minutes resting 

time between conditions was given (Figure 1).  

Oxygen saturation measurements were performed using the “oxygen tool” (Imedos Systems, 

Imedos GmbH, Jena, Germany) as described elsewhere (Hammer et al., 2008). In brief, 

fundus images were taken using a customized dual wavelength filter (transmission bands at 

548 and 610nm; bandwidth 10 nm each). Optical densities of the vessels were measured as 



the logarithmic ratio of the fundus reflection at the vessel center and its surrounding. The 

optical density ratio (ODR) at 610 and 548nm has been found to be inversely proportional to 

the vessel hemoglobin oxygen saturation when compensating for the vessel diameter and 

fundus pigmentation (Hammer et al., 2008). 

 

2.3. Image analysis: 

For analysis purposes we selected the three best images per condition. Using the Visualis 

software (Imedos Systems, Jena, Germany), we used a predefined template to measure one 

retinal arteriole and one retinal venule approximately half a disc diameter (DD) from the ONH 

and of one DD in length. This distance and length was chosen in order to obtain results 

which could be used for comparison to earlier publications using the same device. The 

vessel diameter, optical density ratio, pigmentation (numerical value output from the 

software) and oxygen saturation were obtained for all three images (per condition) of each 

participant, using the “multi measurement tool”. 

 

2.4. Statistical analysis: 

Statistical analysis was performed using Statistica version 6.0 (StatSoft, Tulsa, OK). Analysis 

of variance (ANOVA) was used to establish whether the three repeated measures were 

comparable; following this we obtained averaged values for ODR, SO2, pigmentation and 

vessel diameter for further analyses. Due to the small sample size and changes in variance 

with changes in solution density we employed a non-parametric (Mann-Whitney-U) test and 

compared the “no-lens” condition to the highest solution strength as well as comparing the 

“distilled water” condition to each of the three solutions (0.001%, 0.002% and 0.004%). 

Furthermore we used the “no-lens” condition to normalize our ODR values in order to 



evaluate the fractional change in ODR occurring with increasing solution strength for each 

arteriolar and venular ODR. 

 
3. Results  

The cohort consisted of 8 healthy, normotensive (average systolic blood pressure: 112 ± 

10mmHg, average diastolic blood pressure: 73±8mmHg) non-smoking individuals (4M; 

mean age 32 ± 4 years) with mean intraocular pressures of 12 ± 2mmHg. All values for 

ODR, SO2, and vessel diameter (D) per condition (i.e. solution strength) are shown in Table 

1.  

There were no statistically significant differences between ODR, oxygen saturation, 

pigmentation and vessel diameter values as analysed from the three consecutively taken 

images (per condition). Subsequently the average values for ODR, oxygen saturation, 

pigmentation and vessel diameter per condition were used for further analyses.  

To illustrate the effect of light scatter upon the ODR measurement which is the “raw” output 

of the oximeter we compared only the “no-lens” condition with the highest solution strength 

using the Mann-Whitney-U test. Arterial ODR for “no-lens” compared to “highest solution 

strength (0.004%)” was not statistically significant different (p=0.592); venous ODR as 

compared for the same conditions was significantly different (p=0.036); see Table 1 and 

Figures 2-4. In addition we compared arterial and venular ODR values of the three solution 

strengths to the “distilled-water” condition and found no statistically significant change 

(arterioles: 2-3: p=0.645; 2-4: p=0.613; 2-5: p=0.623; venules: 2-3: p=0.754, 2-4: p=0.966, 2-

5:p=0.109). 

From the results in Table 1 it is visible that all components used to calculate oxygen 

saturation are affected by the introduction of light scatter, to get a better understanding of the 

relative change in ODR we normalized each individuals values using the no lens condition 

as their 100% level. The results of this are shown in Figure 5 which highlights that despite a 



more significant “absolute” change in venous ODR, the arteriolar ODR is affected about a 

factor of 2 (compared to venous relative change in ODR) when analysing the relative 

change. 

4. Discussion  

The results of this study demonstrate that simulated light scatter alters retinal vessel 

oximetry parameters.  

 

ODR is assumed to have an inverse linear relationship with oxygen saturation but here the 

saturation calculations also include correction factors for vessel diameter and pigmentation 

as they have been found to alter saturation values in a linear manner too (Beach et al. 1999, 

Hammer et al. 2008). 

 

These correction factors for vessel width and fundus pigmentation were derived in a sample 

of twenty healthy individuals with clear media (Hammer et al. 2008). However, when looking 

at Table 1 it becomes clear that the measured ODR, saturation and diameter are far from 

linearly correlated. This highlights that the correction factors for diameter as well as 

pigmentation have considerable effects on the calculated saturation and brings up the 

question whether they are appropriate even under “ideal” imaging conditions.  

 

The vessel diameter D which shows increased values with increasing scatter can be 

explained by a loss of contrast at the vessel/ surrounding tissue boundary leading to blurred 

edges giving an increased diameter value. A same factor: change in contrast is leading to 

the change in pigmentation observed; the value given for pigmentation here is calculated as 

𝑙𝑜𝑔 I 610 (out)
I 548 (out)

 which is a simple ratio/ contrast value of the red and green tissue reflectance. 

 



Why do ODR and pigmentary values change and why is the relative change in ODR larger in 

retinal arterioles than venules? 

The change in ODR, pigment and D as stated in Table 1 is the product of a number of 

different factors; namely: (1) wavelength and particle size dependence of light scatter (van 

Bree et al. 2011, van Bree et al 2012, Ginis 2013), (2) loss of contrast, interference and 

optical density. 

 

Although the scatter cells introduced have all been prepared using the same polybead stock 

solution by diluting it with distilled water this does not guarantee that there is only a single 

particle size influence which could have contributed along with the wavelength and angle 

dependency of scatter light in changing ODR. Theoretically the solution should act partly as 

a neutral density filter which in turn would explain the blurring and change in contrast of the 

vessels as seen in Figure 1, but as the ocular stray light is wavelength (for wavelengths 

longer than 600nm) and fundus pigmentation (in eyes with lighter pigmentation) dependent 

(Ginis 2013) this could have contributed to the changes in ODR as measured. The relative 

difference in magnitude of the change in ODR as seen in Figure 5 between retinal arterioles 

and venules can be partly explained by the aforementioned detailed factors. 

 

Clinical importance of these findings: 

Despite retinal oximetry development in the early sixties by Hickam and colleagues it has 

first found wider use in recent years due to the improvements in optics and computer power. 

More recently this technology has seen great interest in evaluating diabetic, glaucomatous 

and respiratory disease patients (Hammer et al. 2009, Hardarson et al. 20012, Hardarson et 

al. 2009, Trautason et al. 2009, Palkovits et al. 2013). In humans, the crystalline lens 

undergoes a number of changes with advancing age which include the aggregation of lens 

crystallins forming high molecular weight aggregates of up to 300–500nm diameter in size 

and referred to as cataract. These aggregates introduce intraocular light scatter due to 

differences in refractive index manifesting as opacification of the crystalline lens which 



subsequently lead to degradation of retinal image quality (Moss and Wild, 1994). The 

resulting degradation of retinal images in a cataractous eye is primarily caused by forward 

light scatter. 

 

The light scatter model used in this study incorporated polybead microspheres, mimicking a 

forward light scatter similar to the ultra-structural features of human lens fiber cells (Costello 

et al., 2007). The results derived, however, must be interpreted with caution since the model 

may not simulate the impact of true cataract as it only introduces light scatter and does not 

mimic the effects of lens yellowing. 

Many patients, in particular those suffering from Diabetes Mellitus develop lenticular 

opacities earlier than their healthy counterparts, without taking this factor into consideration 

when using retinal oximetry, this might lead to false conclusions in patients with early 

cataract. Future studies on pre and post cataract patients will investigate the impact of 

cataract on retinal oximetry measurements, while taking into account the artificial lenses’ 

properties in regards to scatter, color, transmission and lens material. 

Although the sample presented was small, this study demonstrated for the first time the 

effect of light scatter on dual wavelength retinal vessel oximetry. It provides preliminary 

evidence of the effects of light scatter, irrespective and independent to the effect of ageing, 

which has been suggested to result in reduced venous saturations (Geirsdottir et al., 2012). 

These results further highlight the need for future clinical studies to incorporate lens grading 

and possibly transmission measurements when establishing normative data. This will enable 

more accurate comparisons between age related and disease related retinal vessel blood 

SO2 values. 
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Figure Legends  

Figure 1: The lens set up and images taken at each condition for a participant. 

Figure 2: The average optical density ratio (ODR) values for arterioles and venules for each 

lens condition. Data represented as mean and SD bars. 

Figure 3:  The average vessel oxygen saturation (SO2) values for arterioles and venules for 

each lens condition. Data represented as mean and SD bars. 

Figure 4: The average vessel diameter (D) values for arterioles and venules for each lens 

condition. Data represented as mean and SD bars. 

Figure 5: Illustration of the fractional change in ODR with increasing solution strength (red 

trace: arterioles; blue trace: venules). 

 

 


