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Abstract 
 
Purpose 
Alcohol consumption is inversely correlated with the incidence of cardiovascular disease. It is 
thought that red wine is specifically responsible for these cardiovascular benefits, due to its 
ability to reduce vascular inflammation, facilitate vasorelaxation and inhibit angiogenesis. This is 
because of its high polyphenolic content. Resveratrol is the main biologically active polyphenol 
within red wine. Owing to its vascular enhancing properties, resveratrol may be effective in the 
microcirculation of the eye, thereby helping prevent ocular diseases such as age-related 
macular degeneration, diabetic retinopathy and glaucoma. Such conditions are accountable for 
worldwide prevalence of visual loss.  
 
Method 
A review of the relevant literature was conducted on the ScienceDirect, Web of Science and 
PubMed databases. Key words used to carry out the searches included ‘red wine’, 
‘polyphenols’, ‘resveratrol’, ‘eye’ and ‘ocular’. Articles relating to the effects of resveratrol on the 
eye were reviewed. 
 
Results 
The protective effects of resveratrol within the eye are extensive. It has been demonstrated to 
have anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic and 
vasorelaxant properties. There are potential benefits of resveratrol supplementation across a 
wide range of ocular diseases. The molecular mechanisms underlying these protective actions 
are diverse.  
 
Conclusion 
Evidence suggests that resveratrol may have potential in the treatment of several ocular 
diseases. However while there are many studies indicating plausible biological mechanisms 
using animal models and in vitro retinal cells there is a paucity of human research. The 
evidence base for the use of resveratrol in the management of ocular diseases needs to be 
increased before recommendations can be made for the use of resveratrol as an ocular 
supplement. 
 
Keywords: age-related macular degeneration, alcohol, diabetic retinopathy, polyphenols, red 
wine, resveratrol, retinopathy of prematurity 
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Introduction 

There has been considerable interest in alcohol and the dangers it poses to good health. Less 

attention has been directed towards the potential benefits of alcohol consumption. The first 

documentation presenting the favourable effects of alcohol dates back to 1786, when Heberden 

discovered its ability to palliate angina pectoris [1]. Subsequently, a plethora of research has 

been performed to elucidate the potential cardiovascular benefits of alcohol.  

 

It appears that this paradoxical view of alcohol consumption is down to the amount of alcohol 

consumed. This can be explained by the J-shaped curve shown in studies investigating the 

association of alcohol dose and cardiovascular health [2]. The curve depicts possible 

cardiovascular benefits at a light to moderate alcohol intake, in contrast to potentially hazardous 

effects with heavy consumption.  

 

In 1979, research established that red wine, specifically, was responsible for the inverse 

correlation between alcohol consumption and cardiovascular disease [3]. This finding was 

further supported by the ‘French Paradox’, a theory conceptualised by Renaud et al [4]. This 

theory attempts to explain the comparatively low incidence of cardiovascular disease among the 

French population, despite their considerably high dietary intake of saturated fat. It was thought 

that red wine had greater beneficial potential for health than other alcoholic beverages due to its 

high content of polyphenolic compounds [5]. These compounds possess antioxidant properties, 

which account for their protective effect. The majority of the grape-derived polyphenols reside in 

the skin and seeds of the berry, both of which are removed during the production of white wine. 

Hence, red wine has comparatively higher polyphenolic content and subsequently greater anti-

oxidant properties [6].  

 

Current research has been focussed on the systemic effects of red wine, much of which has 

revolved around cardiovascular benefits [7]. Red wine has also, however, been associated with 

a decreased incidence of certain types of cancers including breast cancer [8] and lung cancer 

[9]. There have been fewer studies investigating the relationship between red wine and the eye. 
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Interest has arisen due to its cardioprotective action upon vasculature i.e. ability to inhibit 

angiogenesis, prevent inflammation and facilitate vaso-relaxation [7], all of which lead to 

increased blood perfusion of a biological tissue. Impaired blood flow and subsequent ischaemic 

changes are key pathological features of several ocular diseases including age-related macular 

degeneration (AMD), diabetic retinopathy (DR) and glaucoma. It is evident therefore, that red 

wine has the potential to prevent the onset and progression of such diseases.  

 

The last decade has seen a growing interest in the effects of resveratrol on the eye, particularly 

in terms of disease prevention. This naturally occurring polyphenol is thought to be the principal 

biologically active substance within red wine, due to its comparatively higher concentration in 

red grapes as opposed to white [10]. In addition, resveratrol has been reported to delay the 

progression of several age-related diseases, such as Alzheimer’s disease [11]. The potential 

beneficial effects of this substance within the body are diverse.  

 

This literature review aims to give an overview of the mechanisms by which resveratrol may 

prevent the progression and/or onset of ocular diseases that are common cause of sight loss. 

The clinical significance of these findings will be discussed in terms of current and future 

direction. 

 

Method 

Relevant articles investigating the impact of resveratrol on the eye were identified. All articles 

considered, were obtained from peer-reviewed journals. Initially, ScienceDirect, Web of Science 

and PubMed databases were searched for pertinent articles between 1970 and 2013. The 

following key words were used to perform the search: ‘alcohol’, ‘red wine’, ‘red wine 

polyphenols’, ‘polyphenols’, ‘resveratrol’, ‘trans-resveratrol’. Each of these terms were then used 

in combination with words including ‘eye’, ‘ocular’, ‘retina’ to refine the search. The abstracts of 

those articles considered of relevance were read and full-text copies of the articles were 

accessed. In addition, any papers identified as relevant from cited references within these 
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articles were searched using a similar procedure. Having reviewed the literature selected, 

information regarding the effects of resveratrol on the eye was integrated into the document.  

 

Results 

Red wine polyphenols 

Red wine contains a variety of polyphenolic compounds in abundance. Most of these are 

extracted during fermentation of the grapes’ seeds, stems and skin which have 65%, 22% and 

12% polyphenolic content, respectively [12]. Figure 1 depicts the basic structural component of 

all polyphenolic compounds: the phenol group. The hydroxyl group present within the structure 

can be oxidised by proton donation to free radicals, accounting for the anti-oxidant effect of 

polyphenols [13]. 

 

Figure 1 about here 

 

There are two forms of polyphenols found in red wine, namely flavonoids and non-flavonoids 

(table 1) [13]. The flavonoids comprise the majority of polyphenol content in red wine [14]. 

However, more recent research has focussed on the biological effects of the non-flavonoid 

resveratrol. 

 

Table 1 about here 

 

Resveratrol 

Resveratrol (3, 4’, 5-trihydroxystilbene) is a natural polyphenolic phytoalexin that is mainly found 

in grapes, leading to its high concentration in wines [15]. Additional sources include peanuts 

[15], blueberries [16], bilberries [16] and cranberries [17]. Resveratrol has a stilbene structure, 

meaning that the compound consists of two aromatic rings connected by a methylene bridge 

[18]. There exist two structurally distinct forms of resveratrol, namely cis- and trans-resveratrol 

(figure 2) [18]. The cis- isomeric form had not been located in grapes [18], however one study 

reported high amounts of the cis-isomer in wine [19]. It had originally been postulated that cis-
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resveratrol was formed from its trans- isomer by ultraviolet (UV) irradiation [10], but work by 

Jeandet et al. proved that similarly high amounts of the cis-isomer were located in wine 

produced in the dark that had vinted in the presence of light [19].  

 

In 1963 resveratrol was detected as the active ingredient in Polygonum cuspidatum roots, 

otherwise known as ‘Ko-jo-kon’ in Japanese [20]. The production of trans-resveratrol in 

grapevines (Vitis vinifera) however, was first discovered in 1976; its synthesis initiated as a 

method of defence against fungal attack or exposure to UV light [18]. As a result, it was 

generally thought that trans-resveratrol was the more biologically active isomer. Conversely, it 

was identified that cis-resveratrol had comparable ability to the trans- isomer in lowering lipid 

serum levels, therefore establishing a possible involvement for both forms of the compound in a 

protective role [21]. Resveratrol was found to reside only in the skin of grapes, upon synthesis in 

response to UV light [22]. Since pioneering reports in 1992 confirming the presence of the 

named phytoalexin in red wine [10], resveratrol has become a topic of considerable interest. 

 

Figure 2 about here 

 

Resveratrol concentration in wines 

There are many factors influencing the resveratrol concentration of red wine, some of which 

include climate, type of grape, conditions of growth and production [10, 23, 24]. A higher content 

of resveratrol is found in red grapes, hence the comparatively higher concentration found in red 

wine as opposed to white wines [10]. The variety of grape can be further classified in terms of 

species, originating from different countries. Lamikanra et al. compared resveratrol content of 

red wines produced using Vitis vinifera, Vitis labruscana and Vitis rotundifolia (muscadine) 

grape cultivars, and found that wine formed from the latter had the greatest concentration (table 

2) [25]. Muscadine grapes are highly resistant to pathogenic infection and are native to areas of 

south-eastern United States, where there is a high incidence of fungal and bacterial diseases 

[25]. 
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Table 2 about here 

 

As resveratrol is synthesised in response to fungal attack [18], the amount of pathogenic 

infection can also have some bearing on its concentration within grape skin cells [15]. Jeandet 

et al. studied the extent of this relationship concluding that wines produced from grapes 

subjected to 40% or 80% infection by Botrytis cinerea (the fungus responsible for grey mould) 

had the lowest concentration of resveratrol [19]. In contrast, wines obtained from grapes 

infected by 10% Botrytis cinerea had the highest concentrations of resveratrol [19]. It was 

suggested in this study that these counterintuitive findings may be due to degradation of 

resveratrol by enzymes secreted by the fungus, in those grapes highly infected [19]. Thus only 

moderate Botrytis cinerea infection is required to provide maximal concentrations of resveratrol 

within wine.  

 

The process of wine-making, namely vinification, greatly influences the concentration of 

resveratrol. It has been suggested that a longer maceration (softening through soaking) time 

increases the concentration of resveratrol in wines [10, 18]. Further research confirmed that 

maximal extraction of trans-resveratrol occurred 10 days following fermentation [24]. It is 

unsurprising that a longer time in contact with the grape skin results in higher concentrations of 

resveratrol in wine, as resveratrol resides in the skin, rather than the flesh of the berry [22].  

 

Mechanisms of action 

Resveratrol, isolated from Polygonum cuspidatum roots, had historically been used for remedial 

purposes in traditional oriental medicine against various diseases including gonorrhoea, 

athlete’s foot, suppurative dermatitis, hyperlipidaemia and fungal skin diseases [20]. Table 3 

summarises the diverse nature of its many other biological properties. 

 

Table 3: about here 
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Few studies have researched the effects of resveratrol within the eye. The major actions on the 

eye include: anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic 

and vasorelaxant. The following section will provide a review of the literature investigating each 

of these actions and their molecular mechanisms within the ocular structures. 

 

Antioxidant activity 

A positive correlation has been suggested between the antioxidant activity of red wine and its 

associated resveratrol content [44]. Compounds possessing antioxidant properties are able to 

combine with damaging free radicals, usually due to their structural composition, thereby 

stabilising them and preventing sustained oxidation. Oxidative stress is thought to be involved in 

the progression of several eye diseases including primary open angle glaucoma (POAG) [45] a 

major cause of worldwide irreversible blindness.  

 

A recent study conducted by Luna et al. considered the therapeutic potential of resveratrol in 

combating the expression of glaucoma markers, in trabecular meshwork cells, resulting from 

chronic oxidative stress [46]. Their research demonstrated that resveratrol inhibited the 

increased production of intracellular reactive oxygen species (iROS) which in turn prevented the 

induction of the pro-inflammatory markers: interleukin-1a (IL1a), interleukin-6 (IL-6), interleukin-

8 (IL-8), and endothelial-leukocyte adhesion molecule 1 (ELAM-1). In addition, chronic 

treatment with resveratrol prevented expression of the cellular senescence marker sa-β-

galactosidase (sa-β-gal), typically induced by oxidative stress. The build-up of fluorescent 

pigments including lipofuscin, the end product of lipid peroxidation, and other carbonylated 

proteins were also found to be reduced. Luna et al. inferred that this was not due to decreased 

protein degradation since proteosomal activity was unchanged by resveratrol [46]. Furthermore, 

it was documented that resveratrol produced a significantly anti-apoptotic effect without having 

a detrimental effect on trabecular meshwork cell proliferation. Since oxidative stress is thought 

to cause damage to cells of the trabecular meshwork in the development of POAG, persistent 

treatment with resveratrol could prevent apoptotic cell death whilst maintaining cell proliferation. 

 



  9 

The formation of age-related cataract is also associated with prolonged oxidative stress. While 

surgical removal is readily available for people in the developed world, the condition is a major 

cause of blindness in many poor and emerging countries. Although the exact mechanism of 

cataract formation has yet to be elucidated, it is thought that oxidation of proteins within the lens 

plays a crucial role in the pathogenesis. Sodium selenite acts similarly when injected into 

suckling rats, resulting in rapid cataract formation [47]. This represents a useful in vivo 

experimental model for the investigation of drug therapy in age-related cataract. Doganay et al. 

demonstrated a role for resveratrol in preventing selenite-induced cataract formation [47]. It was 

found that treatment with resveratrol caused an increase in the levels of reduced glutathione 

(GSH) in rat lenses and erythrocytes [47]. High levels of GSH can be isolated in the crystalline 

lens, where it serves to protect against damage by oxidants [48]. GSH levels have been shown 

to decline in age-related human and selenite-induced cataracts in rats, suggesting an essential 

role in preserving lens function [47]. Further to this, concentrations of malondialdehyde (MDA), 

a marker of lipid peroxidation in rat lenses and erythrocytes was significantly lower in 

resveratrol-treated rats [47]. These findings confirm the involvement of oxidative stress in the 

aetiology of selenite-induced cataract and a potential preventative role of resveratrol [47]. 

 

Resveratrol supplementation has recently been investigated in diabetic rats [49]. In this study, 

the supplemented rats were compared with diabetic and non-diabetic controls. Diabetes was 

induced by injection of streptozotocin 15 minutes after the prescription of nicotinamide in 12-

hour fasted rats. Investigators reported that four months of oral resveratrol administration 

significantly alleviated hyperglycaemia, weight loss, enhancement of oxidative markers, and 

superoxide dismutase activity in the blood and retinas of diabetic rats. Resveratrol also 

suppressed the action of endothelial nitric oxide synthase (eNOS) in the eyes of diabetic rats. 

eNOS is associated with vascular neovascularisation and is actively involved in the 

inflammation and healing process in chronic diabetes [50]. The effect of resveratrol on vascular 

damage and VEGF induction has been assessed in the retinas of mice with induced diabetes. 

Diabetic changes such as increased vessel leakage, pericyte loss, and VEGF protein levels 

were locked by treatment with resveratrol [51]. 
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In an another study, resveratrol was shown to inhibit endoplasmic reticulum stress, which 

contributes to retinal vascular degeneration, and in turn reduces ischaemia, reperfusion (I/R) 

and tunicamycin induced vascular degeneration [52]. Resveratrol also increases mitochondrial 

bioenergetics and protects against acrolein-induced cytotoxicity in human retinal pigment 

epithelial cells [53].  

 

Anti-apoptotic activity 

The retinal pigment epithelium (RPE) of the retina is subject to oxidative stress in the 

progression of proliferative vitreoretinopathy [54] and AMD [55]. It is this posterior blood-retinal 

barrier that facilitates the inward passage of metabolites and outward transport of waste 

material, thereby providing structural and nutritional support to the cells of the retina [56]. The 

lysosomal component of the RPE layer is responsible for the phagocytosis of the outer 

segments of photoreceptor cells, which are rich in polyunsaturated fatty acids (PUFAs) [57]. 

Phagocytosis in itself causes oxidative stress and further RPE cell damage is induced by 

peroxidation of the PUFAs, which are highly susceptible to free radical harm due to the 

presence of numerous double bonds [57]. Accumulation of lipofuscin within the RPE cells, as a 

result of incomplete degradation of these outer segments, also has deleterious consequences in 

retinal diseases such as AMD. Consequently, an abundance of reactive oxygen species (ROS) 

are produced which leads to degeneration of the RPE and dysfunction of the overlying 

photoreceptors.  

 

Resveratrol has been shown to prevent programmed cell death of human RPE cells in vitro, 

induced by oxidative stress [58]. In this same study, researchers investigated the anti-

proliferative effects of resveratrol, concluding that proliferation of RPE cells was reduced via 

inhibition of the extracellular-signal-regulated kinases one and two mitogen-activated protein 

kinase (ERK 1/2 MAPK) signalling cascade [58, 60]. Similar findings have also been reported in 

a variety of other tumour cell lines [59, 61]. The activity of ERK 1/2 (extracellular signal-

regulated protein kinase) is a key participant in cell growth and proliferation of RPE cells [61]. 

King et al. suggested that the anti-proliferative effect of resveratrol is achieved by direct 
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inhibition of MAPK/ERK kinase (MEK) (an upstream activator of ERK 1/2) and/or modulation of 

other initiator molecules upstream of MEK [58]. Laboratory studies have shown that sodium 

iodate can be used to mediate RPE cell death and that this is associated with elevated levels of 

ROS. Resveratrol was shown to protect RPE cells from sodium iodate [62]. 

 

Prevention of cell apoptosis is also very relevant in autoimmune-associated retinopathies. 

These are disorders of the eye in which auto-antibodies damage the retina and its components, 

causing a progressive loss of vision. As with AMD, age is a huge risk factor for the development 

of autoimmune retinopathies. Resveratrol has been reported to protect retinal cells from 

apoptotic death induced by auto-antibodies, in vitro (figure 3) [63]. The molecular pathology of 

autoimmune retinopathies is thought to involve an intracellular increase in Ca2+ ion 

concentration causing a loss of mitochondrial membrane potential [64]. This leads to a cascade 

of molecular events ultimately resulting in photoreceptor degeneration [64]. Anekonda and 

Adamus suggested that by inhibiting intracellular increase of Ca2+ ion concentration, resveratrol 

down regulated pro-apoptotic Bcl-2-associated X protein (BAX) concentration within the 

mitochondrion and cytoplasm of antibody treated retinal cells [63]. In addition, resveratrol was 

found to up-regulate anti-apoptotic proteins SIRT1 and Ku70 thereby suppressing BAX 

translocation into the mitochondria; a crucial step in mediating intrinsic apoptotic cell death [65].  

 

Figure 3 about here 

 

In another study by Kubota et al., resveratrol was found to have a protective effect against light-

induced retinal degeneration, a model used to investigate visual cell apoptosis [66]. This is 

thought to be an important contributing factor to the pathogenesis of diseases of a 

neurodegenerative nature including AMD and retinitis pigmentosa. Results revealed that light 

exposure caused an activation of retinal activating protein-1 (AP-1) and inhibition of SIRT1 

activation, both of which were reversed by resveratrol [66]. Kubota et al. used terminal 

deoxynucleotidyl transferase deoxyuridine-triphosphatase (dUTP) nick end labelling (TUNEL) to 

detect DNA fragmentation as an indicator of apoptosis. After exposure to light, a significant 
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reduction in TUNEL positive cells was detected in the outer nuclear layer (ONL) of the retina, in 

the presence of resveratrol. Additionally, thinning of the ONL was significantly reduced. It was 

found that protection of the ONL by resveratrol significantly reversed the attenuation of the a- 

and b-wave as seen from electroretinography. Following light exposure, these protective effects 

were confirmed to last for at least 2 weeks. 

 

The underlying mechanism thought to elicit these protective effects of resveratrol involves 

activator protein 1 (AP-1) a heterodimeric protein composed of c-fos and c-jun subunits [66]. 

AP-1 is responsible for the regulation of cell proliferation and apoptosis. In the results of this 

study, elevated levels of c-fos were located in the retinal nuclear extracts of mice exposed to 

light. Those treated with resveratrol, however, had significantly reduced levels of c-fos present. 

Thus resveratrol down regulated c-fos expression which in turn suppressed activation of AP-1, 

preventing programmed photoreceptor cell death which is otherwise upregulated upon light 

exposure. 

 

Anti-tumourogenic activity 

Resveratrol treatment has been shown to cause tumour cell death and regression in animal 

models of uveal melanoma by promoting apoptotic cell death [67]. Uveal melanoma is a 

malignancy of the uveal tract which consists of the choroid, ciliary body and the iris. Like AMD, 

uveal melanomas are much more common in people with fair skin and light irides [68]. One 

study has shown that resveratrol caused mitochondrial dysfunction in an animal model of uveal 

melanoma, similar to that found in autoimmune retinopathies. This involved release of 

cytochrome c and apoptogenic factors Smac/Diablo, subsequent activation of caspase-9 via 

APAF-1 and tumour cell death initiation because of caspase-3 activation [67]. Furthermore, 

following local injection of resveratrol, tissue was histologically examined and an increase in 

tumour cell death was found with adjacent tissues relatively unaffected by the treatment [67]. 

This suggests that higher concentrations of resveratrol targeted specifically to the site of the 

tumour could have a potentially greater therapeutic effect.  
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Pro-apoptotic pathways are also of significance in the management of tumorous growths. 

Resveratrol has been found to have chemopreventative activity in several cell lines, inhibiting 

tumour growth at various stages of progression [69]. One study demonstrated the ability of 

resveratrol to initiate apoptosis of human retinoblastoma cells [70]. Retinoblastoma is a rare 

tumour of the retina, but accounts for approximately 3% of all childhood cancers and is 

considered the most common primary intraocular malignancy among infants [68]. When 

unresponsive to radiation or chemotherapy, enucleation of the affected eye may be necessary 

to prevent metastasis of the tumour and subsequent complications [68]. Sareen et al. found that 

resveratrol initiated a time- and concentration-dependent growth inhibition of a retinoblastoma 

cell line by inducing cell cycle S-phase arrest and apoptosis [70]. Similarly to van Ginkel et al. 

[67], the findings of Sareen et al. established a primary role for mitochondria in resveratrol-

induced programmed cell death [70]. 

 

Anti-inflammatory activity 

There has been extensive research on the mechanism by which resveratrol achieves its anti-

inflammatory action [71-74]. Inflammation is a key process in the pathogenesis of several ocular 

disorders including AMD [75] and DR [76]. DR is diabetic microangiopathy that affects the 

retinal vasculature due to poor metabolic control of blood glucose concentration. It results in 

progressive retinal damage due to ischemia and malfunction of the blood-retinal barrier, which 

can result in severe loss of vision. There are several molecular mechanisms thought to underlie 

an inflammatory response. Male rats injected with lipopolysaccharide were used to investigate 

the protective effects of resveratrol against oxidative stress [77] and inflammation [78]. It was 

reported that retinal leukocyte adhesion, a crucial event in mediating ocular inflammation, was 

significantly reduced in a dose-dependent manner following treatment with resveratrol. In 

addition to this, it was found that pre-treatment with resveratrol significantly suppressed the 

generation of 8-hydroxy-2’-deoxyguanosine (8-OHdG), the principal biomarker of oxidatively 

modified DNA. Similarly, activation of a pro-inflammatory molecule known as nuclear factor 

(NF)-ĸB was found to be significantly suppressed, thereby inhibiting the pro-inflammatory signal 

transduction pathway downstream of oxidative stress [78]. Concentrations of 8-OHdG and NF-



  14 

ĸB were found to be upregulated in endotoxin-induced uveitis. NF-ĸB promotes the transcription 

of several inflammation-related target genes including intercellular adhesion molecule-1 (ICAM-

1) and monocyte chemotactic protein-1 (MCP-1) [79], two molecules have been shown to be 

significantly suppressed following resveratrol application [78]. ICAM-1 and MCP-1 play an 

important role in recruitment [80] and subsequent adhesion [81] of leukocytes to vasculature 

endothelial cells during the inflammatory response, suppression of which may in part be due to 

the suppression of these molecules. An additional finding in this study involved sirtuin 1 (SIRT1) 

a histone deacetylase known to regulate aging [82]. Resveratrol has already been identified as 

an activator of SIRT1 extending the lifespan of several species including yeast, rodent and 

others [83-86]. Kubota et al. showed that an otherwise reduced RPE-choroidal activity of SIRT1, 

typically resultant of the inflammation present in endotoxin-induced uveitis, was significantly 

inhibited upon oral administration of resveratrol [77]. These results were consistent with the 

decline in NF-ĸB activation and decreased RPE-choroidal degradation of IĸB-α, a process 

required for the translocation and subsequent activation of NF-ĸB. The authors proposed a dual 

mechanism by which resveratrol achieves its anti-inflammatory effect in endotoxin-induced 

uveitis: firstly as an anti-oxidant and secondly as a potent activator of SIRT1 (figure 4). 

 

In 2010, Kubota et al. found that SIRT1 activity is not only down regulated in conditions 

involving inflammation but also during exposure to light [66]. SIRT1 activity was significantly 

improved following resveratrol treatment, in agreement with their previous findings [78]. Thus, 

Kubota et al. concluded that SIRT1 activation, along with AP-1 deactivation led to prevention of 

photoreceptor cell death and subsequent protection against light-induced retinal degeneration 

[66].  

Figure 4 about here 

 

SIRT1 activation is also implicated in neuroprotection [87]. Optic neuritis, a commonly 

encountered complication of multiple sclerosis (MS) is an inflammatory ocular disease 

characterised by demyelination of the optic nerve. Subsequent axonal damage leads to a 

progressive loss of visual function in the affected eye. Schindler et al. investigated the 
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neuroprotective role of SIRT1 activation on an experimental autoimmune encephalomyelitis 

(EAE) animal model of MS, using two chemically distinct SIRT1 activators [88]. One of these 

included a proprietary formulation of resveratrol, called SRT501. The investigators found that 

SRT501 reduced retinal ganglion cell (RGC) loss in a dose-dependent manner. Furthermore, 

SRT501 was found to provide long-standing RGC neuroprotection with two episodic declines in 

clinical signs of EAE over a period of 30 days following immunisation with proteolipid protein 

peptide. This was in contrast to one decline seen at 14 days with another SIRT1 activator 

investigated in the same study. It seemed that SRT501 showed similar efficacy in preserving 

axon function and preventing RGC loss when administered as a single dose or multiple dose 11 

days after immunisation [67]. However, repeat administration of SRT501 did not prevent the 

development of EAE nor optic nerve inflammation in the animal model of MS [88]. This suggests 

that this resveratrol formulation targets RGC loss and could have therapeutic benefits when 

used in combination with immunomodulatory therapies. Additionally, SRT501 toxicity to 

photoreceptors and retinal function was investigated. No change in retinal thickness or RGC 

quantity was detected in control eyes following treatment, demonstrating that SRT501 was not 

toxic at the concentrations applied. Schindler et al. proposed that the neuroprotective benefits of 

SRT501 were due to its upregulation of SIRT1 activity. This was confirmed by blockade of RGC 

protection by a SIRT1 inhibitor, sirtinol, at a concentration non-toxic to the retinal layers [88].  

 

More recently, SIRT-1 activators have been reported to reduce oxidative stress and promote 

mitochondrial function in neuronal cell [89,90]. SIRT1 activators can prevent cell loss and 

mediate neuroprotective effects during optic neuritis via these mechanisms [89]. Moreover, 

SIRT-1 activators, like resveratrol, have the potential to preserve neurons in other 

neurodegenerative diseases that involve oxidative stress. Another study also using EAE in the 

mouse model similarly showed that resveratrol can prevent neuronal loss in MS [91]. The 

neuroprotective effects were reported to occur without immunosuppression, which might 

suggest a potential additive benefit of resveratrol in combination with anti-inflammatory 

therapies for MS. SIRT1 is also associated with reduced oxidative stress following traumatic 
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injury and has been shown to reduce RGC loss in mice following induced optic nerve crush 

injury [92]. 

 

The neuroprotective effect of resveratrol on experimental retinal ischaemic injury has also been 

investigated [93]. In this study, resveratrol or saline was administered to adult rats via 

intraperitoneal injection daily for five days. On the third day retinal ischaemic injury was induced 

in the rats by elevation of intraocular pressure for 45 minutes. Retinal function was measured 

using one week after the induced ischaemic injury and was compared with readings taken prior 

to resveratrol administration. Marked thinning of the inner retinal layers was observed following 

the ischaemic injury, but this was reduced in those rats receiving resveratrol. 

 

In a study of the potential neuroprotective effects of resveratrol against photoreceptor cell death 

in a rodent model of retinal detachment, it was found that resveratrol up-regulates the FoxO 

family and blocks Caspase 3, 8 and 9 activation. Investigators concluded that resveratrol may 

have a role in preventing vision loss in disease characterised by photoreceptor detachment [94]. 

 

Inflammation induced by chronic hyperglycaemia is linked to the pathogenesis of DR [95]. Such 

conditions lead to gradual RPE cell degeneration and resultant degradation of the blood-retinal 

barrier [96]. Subsequent loss of central vision is the expected outcome, since integrity of the 

blood-retinal barrier is compromised and normal visual function depends on the functionality of 

this ocular component [97]. Hyperglycaemic conditions cause a decreased expression of 

connexin (Cx) 43 [98] resulting in reduced gap junction intercellular communication [96]. Gap 

junctions are intercellular connections formed by connexin proteins that allow direct 

communication between the cytoplasm’s of adjacent cells, allowing the passage of various 

small molecules and ions [96]. Abundantly expressed at the protein level in endothelial cells of 

the retinal vasculature, Cx43 is thought to sustain blood-retinal barrier integrity and normal 

intercellular communication [96]. Losso et al. demonstrated the ability of resveratrol to inhibit 

RPE cell inflammation, caused by hyperglycaemia in vitro [96]. They found that hyperglycaemia 

generated the expression and downstream upregulation of several inflammatory molecules. 
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Treatment of the cells with resveratrol significantly inhibited the accumulation of these 

molecules, including vascular endothelial growth factor (VEGF), transforming growth factor-β1 

(TGF-β1), cyclooxygenase-2 (COX-2), interleukin (IL) 6 and IL-8 in a dose-dependent manner. 

Activity of protein kinase C (PKC) β, an enzyme that up regulates VEGF in hypoxic conditions 

further contributing to blood-retina barrier degradation, was reduced in the presence of 

resveratrol [96]. Resveratrol was also found to prevent hyperglycaemic down regulation of Cx43 

protein in RPE cells thereby enhancing gap junction intercellular communication, crucial to the 

integrity of the blood-retinal barrier [96]. The mechanisms leading to hyperglycaemic 

inflammation and sites of intervention by resveratrol are shown in figure 5. 

 

Figure 5: about here 

 

Anti-angiogenesis activity 

Prevalence of abnormal retinal and choroidal angiogenesis among ocular disorders is 

comparable to that of inflammation, and is a leading cause of blindness in diseases such as DR 

and AMD. A report on three cases of resveratrol-based supplementation in octogenarians with 

AMD showed a short term effect similar to that found with anti-VEGF treatment. This included 

anatomical restoration of retinal structure, improved RPE function and a suggestion of improved 

choroidal blood flow [100].  

 

Macular telangiectasia (MT) is another disease of the retina which, similar to AMD, is 

characterised by abnormal neovascular proliferation of the retinal vasculature surrounding the 

fovea [101]. This is associated with gradual photoreceptor degeneration [102]. MT can be 

distinguished from AMD by its absence of choroidal neovascularisation, typically present in 

AMD [102]. However, there is little known about the mechanisms surrounding the pathogenesis 

of this disease and few treatments are available. Hua et al. used the mouse model with an 

insertion mutation in the gene encoding for the very low-density lipoprotein receptor (VLDLR) to 

investigate the therapeutic potential of resveratrol [101]. The mice displayed patches of retinal 

neovascularisation without preliminary damage to the RPE and photoreceptor cell death, similar 
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signs to that found in people with MT. Findings confirmed that neovascular lesions identified 

following VLDLR mutation were, at least in part, due to the increased expression of VEGF. This 

is supported by the suggestion that focal retinal vessel leakage in MT is due to upregulation of 

VEGF [103] and that intravitreally injecting these patients with ranibizumab (a VEGF inhibitor) 

decreases the progression of abnormal angiogenesis [101]. Results from this study 

demonstrated a reduction in neovascularisation in VLDLR mouse retinas upon oral 

administration of resveratrol by inhibiting VEGF expression [101]. This was the case when 

resveratrol was administered before and following the initiation of neovascular lesions. 

Furthermore, resveratrol reduced migration and proliferation of retinal endothelial cells as 

triggered by other stimulus pathways. This indicates that the anti-angiogenic effects observed 

were independent of the VLDLR mutation. This is consistent with results from a previous study, 

revealing that resveratrol modulates pathological angiogenesis via an elongation factor-2 

kinase-regulated pathway [104]. 

 

Khan et al. found that resveratrol prevented pathologically aberrant injury-induced angiogenesis 

by a novel SIRT1-independent pathway, involving eukaryotic elongation factor-2 (eEF2) (figure 

6) [104]. This protein plays a crucial role in protein synthesis, specifically in the ribosomal 

translocation of the polypeptide chain. It is known that eEF2 is inactivated by EF2 kinase 

phosphorylation, an enzyme which is activated by resveratrol via phosphorylation of a serine 

residue at location 398 by AMP-activated protein kinase (AMPK) [105]. This leads to cell cycle 

arrest thus inhibiting endothelial cell proliferation and migration, two crucial events in the 

progression of angiogenesis [104]. By pharmacologically inhibiting AMPK, Khan et al. further 

validated these results by demonstrating significant reversal of the observed effects on vessel 

growth [104]. 

 

Figure 6 about here 

 

The effect of resveratrol supplementation on experimental corneal alkali burns has been 

investigated [106]. A corneal alkali burn was administered in 62 eyes of 31 male rabbits. 
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Resveratrol was administered to both eyes via subconjunctival injection for seven days. Corneal 

photographs and inflammatory index scores indicated that Resveratrol had no effect on corneal 

neovascularisation. 

 

Aberrant growth of new vessels also predominates as a pathological feature of retinopathy of 

prematurity (ROP). The leading cause of blindness among prematurely born infants, ROP is a 

proliferative retinopathy affecting prematurely born infants. Particularly at risk are those that are 

less than 1300 grams in weight and/or less than 30 weeks gestation. The disease can be 

divided into several stages ranging from a mild type of demarcation line to a severe total 

tractional retinal detachment and potential blindness. ROP develops upon exposure of 

immature retinas to high ambient levels of oxygen. Once the infant is removed from the high 

levels of oxygen, abnormally fast growth of new vessels occurs leading to fibrosis and scar 

tissue in the retina which subsequently detaches. As with MT there is an upregulation of VEGF 

in ROP, secreted mainly by the retinal astrocytes and Muller cells [107]. During the initial 

exposure to hyperoxia, however, levels of VEGF and other proteins including insulin-like growth 

factor (IGF)-1 and hypoxia inducible factor (HIF) are low. IGF-1 and HIF are factors that affect 

the activity of VEGF. The former allows VEGF to maximally stimulate blood vessel proliferation 

and the latter is a transcriptional factor for VEGF. Once the infant is supplied with normal 

oxygen levels, regions of the retina receiving a lack of oxygen become hypoxic. This retinal 

hypoxia causes IGF-1, HIF and VEGF stimulation. VEGF promotes endothelial cell proliferation 

and pathological growth of new vessels. In a study conducted by Kim et al., in vivo and in vitro 

oxygen-induced retinopathy models were used to define the effectiveness of resveratrol as a 

potential treatment [107]. They found that the expression of inducible nitric oxide synthase 

(iNOS) antibody and mRNA was increased, whereas a reduction in eNOS and neuronal NOS 

(nNOS) was evident upon resveratrol treatment. NOS catalyses the synthesis of nitric oxide 

(NO), a molecule that prevents platelet aggregation and promotes vasodilation. This research 

suggested a role for NO-mediated pathways in the protection of retinas of pre-term babies 

[107]. 
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Vasorelaxant activity 

It has been demonstrated that resveratrol can induce vascular relaxation [100]. With its ability to 

inhibit angiogenesis [99, 103] this makes it an ideal candidate for disorders of the eye 

associated with impaired ocular perfusion, such ROP and DR. Vasorelaxation of small-diameter 

retinal arterioles was observed in a dose-dependent manner, when treated with resveratrol 

[108]. The research showed that disruption of the vasculature endothelium by denudation, 

decreased but did not eliminate vasodilation elicited by resveratrol, suggesting the presence of 

endothelium-dependent and independent mechanisms. Although reports have suggested a 

predominantly endothelium-dependent component, this study proposed that the endothelium-

independent mechanism bares great significance for diseases in which the endothelium function 

is impaired, for example clinical obesity and juvenile onset diabetes. This study established that 

resveratrol-induced vasodilation was prevented in part by NG-nitro-L-arginine methyl ester (L-

NAME) an NOS antagonist, similar to the consequences of vessel denudation. This suggested 

a role of NO in the resveratrol-induced endothelium-dependent aspect of vasodilation. To 

confirm this finding Nagaoka et al. blocked the synthesis of other molecules predominantly 

involved in vasodilation, namely prostacyclin and cytochrome P450 metabolites [108]. The 

resveratrol response was unaffected by this, thus supporting the involvement of NO alone in the 

endothelium-dependent component of vasodilation [109]. The vasodilatory effects observed in 

this study were reduced by specifically inhibiting the ERK pathway, similar to the decrease 

produced by L-NAME and vessel denudation. This suggests the potential involvement of the 

ERK/MAP kinase signalling pathway in the vasodilation caused by resveratrol, mediated by 

cyclic guanosine monophosphate (cGMP). The endothelium-independent component of 

resveratrol-induced vasodilation was found to be primarily mediated by the activation of big 

potassium (BK) calcium channels (calcium activated potassium channels) present in the smooth 

muscle of the vasculature. This was proven by iberiotoxin, a calcium channel antagonist, 

inhibiting the vasodilatory response. Therefore Nagaoka et al. were successfully able to provide 

evidence of two independent mechanisms by which resveratrol produced vasorelaxation and 

thus vessel diameter dilation within isolated retinal arterioles [108]. 
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Discussion 

Resveratrol has been reported to have beneficial ocular and systemic beneficial effects. 

Literature on the association between resveratrol and the eye was examined with emphasis on 

potential mechanisms by which resveratrol is thought to prevent the progression of ocular 

diseases, particularly those that are degenerative and responsible for the prevalence of severe 

sight loss. 

 

Age-related macular degeneration and DR predominate in Western populations, mainly due to 

increased life expectancies in developed countries. AMD is the leading cause of blindness 

among older people, aged typically over 65 years while DR is the most common cause of vision 

loss among those of a working age. In contrast, conditions such as glaucoma and cataracts are 

common causes for blindness in less economically developed countries. A lack of cure for these 

diseases, amongst many others, means that their progression can only be monitored and 

delayed usually by pharmacological means or surgical intervention.  

 

Development of conditions including AMD, DR and glaucoma rely heavily on a positive family 

history. However, treatments used to manage these conditions are only implemented once a 

positive diagnosis is made. This is not an ideal approach for the pre-disposed person who may 

benefit from early preventative measures, delaying the onset rather than the progression of the 

disease. A vast amount of scientific research has been conducted into natural compounds 

proposed to be beneficial in protecting the eye from developing sight threatening diseases. 

Some of these compounds, such as lutein and ginkgo biloba, have been formulated into 

nutritional supplements. However, have yet to become widely recognised among the public and 

practitioners. Patients trust their healthcare providers and as such, practitioners have a 

responsibility to educate themselves and their patients about all preventative treatment options 

where clinically applicable.  

 

Limitations of previous studies and direction for future research 
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Although the research conducted thus far has provided a great deal of valuable understanding 

of the molecular mechanisms by which resveratrol produces its favourable effects on the eye, 

there are many factors limiting firm conclusions. In all of the literature reviewed, there has been 

no attempt to investigate a wide range of resveratrol concentrations, in effort to define lethal 

dose. Using concentrations of 50, 100 and 200μm, Sareen et al. found that the latter had the 

highest potency in retinoblastoma cell growth inhibition, with IC50 of 170 μm [70]. Similarly, 

another study demonstrated doses of resveratrol between 2 and 50mg/kg caused inhibition of 

uveal melanoma cell growth, with maximal effect at the highest dose [67]. The range of 

concentrations was not extended in these studies to find the dose at which resveratrol 

surpassed its desirable effect. This is essential in determining the range of concentrations over 

which resveratrol produces its beneficial effects optimally and yet remains safe to the subject.  

 

None of the literature reviewed used human subjects for experimentation. Instead, studies were 

conducted in vitro or using animal models. Whilst animal studies are a crucial aspect of 

pharmacological research, the overall effects of resveratrol observed on animals can greatly 

differ from that on humans. Human studies are required before making an informed conclusion 

on whether resveratrol is as beneficial as has been suggested. Furthermore, values such as 

LD50 and IC50 can differ between species due to physiological differences. Hence, effective 

concentrations of resveratrol in animals may vary in humans.  

 

Serum concentrations of orally-administered resveratrol have been determined as low [67]. This 

is analogous with reports of low systemic bioavailability of the phytoalexin [109]. In one study it 

was found that locally injecting resveratrol, adjacent to the site of the uveal melanoma, had a 

greater effect in reducing tumour size [67]. This demonstrates that local administration can 

increase the resveratrol concentration at the precise site its action is required, therefore 

enhancing its beneficial activity. Further research is necessary to determine the most efficient 

method of resveratrol delivery, as oral administration may not be the most effective choice for 

disorders of the eye.  
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Since resveratrol has been well documented for its beneficial protective mechanisms, it has 

been largely believed to be the active compound within red wine. However, as discussed there 

reside other red wine polyphenols that have received comparatively less interest. The literature 

reviewed has considered the effects of isolated resveratrol rather than within red wine, where 

interactions with other chemicals could potentially influence the effectivity of the stilbene 

derivative. Polyphenols have been recognised as antioxidants [13], thus biological activities of 

resveratrol may be enhanced in combination with these compounds, or maybe even reduced. 

This remains to be investigated.  

 

Clinical implications 

Alcohol is an obvious constituent of red wine and it has been established that alcohol itself is 

able to increase high density lipoprotein (HDL) concentration [2]. Thus it may be argued that its 

content is partially responsible, along with resveratrol, for some of the benefits observed by red 

wine consumption. However, alcohol is toxic when heavily consumed as depicted by the J-

shaped curve [2]. A recent UK Government campaign has received much media attraction as it 

warns that two glasses of wine a day, which may be considered as ‘moderate’ by many, can 

lead to a three times greater risk of contracting mouth cancer [110]. In addition, alcohol 

consumption is often associated with smoking, which in itself is a risk factor for several cancers 

and eye diseases including AMD. 

 

Alcohol consumption is commonly contraindicated with several medications and systemic 

conditions. Many patients frequently seeking primary eye care are older, and with age various 

systemic and ocular degenerative diseases, become more common. A proportion of patients will 

not benefit from the positive effects that occur with wine consumption because alcohol 

consumption is contra-indicated. Furthermore, underage drinking is strictly prohibited and 

individuals under the age of 18, suffering from any ocular disease which may be ameliorated by 

red wine consumption, are forbidden from doing so. At present research is inconclusive in terms 

of the benefits of red wine. With all this in mind, it is questionable whether it would be 

responsible for a health care professional to recommend or promote red wine consumption.   
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What is likely to be safer is the use of resveratrol supplements. This would be far more 

appropriate to suggest in a clinical environment but also since most of the literature 

demonstrates the beneficial actions of resveratrol alone, isolated from any other chemical 

influence. There needn’t be any age restriction or contraindication in the absence of alcohol, 

and it may be considered acceptable in the treatment of diseases such as ROP [108].  

 

Conclusion 

This review highlights evidence which suggests that resveratrol may have potential in the 

treatment of several ocular diseases. However, while there are many studies indicating 

plausible biological mechanisms using animal models and in vitro retinal cells there is a paucity 

of human research. We note that there are many nutritional supplements containing resveratrol 

as a single component or in combination with other nutrients that are promoted as being of 

benefit in long term eye health. However we urge caution in that evidence base for the use of 

resveratrol in the management of ocular diseases needs to be improved before any 

recommendations can be made for the use of resveratrol as an ocular supplement. 
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Figure captions 
 
Figure 1: Chemical structure of a simple phenol (chemical formula: C6H5OH). The structure 
characteristically comprises a benzene ring associated with a hydroxyl group 
 
Figure 2: Chemical structure of cis- and trans-resveratrol [23]. The structures comprise of two 
phenol groups joined by a methylene bridge.  
 
Figure 3: Molecular mechanism by which resveratrol is suggested to prevent antibody-induced 
retinal cell apoptosis [64]. Resveratrol is shown to prevent intracellular increase of Ca2+ ion 
concentration, otherwise induced by proteins that have been activated by antibodies entering 
the cell via endocytosis.  This prevents mitochondrial activation of cytochrome c (cyt c) and 
subsequent increase in caspase-3 activity via caspase-9 and APAF-1. SIRT-1 and Ku70 are 
upregulated by resveratrol, therefore preventing the entry of Bax into the mitochondria. Both 
actions inhibit cell death initiated by caspase-3. 
 
Figure 4: Proposed mechanisms through which resveratrol prevents ocular inflammation in 
endotoxin-induced uveitis (Adapted from [78]). The diagram depicts a dual role of resveratrol as 
an anti-oxidant and a SIRT1 activator. Dashed arrows represent pathways inhibited by 
resveratrol. 
 
Figure 5: Inhibition of hyperglycaemia associated inflammation by resveratrol. The normal 
events leading to inflammation are shown schematically. Dashed arrows represent the multiple 
sites of inhibition by resveratrol, causing disruption to these pathways and subsequent 
prevention of inflammation induced by chronic hyperglycaemia. 
 
Figure 6: Diagrammatic representation of angiogenesis inhibition mediated by resveratrol [104]. 
Resveratrol indirectly activates eEF2 kinase, via AMPK. This causes inactivation of eEF2, 
preventing endothelial cell proliferation and migration. 
 
Table captions 
 
Table 1: Categorisation of polyphenols (Adapted from [13]). Two types of polyphenols are found 
within red wine: flavonoids and non-flavonoids. These are further divided into subtypes, shown 
in italics. Examples of each of the subtypes are given in brackets.  
 
Table 2: A comparison of resveratrol content in red wines produced by three varieties of grape 
species [25]. Measurements were obtained by gas chromatography analysis (average mean 
values given in parts per million).  
 
Table 3: Some of the main biological properties of resveratrol. 
 
Tables Bola et al Red Wine and the Eye: Activity and Molecular Mechanisms 
 

 
Flavonoids Non-flavonoids 

Flavonols 
(Quercetin & myricetin) 

Stilbenes 
(Resveratrol) 

Flavan-3-ols 
(Catechin, epicatechin & 
tannins) 

Hydroxycinnamates 
(Caffeic, caftaric & coutaric 
acids) 

Anthocyanins 
(Peonidin & cyanidin) 

Hydroxybenzoates 
(Gallic acid) 
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OH 
 

Table 1: Categorisation of polyphenols (Adapted from [13]). Two types of 
polyphenols are found within red wine: flavonoids and non-flavonoids.  These 
are further divided into subtypes, shown in italics.  Examples of each of the 
subtypes are given in brackets.  
 

Species Cis-resveratrol 
content 

Trans-resveratrol 
content 

V. rotundifolia 21.2 9.1 
V. vinifera 3.3 3.6 
V. labruscana 2.7 2.6 

 
Table 2: A comparison of resveratrol content in red wines produced by 
three varieties of grape species [25].  Measurements were obtained by gas 
chromatography analysis (average mean values given in parts per million).  
 
 
 
 
 
 

Property Key References 
Anti-microbial 26, 27 
Chelation of copper 28 
Anti-oxidant/ free radical scavenging 29, 30 
Oestrogenic activity 31, 32 
Inhibition of lipid peroxidation 33, 34 
Anti-cancer 35 
Inhibition of platelet aggregation 36, 37 
Anti-inflammatory 38, 39 
Vaso-relaxant  40, 41 
Inhibition of eicosanoid synthesis 42 
Modulation of lipid metabolism 43 

 
Table 3: Some of the main biological properties of resveratrol.  
Corresponding references are provided for further insight.  
 
Figures Bola et al Red Wine and the Eye: Activity and Molecular Mechanisms 
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Figure 1: Chemical structure of a simple phenol (Chemical formula: 
C6H5OH).  The structure characteristically comprises a benzene ring associated 
with a hydroxyl group 
 
 
 
 
 
 
 
 
Figure 2: Chemical structure of cis- and trans-resveratrol [23].  The  
 
 
 
 

 
Figure 3: Molecular mechanism by which resveratrol is suggested to 
prevent antibody-induced retinal cell apoptosis [57].  Resveratrol is shown to 
prevent intracellular increase of Ca2+ ion concentration, otherwise induced by 
proteins that have been activated by antibodies entering the cell via 
endocytosis.  This prevents mitochondrial activation of cytochrome c (cyt c) and 
subsequent increase in caspase-3 activity via caspase-9 and APAF-1.  SIRT-1 
and Ku70 are upregulated by resveratrol, therefore preventing the entry of Bax 
into the mitochondria.  Both actions inhibit cell death initiated by caspase-3. 
  

cis-resveratrol trans-resveratrol 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is 1756-0500-1-122-5.jpg [Object name is 1756-0500-1-122-5.jpg]&p=PMC3&id=2633309_1756-0500-1-122


  38 

Retinal cell 
injury 

TGF-β1 
expression 

VEGF 
upregulation 

IL-6 & IL-8 
secretion 

Fibrosis surrounding 
new vasculature 

Neo-
vascularisation 

PKCβ 
Activation 

Hyperglycaemia 

 COX-2 
overexpression  

Cx43 
downregulation 

Uncontrolled RPE 
cell proliferation 

Decreased gap junction 
intercellular communication 

Hyperglycaemia 
associated inflammation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Proposed mechanisms through which resveratrol prevents 
ocular inflammation in endotoxin-induced uveitis (Adapted from [73]).  The 
diagram depicts a dual role of resveratrol as an anti-oxidant and a SIRT1 
activator.  Dashed arrows represent pathways inhibited by resveratrol. 
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Figure 5: Inhibition of hyperglycaemia associated inflammation by 
resveratrol.  The normal events leading to inflammation are shown 
schematically. Dashed arrows represent the multiple sites of inhibition by 
resveratrol, causing disruption to these pathways and subsequent prevention of 
inflammation induced by chronic hyperglycaemia. 
 

 
Figure 6: Diagrammatic representation of angiogenesis inhibition 
mediated by resveratrol [92].  Resveratrol indirectly activates eEF2 kinase, via 
AMPK.  This causes inactivation of eEF2, preventing endothelial cell 
proliferation and migration. 
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