
Review Article

Redox regulation of protein damage in plasma

Helen R. Griffiths n, Irundika H.K. Dias, Rachel S. Willetts, Andrew Devitt
Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK

a r t i c l e i n f o

Article history:
Received 31 December 2013
Accepted 11 January 2014
Available online 20 January 2014

Keywords:
Oxidation
Nitration
Glycosylation
Ageing
Thioredoxin
Peroxiredoxin

a b s t r a c t

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein
synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage
were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up
to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However,
advances in analytical techniques using mass spectrometry and immuno-affinity purification methods,
have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific
sites is now being characterised. The damaging reactive species that cause protein modifications in
plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric
oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase
(MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be
caused by oxidized lipids and glucose autooxidation.

In this review, we focus on redox regulatory control of those enzymes and processes which control
protein maturation during synthesis, produce reactive species, repair and remove damaged plasma
proteins. We have highlighted the potential for alterations in the extracellular redox compartment to
regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular
secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory mole-
cules, changes in redox state may be transmitted to distant sites.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Introduction

Plasma proteins perform a range of important physiological func-
tions such as maintaining homeostatic blood volume, transporting
other molecules for delivery at distant sites, through to regulating
endocrine systems and inflammatory responses. With half-lives ran-
ging from minutes to a month (Table 1) and with biosynthetic and
turnover rates decreasing during ageing, their potential to accumulate
damage differs markedly by protein and over time [1,2]. Consequently,
modifications to plasma proteins may exert a range of diverse effects
according to the sites of damage and are reported to increase in
frequency with age, acute and chronic diseases. Therefore, modified
proteins have the potential to serve as important biomarkers and may
in turn signpost aetiological mechanisms [3]. An improved under-
standing of factors that influence the steady state concentrations of
damaged proteins is important for evaluating their sensitivity as
biomarkers and also their potential as targets for therapeutic inter-
ventions that prevent or repair or modifications. The focus of this
review is on the role of redox regulation of steady state protein
damage in plasma.

In reviewing the redox regulation of protein damage in plasma,
we will consider (1) errors introduced in biosynthesis e.g. during
ER stress that affect glycosylation, folding and secretion: (2) redox
control of myeloperoxidase (MPO), NAPH oxidase isoforms (NOX),
nitric oxide synthases (NOS), xanthine oxidase (XO) which
increase protein exposure to reactive oxygen and nitrogen species
(ROS, RNS) in the plasma and result in chlorination, nitration,
nitrosylation, chlorination, methionine oxidation, disulphide for-
mation, HNE-protein adducts: and (3) regulation of hepatic and
macrophage receptors, extracellular reducing enzymes and pro-
teins such as protein disulphide isomerase (PDI), thioredoxin1
(Trx1), peroxiredoxins (Prx) and oxidoreductases that affect steady
state level of plasma protein damage.

Historically, the proteins analysed most frequently for damage
were the more abundant plasma proteins (e.g. albumin and
immunoglobulins) occurring at up to 10 orders of magnitude
higher concentrations than other proteins found in plasma; more
recently improved purification methods and higher sensitivity
mass spectrometry techniques have enabled less abundant pro-
teins to be examined [4].

Redox regulation in protein synthesis

There is little protein specificity for ROS and RNS, with reactions
often proceeding at diffusion controlled rates, such that the proteins
most likely to be damaged by ROS are those in closest proximity to
their sites of production and at the highest concentrations.

During protein synthesis, secretory and membrane proteins
co-translationally enter and are folded in the endoplasmic reticulum
(ER) and Golgi. Oxidative disulphide bond formation and glycosylation
facilitate correct protein folding prior to transport to the plasma

membrane for export; misfolded ER proteins are recognised and
unfolded by ER resident reductases and chaperones before undergoing
retrotranslocation to the cytosol [5].

Oxidative maturation is achieved by highly regulated enzymatic
transfer of two electrons [6]. The first conserved ER-resident oxidase
in the pathway to be identified that generates disulphide at the
expense of reducing oxygen is oxidoreductin 1 (Ero1) which occurs
in two discretely regulated and distributed forms, alpha and beta;
however, in contrast to observations in yeast, double Ero1 knockout
animals show little phenotype. Indeed, normal ER redox conditions
can be established after a strong reductive challenge, although this
occurs more slowly than in wild-type cells, suggesting a role for
other oxidative enzymes in disulphide formation [7]. One candidate
family is the protein disulphide isomerases (there are 20 reported
family members in mammalian cells) that include PDI, glutathione
peroxidase (GPx) 7, GPx8 and which interact with Ero1alpha [8].
Ero1alpha activity is inhibited by an intramolecular disulphide switch
between the active-site Cys94 and Cys131 and is re-activated by
available reduced PDI. In support of this regulatory mechanism,
overexpression of the mutant Ero1alpha-Cys131Ala which does not
have a disulphide switch, leads to ER overoxidation [9]. In one of the
first studies to identify specific oxidised thiol sites on intracellular
proteins, using methoxypolyethylene glycol 5000 maleimide,
Herzog-Appenzeller et al. showed that PDI is found in two semi-
oxidised forms suggesting that either domain in human PDI can
catalyse substrate oxidation and reduction [10]. Both isoforms of Ero1
facilitate the propagation of disulphides via PDI to nascent proteins
and hence are crucial for oxidative maturation [11] in a process that
is modulated by the glutathione (GSH)-oxidised GSH (GSSG) redox
pair [12]. Other redox regulated enzymes that have been implicated
in control of protein folding include; (a) Prx4 which can use luminal
hydrogen peroxide to oxidise PDI and thereby favour oxidative
folding but limit oxidative stress; and (b) vitamin K epoxide
reductase in cooperation with membrane-bound Trx-like redox
partners [13]. The extent of redundancy in the pathways for oxidative
protein folding supports the importance of effective redox control in
the biosynthesis of secreted proteins.

There are very few examples of loss of redox control in the ER
which impact on the secretome. An early study by Lodish used DTT
to explore the effect of a strongly reducing environment on the
secretion of different proteins and found that only secretion of
those with disulphide bonds was reversibly inhibited by DTT [14].
In contrast, a recent study describes that in astrocytes overexpressing
mutant SOD1, total protein secretion was decreased although
increased mutant SOD1-containing exosome release was observed,
possibly to prevent intracellular aggregate formation [15]. It remains
to be determined how the conventional ER secretory pathway is
affected by SOD1 mutant and whether this is due to excess ROS. The
extent to which exosome and microparticle (extracellular vesicles;
EV) formation can influence protein damage or transport modified
proteins is unknown, however, a few intriguing reports suggest that
EV can induce redox signalling at distant sites [16–18] and that their

Table 1
Major plasma protein characteristics.

Plasma protein Normal level (%) Function Half-life

Albumin 3.5–5 g/dl 60 Create oncotic pressure 17d
Carry other molecules

Immunoglobulins 1–1.5 g/dl 18 Acquired immune response 19–24 d in healthy subjects
Fibrinogen 0.2–0.45 g/dl 4 Blood clotting 3.5–5.5 d
α-globulins 0.15–0.35 g/dl 3 Anti-trypsin 62 h

0.03–0.2 g/dl 2 Haptoglobin 8 h
β globulins 0.2–0.36 g/dl 4 Transferrin, o24 h

0.06 g/dl 1 High Density Lipoprotein
0.1 g/dl 2 Low density lipoproteins

Hormones (e.g. norepinephrine) 0.6 NM Promote stress response 2.5 min
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secretion may be influenced by redox state [19]. This promising field
of research may reveal a novel mechanism of redox signaling.

Discrete plasma protein glycosylation patterns have been
described during disease and ageing. These may arise from
synthetic errors in B cells e.g. during rheumatoid arthritis and
also from post-translational modifications by ROS [20–23]. Few
studies describe the effects of glycoform modifications as they are
both complicated to design and to analyse. Using a series of
glycosidases to prune the glycoform, the effect of oligosaccharide
structure has been described for IgG1, with the glycoform chan-
ging effector functions of the molecule in binding complement
and Fc receptors [24]. In a different approach, the function of
C-reactive protein (CRP) with different glycosylation patterns that
was isolated from patients with infectious disease was examined;
patient CRP caused greater erythrocyte fragility which the authors
attributed to the glycosylation pattern and may explain in part the
anaemia associated with tuberculosis and leishmaniasis [25].

Cullen et al. explored the effect of oxidised LDL-loaded macro-
phages on membrane protein glycosylation and described a
decrease in alpha-1,3-fucosyltransferase enzyme activity and sialyl
lewis expression which may reduce macrophage binding to the
selectin receptor, modulating homing in atherosclerotic vessels
[26]. Direct evidence for the involvement of ROS in regulating
glycosylation has been provided in TNFalpha-activated leukocytes
lacking the NOX component, gp91 phox, p47 phox or inhibited
with tiron. After NOX inhibition, rather than an increase in core
2 beta-1, 6-N-acetylglucosaminyltransferase activity induced by
TNF, transferase activity was reduced by NOX inhibition and
binding to endothelial cells was also inhibited [27]. This suggests
a role for redox regulation of membrane protein glycoforms. From
the aforementioned evidence, loss of the native protein glycoform
can be elicited directly by oxidative damage or via redox regula-
tion of oligosaccharide synthesis; irrespective of the cause, protein
function is often affected by altering the glycoform.

Redox regulation of protein damage inducers

The molecular fingerprint of damage to major plasma proteins
includes amino acids modified by chlorination, nitrosylation,
oxidation, nitration, crosslinking (disulphide and Schiff base)
formation, glycation, dialdehydic lipids such as malondialdehyde
and 4-hydoxynonenal [28–35]. The mechanisms underlying these
modifications have been considered extensively elsewhere and are
not considered here [36]. The damaging reactive species princi-
pally arise from ROS produced by NOX, NOS and oxygenase
activities; RNS from MPO and NOS activities; and hypochlorous
acid from MPO. Instead, our focus is on redox regulatory control of
those enzymes which produce reactive species.

Redox control of NAPH oxidase isoforms (NOX)

Probably the most important source of the ROS, superoxide
anion radical (O2

d�) and hydrogen peroxide (H2O2), derive from
NOX 1–5 and Duox1/2 [37]. ROS from these enzymes are produced
at vastly different rates and concentrations to effect signalling and
bacterial killing. The majority of NOX forms release O2

d� to the
extracellular face and therefore have the potential to cause
bystander damage to plasma proteins. The NOX family is widely
distributed and by virtue of its potential to induce widespread
damage, its activity is carefully regulated. PDI is a key regulatory
enzyme of NOX. It controls angiotensin II-mediated ROS genera-
tion and Akt phosphorylation in vascular cells, being co-located
with oxidase subunits probably playing a role in subunit assembly
or trafficking [38]. Similarly in macrophages, close association
between PDI and the p22phox NADPH oxidase subunit was shown

by confocal co-localization and co-immunoprecipitation [39].
In neutrophils, the role of PDI in NOX assembly was also demon-
strated, where oxidised PDI increases, and reduced PDI decreases
membrane NADPH oxidase complex activity. Cytosolic PDI exhib-
ited thiol-dependent association with p47(phox) but following
activation did not accumulate in membranes. In contrast, oxidised
PDI was detected in the membrane suggesting a role in NOX
organisation according to its redox state [40]. Further investigation
of PDI binding partners revealed functional associations with small
GTPases Rac1 and RhoA and their regulator RhoGDI and suggested
that PDI supports NOX1 activation in vascular smooth muscle cells
[41]. In endothelial cells, many molecular and physical stimuli can
activate NOX signalling which converge on a redox regulatory
mechanism through Ras GTPases that contain a redox-sensitive
cysteine (X) in the conserved NKXD motif and are susceptible to
single electron reduction. Similarly, Rho GTPases that contain a
redox-sensitive cysteine at the end of the conserved phosphoryl-
binding loop motif (GXXXXG[S/T]C) may be activated by single or
two electron cysteine oxidation [42,43].

The assembly of NADPH oxidase subunits is also driven by lipid
raft formation, membrane macrodomains enriched in sphingolipid
and cholesterol [44,45]. We have shown that intracellular glutathione
concentrations are lower in neutrophils from patients with chronic
periodontitis and thiol-regulated acid sphingomyelinase activity is
increased, driving raft formation and is associated with an increase in
circulating plasma protein oxidation in periodontitis [45,46]. Intra-
cellular GSH redox state and the ability to drive an effective adaptive
response to regenerate GSH after its depletion via Nrf2 activation are
important regulatory elements during NOX activation. GSH may be
used as reducing equivalents by PDI to inactivate NOX, can exist at
different redox states within a cell according to compartment and
interestingly can be affected by extracellular redox state affording
“outside-in” control of activation [47–49].

Redox control of nitric oxide synthases (NOS)

Nitric oxide (NO) is generated by three NOS isoforms at varying
rates and concentrations according to its role in cell signalling or
bacterial killing. It can diffuse through membranes for up to 6 mm
from its site of production facilitating distant effects. NOS are
highly regulated through a number of discrete mechanisms
including transcriptional control (redox and NFkB for iNOS/
NOS2) calcium, calmodulin and tetrahydrobiopterin (BH4) avail-
ability. NO can mediate direct and reversible nitrosylation of thiol
moieties important for signalling and so is considered protective
against the effects of ROS which may oxidise thiols to higher,
irreversible oxidation states. On the other hand, when produced at
higher concentrations and combined with O2

d� , NO produces the
potent oxidant peroxynitrite, ONOO� . As described for NOX, the
small GTPase Rac, also regulates constitutive NOS1 and 3 found in
neurones and endothelial cells respectively. Cellular NO and O2

d�

production increase or decrease in a coordinated fashion through
Rac as a common control element [50].

NOS2 is located in peroxisomes and the cortical cytoskeleton is
induced by ROS and NFkB during inflammation and tissue injury
as part of the host defence and healing mechanisms. NOS2
induction results in NO release into the oxidative microenviron-
ment, results in peroxynitrite formation and can contribute to
tyrosine nitration in plasma proteins [51].

NOS3 was first reported in endothelial cells and is calcium/
calmodulin-dependent and normally produces NO for signalling.
However, during oxidative stress, BH4 is depleted, and NADPH
oxidation is uncoupled from NO generation, leading to production
of O2

d�; uncoupling is also driven by phosphorylation of Ser-1177
by Akt such that O2

d� generation is Ca2þ-independent [52–54].
The adipokine, resistin, which is considered important in insulin
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resistance, diabetes and cardiovascular disease, can also inhibit NO
production from NOS3 in endothelial cells and an increase in ROS
albeit in this case from loss of NOS3 mRNA stability and mito-
chondrial ROS, respectively [52]. Disruption of NOS3 is likely to
result in loss of effective NO signalling and increased plasma
protein oxidation. In contrast, upregulation of NOS3 by Nrf2 and
NF-kB activation by isoflavones may increase NO bioavailability
offering a mechanism whereby dietary phytoestrogens may mod-
ulate the redox environment and protein damage [55].

Regulation of lipoxygenase, xanthine oxidase and MPO

Cyclooxygenase (COX)-2 and 5-lipoxygenase, which synthesise the
inflammatory mediators, prostaglandins and leukotrienes, from diet-
ary or membrane-originated AA via phospholipase A2 activity also
produce ROS as byproducts [52]. While the effects of COX-2 dependent
biosynthesis of resolution phase lipid mediators are fine-tuned by
micro RNAs (miRNA) [56], little is known of regulators of ROS
production.While there is evidence to suggest that dietary modulation
of miRNA expression may affect COX-2 activity, this work is still in its
infancy.

Xanthine oxidase (XO) is a potentially important source of
superoxide in the vasculature during hypoxia and depletion of ATP,
when xanthine dehydrogenase activity is converted to oxidase
activity following thiol oxidation and the enzyme degrades pur-
ines and produces superoxide.

MPO is found in azurophilic granules of neutrophils and
activity is regulated only by availability of substrate hydrogen
peroxide and compartmentalization. It can mediate chlorination
and nitration of proteins at inflammatory sites [33,57]. Owing to
the unique source and chemistry of MPO products, there have
been several successful approaches to limit MPO-driven oxidative
damage [58,59].

Redox regulation of repair and receptor-mediated clearance for
damaged proteins in plasma

The presence of proteins that have been damaged by reactive
species in the circulation is not only due to excess production of
reactive species but also due to inadequate repair or removal of
damaged molecules. Only a limited number of damages are repair-
able, including disulphide bonds, sulphenic and sulphinic acids,
nitrosylation and methionine sulphoxides. There are limited exam-
ples of protein repair occurring in fluid phase, whereas several
proteins are reduced on the cell surface by exported oxidoreductase
enzymes such as PDI and cofactors including Ero1, Trx and Prx. No
reports of extracellular methionine sulphoxide reductase were found.

Hepatic and phagocytic receptor-trafficked clearance mechan-
isms are the major routes for removal of damaged proteins and
these are subsequently degraded intracellularly by the protea-
some. Extracellular matrix proteins accumulate damage over their
life-time and collagens are can become heavily glycated, under-
going extensive browning and elasticity loss, during diabetes.

Receptor mediated clearance

The liver serves a variety of functions including the synthesis
and removal of many plasma proteins. Protein clearance is most
likely mediated by Kupffer cells, specialised liver macrophages
which carry receptors for asialoglycoproteins. Loss of sialic acid
from glycoproteins may contribute to enhance antigenicity, loss of
tolerance and development of “autoimmune” responses hence
rapid removal is important [60,61]. Liver function declines with
age and also after ethanol exposure due to impaired binding of
asialoglycoproteins by their receptors [62]. When combined with

genetic polymorphisms in HLA antigens, the risk for autoimmunity
is increased in older adults and younger adults who experienced
chronic hepatitis C as children [63].

Another class of receptors that mediate clearance of circulating
damaged proteins in plasma are scavenger receptors expressed on
Kupffer cells [64] and macrophages e.g. CD36 [65]. CD36 binds to
oxidised and hypochlorite-modified apoproteins within HDL and
LDL and may elicit a range of downstream signals according to
co-receptor involvement. The nature of the epitopes recognised by
CD36 are not well-defined but are more likely to be molecular
patterns of hydrophobic amino acids caused by exposure of
hydrophobic domains following damage. Once internalised, the
damaged proteins will be degraded in lysosomes.

Damaged protein repair

The oxidoreductases and Trx1, can be exported through the
leaderless secretory pathway, exerting a range of effects on T cells,
B cells and fibroblasts from growth arrest to autocrine activation and
can also be found associated with plasma membranes where it is
probably anchored through palmitoylation [66]. We have shown that
Trx1 trafficking to the membrane is decreased when intracellular
GSH is depleted and hence the intracellular redox state may
influence the extracellular environment [67]. Trx1 is an effective
reductant of disulphide bonds in plasma and on the cell surface.

One notable example of oxidised protein repair in plasma is in the
regulation of tissue factor (TF) activity by secreted Trx1 [68].
Enhanced tissue factor activity increases thrombus risk. This can be
decreased through disulphide reduction by NADPH, Trx1 and thior-
edoxin reductase (TxR) and results in reversible association of Trx1
with TF in human serum and plasma samples so interfering with
factor 7a binding to TF and inhibition of the coagulant cascade.
However, others have debated the importance of redox control for
activation of TF and suggest a role for PS exposure and suggest
further study is necessary [69,70]. The activity of a related clotting
factor is also increased by reduction; circulating Factor XI (FXI) exists
as a dimer with disulphide bonds which can be reduced by TRx1 and
PDI. The activation of reduced FXI by thrombin, FXIIa or FXIa was
significantly increased compared to non-reduced FXI thereby pro-
moting an effective clotting response [71].

In another example, this time in close association with T cell
membranes, IL-4 activation and binding to receptor is achieved
through membrane associated Trx and PDI with TxR serving as the
electron donor [72]. Full length Trx1 on endothelial cells acts as an
inhibitor of C5 convertase deposition, so preventing formation of
complement component C5a and the membrane attack complex in
a redox-dependent manner [73]. However, the truncated form of
Trx1 was a potent activator of complement and highlights the
importance of understanding the form of Trx1. Other disulphide
bonds on leukocytes that are labile and can be reduced by Trx with
PDI and thiol reductase, include mouse T cell CD132. When
reduced, IL-2 -dependent signalling was inhibited but it is
unknown whether this same effect is observed in human cells,
where oxidation of cell surface proteins is associated with sup-
pression of activity [74]. Related to Trx1, PDI and glutaredoxin
(Grx1) activity is required for T cell entry of HIV1 after binding to
surface CD4 through reduction of intramolecular disulphides in
the envelope protein gp120. To date, Grx1 does not appear to be
widely used as a reducing enzyme at the T cell surface so may be a
druggable target to prevent HIV-1 entry [75].

In addition to their role in thrombosis, platelets are increasingly
recognised as important players in inflammatory responses,
secrete EVs and provide an important platform for oxidised
protein repair. For example, the plasma protein beta(2)-glycopro-
tein I (GPI) circulates in an oxidised state and is susceptible to
reduction at Cys288–Cys326 disulphide in domain V by Trx1 and
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PDI on the platelet surface. Reduced beta(2) GPI shows increased
binding to von Willebrand Factor (vWF) and in turn increased
platelet adhesion to activated vWF [76].

Surface adhesion molecules, integrins, are important for cell to
cell interactions and frequently undergo post-translational mod-
ifications on activation that increase their binding to their cognate
receptors. Redox-controlled remodeling of the exofacial domains
of alpha(IIb)beta(3) integrin on platelets by exofacial PDI with
Ero1alpha to reoxidise the PDI active site, increases receptor
activity and fibrinogen binding [77,78]. Other proteins on the cell
surface regulated by PDI include ADAM17 and on platelet surface
that are redox sensitive include thiol isomerase enzymes e.g.
ERp57 which respond to changes in the extracellular redox
environment and their impact on platelet activation which along
with other family members deserves further study as potential
targets against thrombus formation [79–81]. Repair of oxidised
thiols maintains signalling through a number of different receptors
and although not strictly damaged, the careful control of reduction
and oxidation by close association with oxidoreductases prevents
irreversible hyperoxidative damage occurring.

Another important antioxidant-like enzyme family with redu-
cing activity is the peroxiredoxin family. Prx6 translocates to the
neutrophil surface and is required for respiratory burst activation,
however, mutant proteins (C47S) and (S32A) lacking reductase
and phospholipase activity remained active for respiratory
burst activation and therefore the role of surface Prx6 remains
unknown [82].

Conclusion

This review of redox regulation has considered processes that
control the extent of damaged proteins in plasma and regulation of
enzymes that contribute to the concentrations of reactive species
that can cause damage. It has reviewed the manner in which the
extracellular redox compartment can regulate intracellular path-
ways, and conversely, how intracellular oxidative stress may alter
the cellular secretome and extracellular protein damage.

However, redox dysregulation and reactive species do not just
beget further reactive species but also drive antioxidant protein
expression. It is beyond the scope of this review to cover the wealth
of literature on redox regulation of antioxidant enzymes regulated by
NFkB such as MnSOD or Nrf2 (e.g. GSH peroxidase); the redox-
regulated antioxidant response offers the possibility of controlling
the extent of reactive species available to damage proteins and to
restore the intracellular redox potential. The epigenetic control of
adaptive responses promises some interesting opportunities for inter-
ventions that might reverse de-/acetylation and de-/methylation and
restore redox homeostasis through Nrf2 signalling. The potential for
redox signaling through circulating EV suggests an exciting connection
to distant sites and potential for modulation by antisense miRNA. The
existence of a regulatory antioxidant loop is critical for health and
failure to elicit and adaptive response may underlie a protein damage
in a number of chronic inflammatory diseases and ageing.
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