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Abstract

We investigate the evolution of magnetohydrodynamic/hydromagnetic perturbations in presence

of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular

velocity decreases but specific angular momentum increases with increasing radial coordinate. Such

flows, however, are Rayleigh stable, but must be turbulent in order to explain astrophysical observed

data and, hence, reveal a mismatch between the linear theory and observations/experiments. The

mismatch seems to have been resolved, atleast in certain regimes, in presence of weak magnetic

field revealing magnetorotational instability. The present work explores the effects of stochastic

noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for

the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a

plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical

accretion disk around a compact object. It is found that such stochastically driven flows exhibit

large temporal and spatial auto-correlations and cross-correlations of perturbation and hence large

energy dissipations of perturbation, which generate instability. Interestingly, auto-correlations and

cross-correlations appear independent of background angular velocity profiles, which are Rayleigh

stable, indicating their universality. This work, to the best of our knowledge, is the first attempt

to understand the evolution of three-dimensional magnetohydrodynamic perturbations in rotating

shear flows in presence of stochastic noise.
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I. INTRODUCTION

Recently, Mukhopadhyay & Chattopadhyay [1] (see, the references therein) have initiated

exploring effects of stochastic noise in rotating shear flows in three dimensions with particular

emphasize to astrophysical accretion disks. They have essentially addressed the evolutions

of pure hydrodynamic perturbations and found them to be adequate enough to explain

instability and subsequent turbulence therein. This is in accordance with the fact that in

three dimensions, one requires to invoke extra physics to reveal large energy growth or even

instability in the system [2]. This is very important for charge natural flows like accretion

disks around quiescent cataclysmic variables, in protoplanetary and star-forming disks, and

the outer region of disks in active galactic nuclei etc. where flows are cold and of low

ionization and effectively neutral in charge.

In the cases of hot flows, e.g. disks around black holes, magnetorotational instability is

generally believed to be responsible for turbulence and hence transport of angular momentum

therein. The problem has been well studied and has had a long history of fluid mechanical

insight into the rotating shear flows and subsequently accretion disk problem in the linearly

stable regime, when origin of turbulence is a major issue [3–12]. Based on ‘shearing sheet’

approximation, without [13, 14] and with [15] explicit viscosity past authors attempted to

tackle the issue of turbulence in hot accretion disks. However, other authors argued for

limitations in this work [16, 17]. While the authors, who did not include explicit viscosity,

could not directly define a Reynolds number (Re), their estimated Re from the simulations

is ∼ 103−104. They also did not find any evidence for a subcritical transition to turbulence.

Based on the simulations including explicit viscosity, other authors could achieve Re ≈ 4×
104, and concluded that Keplerian like flows could exhibit very weak turbulence, particularly

in absence of magnetic field. See, however, the recent experimental results by Paoletti et al.

[18], clearly arguing significant level of transport from hydrodynamics alone. Moreover, the

results from direct numerical simulations [19] also argue for hydrodynamic instability and

turbulence at low Re.

In the present paper, we extend the work by Mukhopadhyay & Chattopadhyay [1] and in-
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vestigate the amplification of linear magnetohydrodynamic/hydromagnetic perturbations in

Rayleigh stable rotating, hot, shear flows in presence of stochastic noise in three dimensions,

leading to instability and plausible turbulence. The earlier paper [1] already summarized

the association of growing, unstable modes generated by perturbed flows with statistical

physics, in particular effects of noise in such flows, based on which the present work has

been founded. Hence we do not repeat them here. In the present study, we implement

the ideas of statistical physics, already implemented by Mukhopadhyay & Chattopadhyay

[1] discussed above, to rotating, magnetized, shear flows in order to obtain the correlation

energy growths of fluctuation/perturbation and underlying scaling properties.

In the next section, we first recall the equations describing the stochastically forced per-

turbed flows, namely magnetized version of the set of Orr-Sommerfeld and Squire equations

proposed by Mukhopadhyay & Chattopadhyay [1] in presence of noise, which are to be

solved for the present purpose. Subsequently, in §3 we investigate the temporal and spatial

auto-correlations and cross-correlations of perturbation in presence of white noise in detail,

in order to understand the plausible instability in the flows. In §4, we study the correlations

in presence of colored noise. Finally, we summarize the results with conclusions in §5.

II. EQUATIONS DESCRIBING PERTURBED MAGNETIZED ROTATING

SHEAR FLOWS IN PRESENCE OF NOISE

The linearized Navier-Stokes equation in presence of background plane shear (0,−x, 0)

and magnetic field (0, B1, 1), when B1 being a constant, in presence of angular velocity

Ω ∼ r−q, in a small section of the incompressible flow, has already been established [1].

The underlying equations are nothing but the linearized set of hydromagnetic equations

including the equations of induction in a local Cartesian coordinate (see, e.g., [1, 2, 6] for

detailed description of the choice of coordinate in a small section) given by
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when the vectors for velocity and magnetic field perturbations are (u, v, w) and (Bx, By, Bz)

respectively, Re and Rm are the hydrodynamic and magnetic Reynolds numbers respectively,

ptot is the total pressure perturbation (including that due to the magnetic field). Above

equations are supplemented by the conditions for incompressibility and absence of magnetic

charge, given respectively by
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Now the above equations in presence of stochastic noise can be recasted into magnetized

version of Orr-Sommerfeld and Squire equations in presence of the Coriolis force, given by
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where η1,2,3,4 are the components of noise arising in the linearized system due to stochastic

perturbation such that < ηi(~x, t)ηj(~x
′, t′) >= Di(~x) δ

3(~x − ~x′) δ(t − t′) δij . The long time,

large distance behaviors of the correlations of noise are encapsulated in Di(~x) which is a

structure pioneered by Forster, Nelson & Stephen [20]. In the Fourier space, however, the

structure of the correlation function Di(~k) depends on the regime under consideration. It
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can be shown for all (non-linear) non-inertial flows [20, 21] that Di(k) ∼ 1/kd, where d is the

spatial dimension, without vertex correction and Di(k) ∼ 1/kd−α, with α > 0, in presence

of vertex correction. Note, however, that Di(~x) is constant for white noise.

As before [1] we focus onto the narrow gap limit. Hence, we can resort to a Fourier series

expansion of u, ζ, Bx, ζB and ηi as
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∫
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and substituting them into equations (9), (10), (11) and (12) we obtain
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when η̃i~k,ω; i = 1, 2, 3, 4, are the components of noise in k − ω space, k =
√

k2
x + k2

y + k2
z .

See [1] for other details.
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III. TWO-POINT CORRELATIONS OF PERTURBATION IN PRESENCE OF

WHITE NOISE

We now look at the spatio-temporal auto-correlations and cross-correlations of the per-

turbation flow fields u, ζ, Bx and ζB for a very large fluid and magnetic Reynolds numbers

[22]. This choice of quite meaningful for astrophysical flows. For the present purpose, the

magnitudes and gradients (scalings) of these correlations of perturbations would plausibly

indicate noise induced instability which could lead to turbulence in rotating shear flows.

A. Temporal correlation

1. Auto-correlations

Assuming < η̃1~k,ω η̃2−~k,−ω
>= 0, without loss of any important physics, we obtain the

temporal correlations of velocity, vorticity, magnetic field and magnetic vorticity perturba-

tions given below as

< u(~x, t) u(~x, t+ τ) >= Cu(τ) =

∫

d3k dω e−iωτ < ũ~k,ω ũ−~k,−ω
>

< ζ(~x, t) ζ(~x, t+ τ) >= Cζ(τ) =

∫

d3k dω e−iωτ < ζ̃~k,ω ζ̃−~k,−ω
>

< Bx(~x, t) Bx(~x, t+ τ) >= CBx
(τ) =

∫

d3k dω e−iωτ < B̃x~k,ω
B̃x−~k,−ω

>

< ζB(~x, t) ζB(~x, t+ τ) >= CζB(τ) =

∫

d3k dω e−iωτ < ζ̃B~k,ω
ζ̃B−~k,−ω

> . (17)

We further consider the projected hyper-surface for which kx = ky = kz = k/
√
3, without

much loss of generality for the present purpose. This corresponds to a special choice of

initial perturbation. As our one of the major interests is to understand the scaling laws, this

restriction would not matter, which however may affect the magnitude of the correlations.

We now perform the ω-integration of the integrands in equation (17) by computing the

four poles of the kernel which are functions of k. Then by summing up the residues at the

appropriate poles, we evaluate the magnitude of frequency part of the integration. Finally,

integrating the rest from k0 to km, where k0 = 2π/Lmax, km = 2π/Lmin and L = Lmax−Lmin,

being the size of the chosen small section of the flow in the radial direction (chosen to be 2

throughout for the present calculations), we obtain Cu(τ), Cζ(τ), CBx
(τ) and CζB(τ).
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FIG. 1: Temporal auto-correlations of velocity, when q = 1.5 (solid line), 1.7 (dashed line),

1.9 (dotted line), 1.9999 (dotdashed line).

Figure 1 shows that with the decrease of q, although the velocity correlation decreases,

the difference between that of any two qs is insignificant. Hence, the simultaneous presence

of magnetic field and stochastic white noise kills the dependence of correlations on the

rotational effect.

FIG. 2: Same as Fig. 1, but auto-correlation for nonrotating flow (thick-solid line) is

additionally shown.
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FIG. 3: Temporal auto-correlations of velocity (solid line), vorticity (dashed line), magnetic

field (dotted line) and magnetic vorticity (dot-dashed line), when q = 1.5.

Note that in the absence of noise, perturbation energy growth (and hence Cu(τ)) in

all the above rotating cases, essentially for q < 2, is very small, as shown previously [6],

particularly in three dimensions. However, the effects of magnetic field and noise bring in a

huge growth of the perturbation top of the Coriolis fluctuations, clearly revealing instability.

A remarkable feature in the scaling nature of all these correlations is their independence of

q (background angular velocity profile) — a trait identified in statistical physics literature

as universality.

In Figure 2, we show that the correlation for a nonrotating flow appears quite larger

compared to that for rotating flows, which is similar to the trait observed in absence of

noise. However, the presence of noise increases the growth of perturbations enormously in

either of the cases.

Figure 3 depicts that the auto-correlation for vorticity perturbation is largest among

all the auto-correlations for a particular q. Note also that auto-correlations for velocity

and magnetic vorticity exhibit more oscillations compared to that for magnetic field and

vorticity. This is because the effects due to Alfvén wave arised from magnetic field. Note from

equations (9) and (12) that the evolutions of velocity and magnetic vorticity depend on the

magnetic perturbation explicitly, and hence the respective auto-correlations get modulated

by Alfvén waves. Moreover, the amplitude of velocity correlation is smallest at the beginning

due to fluctuations arised in the velocity perturbation, whose curl however need not be small,

giving rise to large vorticity correlations. However, either of correlations is large enough to

govern instability and then turbulence.
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2. Cross-Correlations

Here we stick to the same assumptions as of the computations of auto-correlations. The

temporal cross-correlations of two quantities, e.g. u and ζ, is defined by

< u(~x, t) ζ(~x, t+ τ) >= Cuζ(τ) =

∫

d3k dω e−iωτ < ũ~k,ω ζ̃−~k,−ω
> . (18)

Similarly, one can define other cross-correlations. Figure 4 shows all cross-correlations for a

Keplerian disk. Interestingly, cross-correlations of velocity and magnetic vorticity (dashed

line) and vorticity and magnetic field (dotted line) have a steady, constant, higher amplitude

at the beginning compared to other cross-correlations. This is because they are correlations

of either two fluctuating (due to Alfvén wave) variables or two non-fluctuating variables,

when, as shown in Figure 3 that, one of them have large amplitude to begin with. All the

remaining ones are the correlations of a strongly Alfvén wave modulated variable with a

non-modulated variable.

FIG. 4: Temporal cross-correlations of velocity and vorticity (thick solid line), velocity

and magnetic field (solid line), velocity and magnetic vorticity (dashed line), vorticity and

magnetic field (dotted line), vorticity and magnetic vorticity (dot-dashed line), magnetic

field and magnetic vorticity (long dashed line), when q = 1.5.

B. Spatial correlation

1. Auto-correlations

Here also we assume < η̃1~k,ω η̃2−~k,−ω
>= 0, like the case of temporal correlations, and

obtain spatial correlations of velocity, vorticity, magnetic field and magnetic vorticity, given
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below as

< u(~x, t) u(~x+ ~r, t) >= Su(r) =

∫

d3k dω ei
~k.~r < ũ~k,ω ũ−~k,−ω

>,

< ζ(~x, t) ζ(~x+ ~r, t) >= Sζ(r) =

∫

d3k dω ei
~k.~r < ζ̃~k,ω ζ̃−~k,−ω

>,

< Bx(~x, t)Bx(~x+ ~r, t) >= SBx
(r) =

∫

d3k dω ei
~k.~r < B̃x~k,ω

B̃x−~k,−ω
>,

< ζB(~x, t) ζB(~x+ ~r, t) >= SζB(r) =

∫

d3k dω ei
~k.~r < ζ̃B~k,ω

ζ̃B−~k,−ω
> .

(19)

Now using equations (14) and (19), the spatial correlation of velocity perturbation Su(r)

is explicitly given by

Su(r) = 2π

∫ km

k0

dk k2

∫ π

0

dθ eikr cos θ
∫

dω < ũ~k,ω ũ−~k,−ω
>, (20)

where J0(kr) is the zeroth-order Bessel function. Similarly, one can obtain Sζ(r), SBx
(r),

SζB(r) explicitly, when the poles of the integrand of the right hand side of equation (20)

and of equations for other correlations are identified. Here also we stick to the simplifying

assumption kx = ky = kz = k/
√
3.

FIG. 5: Spatial auto-correlations of velocity, when q = 1.5 (solid line), 1.7 (dashed line), 1.9

(dotted line), 1.9999 (dotdashed line) and flow is nonrotating (thick-solid line).

Figure 5 shows that the spatial correlations of perturbation decrease with the decrease

of q from 1.9999, while the difference between that of any two qs is insignificant. Note that

nonrotating case gives a slightly larger correlation than all the rotating cases. It is generally

seen that the correlations decrease with increasing r as well. However, their value appears
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significant enough to reveal a steadily damped instability in the flow. Such large values of

perturbation energy growth are indicative of instability and plausible turbulent transport,

in presence of stochastic noise.

Figure 6 shows all spatial auto-correlations for a Keplerian disk. Like the temporal case,

velocity correlation is lowest and its curl, i.e. the vorticity correlation, is highest. The

underlying reasons being similar as described in the case of temporal correlations, when

the existence of modulation due to Alfvén wave plays a determining rule. However, all the

correlations are large enough to reveal instability.

FIG. 6: Spatial auto-correlations of velocity (solid line), vorticity (dashed line), magnetic

field (dotted line), magnetic vorticity (dot-dashed line), when q = 1.5.

2. Cross-Correlations

Here we stick to the same assumptions as of the computations of auto-correlations. We

can define the spatial cross-correlation of two quantities, e.g. u and ζ, as

< u(~x, t) ζ(~x+ ~r, t) >= Suζ(r) =

∫

d3k dω ei
~k.~r < ũ~k,ω ζ̃−~k,−ω

> . (21)

Similarly, one can define other cross-correlations. Figure 7 shows all spatial cross-correlations

for a Keplerian disk, which is in accordance with auto-correlations described in Figure 6 and

the description for temporal cross-correlations.
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FIG. 7: Spatial cross-correlations of velocity and vorticity (thick solid line), velocity and

magnetic field (solid line), velocity and magnetic vorticity (dashed line), vorticity and mag-

netic field (dotted line), vorticity and magnetic vorticity (dot-dashed line), magnetic field

and magnetic vorticity (long dashed line), when q = 1.5.

IV. TWO-POINT CORRELATIONS OF PERTURBATION IN PRESENCE OF

COLORED NOISE

Here we show, how the effects of colored noise change the correlations, mainly their

amplitudes. For this purpose, we stick to a particular background profile which corresponds

to the Keplerian disk. We consider the colored noise in such a way that the correlation

function Di scales as 1/k
3−α. Then we choose three values of α, which are 3 (white noise),

2 and 0 (no vertex correction). In Figures 8 and 9, we compare effects of various colored

noise to the temporal and spatial auto-correlations respectively. Further, in Figures 10 and

11, we compare effects of various colored noise to a typical (velocity and magnetic field)

temporal and spatial cross-correlations respectively. The figures clearly show that effects of

colored noise decrease the correlations — larger the magnitude of slop of Di, smaller the

correlations are. However, even for Di ∼ k−3, auto-correlations are large enough to govern

instability.
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FIG. 8: Temporal auto-correlations of velocity for q = 1.5, when Di = k0 (solid line), k−1

(dashed line), k−3 (dotted line).

FIG. 9: Spatial auto-correlations of velocity for q = 1.5, when Di = k0 (solid line), k−1

(dashed line), k−3 (dotted line).

FIG. 10: Temporal cross-correlations of velocity and magnetic field for q = 1.5, whenDi = k0

(solid line), k−1 (dashed line), k−3 (dotted line).
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FIG. 11: Spatial cross-correlations of velocity and magnetic field for q = 1.5, when Di = k0

(solid line), k−1 (dashed line), k−3 (dotted line).

V. SUMMARY AND CONCLUSIONS

In this work, we have attempted to address the origin of instability and then turbulence

in magnetized, rotating, shear flows (more precisely a small section of it, which is a plane

shear flow supplemented by the Coriolis force). Our particular emphasis is the flows having

decreasing angular velocity but increasing specific angular momentum with the radial coor-

dinate, which are Rayleigh stable. The flows with such a kind of velocity profile are often

seen in astrophysics. As the molecular viscosity in astrophysical accretion disks is negligible,

any transport of matter therein would arise through turbulence only, in order to explain ob-

served data. Therefore, essentially we have addressed here the plausible origin of viscosity in

rotating shear flows of the kind mentioned above. Note that whether a flow is magnetically

arrested or not, hydrodynamic effects always exist, as Mukhopadhyay & Chattopadhyay [1]

argued. Hence, the relative strengths of hydrodynamics and hydromagnetics in the time

scale of interest determines the actual source of instability. Present work shows that the

strength of hydromagnetic effects could be superior than that of hydrodynamic effects.

We have shown, based on the theory of statistical physics (which has been recalled in

detail by Mukhopadhyay & Chattopadhyay [1], in the present context), that stochastically

forced linearized rotating shear flows in a narrow gap limit reveal a very large correlation

energy growth of perturbation in presence of magnetic field and noise. Although correlations

of perturbation decrease as the flow deviates from the type having q = 1.9999 (when q = 2

exactly corresponds to constant specific angular momentum) to that of the Keplerian, the
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difference between them is very small and they appear large enough to trigger nonlinear

effects and instability.

Therefore, the present work addresses the large three-dimensional hydromagnetic energy

growth of linear perturbation, in the line with theoretical framework grounded by Mukhopad-

hyay & Chattopadhyay [1], which presumably leads to instability and subsequent turbulence.

Only requirement here is the presence of stochastic noise and magnetic field in the system

together, which is quite obvious in natural flows like astrophysical (hot) accretion disks

around compact objects. Interestingly, all the flows with q < 2, exhibiting very similar

growth and roughness exponents with almost identical energy dissipation amplitudes, in-

dicates the universality class. Note that, at large r, they all reveal similar amplitudes of

spatial correlations. Thus the properties of temporal and spatial correlations together, in

presence of noise and magnetic field, indicate that the Rayleigh stable rotating, magnetic,

shear flows follow a single universality class. Another aspect to be noted from our work is

that the presence of magnetic field brings in oscillatory nature in the energy growths of the

system (due to the presence of Alfvén wave), unlike the energy growths in hydrodynamic

case [1]. Therefore, there might be a possibility of existence of a flow for which presence of

magnetic field hinders the energy growth of perturbation instead of enhancing the same, a

veritable destructive interference. This, however, has to be investigated in detail, in partic-

ular relaxing the choice of specific wave-vector of perturbations and also including dominant

non-linear perturbing modes.
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